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An attraction–repulsion transition 
of force on two asymmetric wedges 
induced by active particles
Ke Li1, fuchen Guo1, Xiaolin Zhou1, Xianghong Wang2, Linli He2* & Linxi Zhang 1*

Effective interaction between two asymmetric wedges immersed in a two-dimensional active bath 
is investigated by computer simulations. The attraction–repulsion transition of effective force 
between two asymmetric wedges is subjected to the relative position of two wedges, the wedge-to-
wedge distance, the active particle density, as well as the apex angle of two wedges. By exchanging 
the position of the two asymmetric wedges in an active bath, firstly a simple attraction–repulsion 
transition of effective force occurs, completely different from passive Brownian particles. Secondly 
the transition of effective force is symmetric for the long-range distance between two asymmetric 
wedges, while it is asymmetric for the short-range case. Our investigations may provide new 
possibilities to govern the motion and assembly of microscopic objects by taking advantage of the 
self-driven behaviour of active particles.

Differently from passive Brownian particles, active particles (also known as self-propelled particles) may acquire 
energy from external source and drive themselves far away from equilibrium. Examples of active matter can be 
found in various systems ranging from  bacteria1,2,  alga3,4,  spermatozoa5,6, macroscopic  animals7,8 to artificial 
micro-swimmers9–12. Meanwhile active particles exhibit spatiotemporal active states, such as  swarming13–15, 
and turbulence(swirling)16–18. Therefore, researches on the nonequilibrium dynamics of active particles have 
great significance in not only clarifying its physical  mechanisms19–23 but also understanding the natural biologi-
cal systems, such as bacterial colonies, fish schools, bird  flocks24 and so on. Additionally, active particles with a 
proper design can be widely applied in a variety of areas, such as drug delivery in  medicine25,26, gene  therapy27, 
nanoscale  assembly28,29, pollution  management30, etc.

Passive objects or rigid obstacles immersed into an active bath can guide and accumulate active  particles31–34, 
as well as be taken as trapping devices for active  swimmers35–37. Conversely, active swimmers placed by fixed 
boundaries would undergo a  rectification38,39 and  sorting40–42 effect. Perhaps the most remarkable phenomenon 
is that active particles tend to accumulate at the fixed boundaries due to the reduction of its mobility in the 
proximity of the fixed boundaries. This creates positive feedback corresponding to the motility-induced phase 
separation (MIPS) between dense and dilute  fluid43–50: active particles accumulate where they move more slowly, 
while steric hindrance or repulsive interactions slow down active particles at high density. Solon et al. successfully 
introduced an effective free-energy to describe MIPS as a spinodal decomposition in terms of density-field48. 
MIPS can lead to cohesive active matter in the absence of cohesive forces and the phase-coexistence of active 
particles displays several relevant differences from the liquid–gas phase coexistence of passive  particles49,50. Sandal 
et al. found that active particles can self-organize into two coexisting phase at different kinetic temperatures, 
and they are separated from each other by a sharp and persistent temperature  gradient50. Ray et al. observed 
that a robust attractive force appears between two parallel rods immersed into a bath of run-and-tumble active 
particles, which results from a depletion of active particles in the confinement between two rods by the combined 
effect both particles swimming along the rods and a geometric shadowing effect. Their results also give a fact 
that objects can experience a great variety of fluctuation-induced forces in active particles  system33. Kaiser et al. 
showed that a static chevron-shape boundary would represent an excellent trapping device for active particles, 
and the trap efficiency behaves a phase transition corresponding to three states: partial trapping, complete trap-
ping, no trapping, which is determined by the apex angle of the  trap36. Kaiser et al. also experimentally focused 
on the motion of a pair of symmetrical micro-wedges submersed in a turbulent rod-like bacteria bath. They 
observed that two micro-wedges of same orientation move such that their mutual distance decreases, while they 
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drift apart for an anti-parallel  orientation37. In our recent  work43, we explored the collective behaviours of active 
rod-like particles in two symmetrical micro-wedges of anti-parallel orientation using computer simulations. A 
transition from repulsion to attraction occurs by varying both apex angles of two wedges, which is also sensitive 
to the particle density. The optimal apex angle θ* and particle density ρ* is characterized by the saturated trap-
ping of active particles inside  wedge43.

Due to the intrinsic non-equilibrium property of active particles, it is interesting to study the non-equilibrium 
behaviours of active swimmers in a system immersed by an array of asymmetric  barriers1,51–58. The motion of 
active particles can be rectified in the presence of funnel-shaped obstacles and a ratchet effect is observed even 
in the absence of an external  drive56,57. Volpe et al.53 found that active swimmers would be sorted with the use of 
a periodic array of convex obstacles (ellipses). According to these investigations, the asymmetry of obstacles also 
plays a crucial role in the occurrence of these phenomena, which originates from the broken time  symmetry53 in 
particle-obstacle interactions. In fact, as we know, in active particle system, the ratchet phenomenon demands 
two  ingredients38 which are (a) fluctuating input zero-mean force: it should break the thermodynamical equi-
librium, and (b) asymmetry (temporal and/or spatial): it can violate the left–right symmetry of the response. In 
this paper, two asymmetric wedges are immersed in a bath of active rod-like particles, which are taken as the 
trap device, and our aim is to investigate some special non-equilibrium properties of asymmetric obstacles in 
an active particle bath. We monitor the directed collective behaviour of active particles near the wedges with 
variable wedge-to-wedge distance, active particle density, and apex angles of wedge. The final focus is on the 
attraction–repulsion transition of effective force between two asymmetric wedges. By exchanging the position 
of the two asymmetric wedges, the attraction–repulsion transition of effective force occurs and this transition is 
symmetrical at long-range distance, while it is asymmetrical at short-range distance.

Model and methods
In our simulation, two asymmetric hard wedges in a suspension of a two-dimensional active bath are considered, 
shown in Fig. 137,43. The active bath is modelled by N rod-like self-propelled particles. Each rod-like particle 
with length l = σ and width d = 0.5σ consists of three spherical beads, which are equidistantly positioned with 
a displacement S = 0.25σ, along the main rod  axis37,43. Here σ is the reduced unit of length. The particle density 
ρ is defined by the ratio of the area occupied by N self-propelled particles to the total area of the system, which 
can be freely controlled by varying N. The related aspect ratio of the active particle is denoted as p = l/d (i.e., 
the length and width of the active particle are l and d, respectively), and here p = 2.0, which is the same as that 
considered in our previous  work43. Initially, active rod-like particles are placed randomly in the system. Simula-
tions are performed on the boxes of size  Lx = 200σ and  Ly = 100σ with Periodic Boundary Condition in x- and 
y-directions, and two hard wedges are embedded in the active bath. We focus on the case of two wedges with 
same orientation of different apex angles, θ1 and θ2 (varying from 0° to 180°), particle density, ρ, and distance, r. 
Here r is defined as the nearest distance between two wedges in x direction, which is not the distance between 
two cusps of wedges shown in Fig. 1b. Each wedge with length L = 20.5σ and width d = 0.5σ is discretized into 
81 spherical beads equidistantly distributed, with a displacement S = 0.25σ.

Any overlap of particle–particle or particle-wedge is prohibited by choosing a shifted and cut-off Len-
nard–Jones potential,
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Figure 1.  Simple model of two asymmetric wedges in a 2D active bath. r represents the x-direction nearest 
distance between the two wedges and the apex angles of wedges are denoted by θ1 and θ2. The active rod-like 
particles are shown in yellow, where the head of the particles is highlighted by red color. Two types of wedges are 
considered: (a) Model I (θ1 = 165° and θ2 = 90°) and (b) Model II (θ1 = 90° and θ2 = 165°), respectively.
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where R is the distance between any two beads (particle–particle or particle-wedge), and ε = 1.0kBT. Here  kB is 
the Boltzmann constant and T is the temperature. Active particles swim in a low Reynolds number regime, and 
the dynamics of the i-th active particle is described by the translational velocity vi and the angular velocity wi , 
obeying the following  equtions43,59–61

where

are the translational and rotational mobility matrices, respectively, and E3 represents the identity matrix. In planar 
geometry, k‖ has no contribution in the equations of motion, and mobility value for k⊥ is set at 4.8. Translational 
diffusion coefficient m⊥ is subjected to the aspect ratio of particle p, and here m⊥ = 0.8452 for p = 243,48,62–64. The 
self-propulsion contribution to the total force Fi is f0ê(1− θi) , where f0 corresponds to the magnitude of the 
self-driving force and θi represents the dichotomous state variable, which turns from the value 0 to 1 with the 
rate λ stochastically. Here, θi = 0 and θi = 1 are indicated as two states, corresponding to the running state and the 
tumbling state,  respectively59,60. During the tumbling state, the total torque Ti receives a random contribution 
Tiθi that changes the free swimming direction of the active  particles59,60, and the tumbling rate is fixed at λ = 0.1. 
In our simulation, all quantities are reported in reduced units (σ = 1, m‖ = 1,  kBT = 1, and f0 = 1) and are chosen to 
be the units of length, mass, energy, and force, respectively. The time step is Δt = 10–4, and each simulation runs 
from 5 × 107 up to a maximum of  108 steps. To identify the steady-state, we average the relevant physical quantities 
over exponentially increasing time windows, and we use this time binning procedure to assess convergence to 
the steady  state65. All statistical properties are averaged over 50 runs. Generally, the magnitude of the self-driving 
force is f0 = 1.0 except special declaration.

The effective average forces F(r) between the two wedges immersed in the active bath are calculated by the 
total forces of the wedges exerted by the active particles. Here we only consider the horizontal direction average 
effective force because of the symmetry of the upper and lower parts of each wedge. The effective forces F(r) > 0, 
F(r) < 0, and F(r) = 0 represent three interaction states between two asymmetric wedges, corresponding to repul-
sion, attraction and no interaction, respectively.

Results and discussion
Attraction–repulsion transition for asymmetric wedges. We first investigate the effective force F(r) 
between two asymmetric wedges as a function of r at a fixed particle density of ρ = 0.075, considering two types 
of wedges, i.e., Model I (θ1 = 165° and θ2 = 90°) and Model II (θ1 = 90° and θ2 = 165°), as shown in Fig. 2. The inter-
actions of active particles with the wedges are accounted through the potential  Utotal = U1(ri − rLi) + U2(ri − rRi ), 
where  U1 and  U2 are the contributions from the left and right wedges, which are given by Eq. (1), respectively. 
 rLi and  rRi are the points located long the longitudinal axis of the left and right wedges that are closest to the i-th 
active particles,  respectively62. Therefore, the effective force F(r) is the relative force between two wedges, which 
is defined  as63

(2)vi = MiFi ,

(3)wi = KiTi ,

(4)Mi = m�êi êi +m⊥

(

E3 − êi êi
)

,

(5)Ki = k�êi êi + k⊥
(

E3 − êi êi
)

(6)F(r) = F12 − F34.

Figure 2.  Effective force F(r) between two wedges as a function of r for Model I- and II-wedges.
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F12 is denoted as the force exerted by active particles on the left wedge, which consists of two parts, i.e.,

with

A similar definition for  F34 is given by

with

Here, O_l(r) is denoted as the left side of the left (right) wedge and l(r)_O is defined as the right side of the 
left (right) wedge. From Fig. 2, it can be seen that there are two distinct transitions of effective force F(r) with 
increasing r, corresponding to repulsive-attractive-repulsive force (Model I in black), and only attractive force 
(Model II in red), respectively. To explore the physical mechanisms for the transition of effective force, we present 
the visual density distributions of active particles near the obstacles for different r, as shown in Fig. 3.

For Model I, Fig. 2 shows that the repulsive force (F(r) > 0) decreases with oscillation at first, and approaches 
to the minimum where attractive force (F(r) < 0) occurs between two asymmetric wedges, then arises gradu-
ally back to repulsive force (F(r) > 0) with the increase of distance r, and eventually remains constant. Figure 3a 
provides a strong support for explaining this non-monotonic repulsive-attractive-repulsive transition. As r = 1.0 
corresponding to maximal repulsive force (point A in Fig. 2), the confinement region between two wedges is 
jammed with several dense layers of active particles forming a dynamic bridge structure due to the collective 
behaviour induced by the presence of a confined  boundary36, as shown in Fig. 3a-A. Obviously, the repulsive 
force induced by dynamic particles bridge in confinement area is greater than the leftward force imposed on 
the right wedge, performing a net “repulsive force” between two asymmetric wedges. When the distance r is 
increased to r = 1.3 (point B in Fig. 2), the dynamic particles layer between two wedges becomes slightly thinner 
shown in Fig. 3a-B, which leads to a decrease in repulsive force between two wedges. Interestingly, for the case 
of 2.5 < r < 5.0, the effective force F(r) is reversed to be attractive. Take r = 2.7 for example shown in Fig. 3a-C, 
the dynamic bridge is broken, and the particle density in the inner contour of right wedge is greater than the 
confinement area, leading to an attraction between the two wedges. Finally, for r > 5.0, the interaction between 
two wedges rises gradually back to repulsive force (F(r) > 0), and eventually remains constant with the increase of 
distance r. For r = 13.0 shown in Fig. 3a-D, it can be seen that the distance is too far to have any overlap between 
the surrounding collective layers from two wedges, so the wedge is driven from their respective active particles 
gathered inside the wedge, where the particle number in the inside surface of left wedge is higher than that of 
right one. Moreover, the particle number difference would remain the same as further increasing r, so repulsive 
force would be constant.

Contrary to Model I, we exchange the position of these two wedges, named as Model II (θ1 = 90° and θ2 = 165°). 
The effective force F(r) between two wedges always is attractive, as shown in Fig. 2 (curve in red), which is com-
pletely different from Model I. For 0.8 < r < 3, the attractive force F(r) oscillates as r increases due to the oscilla-
tion of particle concentration between the inside and outside of the two wedges. These oscillation behaviours 
for effective forces are always observed in non-equilibrium system, especially for short-range  distance43,63. For 
r = 1.1 shown in Fig. 3b-A′, a large cluster is formed near the entrance of the confinement area. As the repulsive 
part induced by internal particles is slightly less than the attractive part contributed by the particles in the inner 
contour of right wedge, a weak attraction occurs between two wedges. Compared with r = 1.1, as the distance r 
is increased to r = 1.2 shown in Fig. 3b-B′, the dynamic cluster disappears, and few particles can migrate into the 
cusp of the left wedge while most particles are captured by the right wedge. There is a maximal attractive force 
due to the great difference on the particle number captured by two wedges. For the case of r = 3.0, a few active 
particles enter the cusp of left wedge, reducing the particle concentration difference between two regions. That’s 
the reason why the attractive force F(r) for r = 3.0 is weaker than that for r = 1.2. Further, for r > 3.0, attractive 
force decreases firstly, and then keeps unchanged with increasing r. Obviously, as the distance is further enlarged, 
more particles are captured by the left wedge, which leads to the decrease of concentration difference between 
two regions. When concentration difference reaches the minimum, the attractive force arrives at the minimal 
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value and then remains constant. For r = 13.0 as shown in Fig. 3b-D′, the wedge is driven from their respective 
active particles gathered inside the wedge. As the particle number in the inner part of right wedge is obviously 
higher than that of left wedge, the effective force is attractive. As further increasing r, the attractive force would 
be constant, which is contrary to the case shown in Fig. 3a-D.

In fact, the effective force between two asymmetric wedges is also influenced by the self-driving force f0 . As 
shown in Fig. 4, for a larger self-driving force f0 = 3, the periodicity of oscillations is the same as in the case of 
f0 = 1, while collisions of active particles with the wedges are more frequent, leading to a great oscillation ampli-
tude of force F(r) compared to the case of f0 = 1. Ni et al. found that both the strength and range of the effective 
forces between two parallel rods dramatically increase with the increase of self-driving force f0 . Here our results 
are also in good agreement with their  results63. In addition, the effective force between two wedges is also related 
to the aspect ratio of active particle, p, and the detailed discussions are given in the Supplementary Information.

Figure 3.  Density distributions of active particles for Model I- (a) and II-wedges (b) at different distances r.
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Effects of particle density. In this section, we will consider the effects of particle density on effective force 
between two asymmetric wedges. It can be found that the particle density ρ plays an important role in determin-
ing the direction and strength of the effective force. We first focus on Model I and show the interaction between 
two wedges versus r for different particle densities ρ, as shown in Fig. 5. In detail, for ρ = 0.075, 0.1, and 0.2, 
effective force F(r) experiences a repulsive-attractive-repulsive transition as r increases, while it undergoes the 
repulsive-attractive transition for low densities of ρ = 0.01 and 0.025. For all ρ, the effective forces F(r) oscillate 
firstly at short-range distance, and then achieve stably at long-range distance. For short-range distance, we pick 
the first peak of effective force F(r) curves for different ρ to display the density distribution of active particles 
in the left column of Fig. 6. For a low density of ρ = 0.01, as shown in Fig. 6a, a dynamic particle bridge forms 
between two wedges while only a few particles are captured by the inner contour of the right wedge, inducing 
the two wedges to repel with each other. With increasing particle density from ρ = 0.01 to 0.025, 0.075, and even 
0.1, as shown in Fig. 6b–d, more particles swarm into the confinement area between two wedges for high density. 
The difference of particle concentration between inside and outside of two wedges increases, so the repulsive 
force between two wedges gets larger. Interesting, for a higher density of ρ = 0.2, the effective force F(r) between 
two wedges decreases. It indicates as the inner area of each wedge has reached saturation, further increasing 
ρ instead reduces the particle concentration difference between the inside and outside of one wedge and then 
weakens the effective repulsive force F(r), see Fig. 6e.

For long-range distance, we choose r = 13.0 to compare and the results are shown in the right column of 
Fig. 6. As ρ = 0.01, Fig. 6f shows that a few of particles are preferentially gathered in the cusp of the right wedge, 
while almost no particle is captured by the left wedge, therefore, interaction force between two wedges is weakly 
attractive. Increasing particle density from ρ = 0.01 to 0.025, as shown in Fig. 6g, more particles are found in the 
cusp of right wedge, and still only few particles are located in the inside surface of left wedge. The difference of 

Figure 4.  Effective force F(r) between two wedges as a function of r for Model I-wedges with various activities, 
f0.

Figure 5.  Effective force F(r) between two wedges as a function of r for Model I-wedges with different ρ.
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Figure 6.  Density distribution of active particles for Model I-wedges at short-range distance (a) ~ (e) (r = 1.0) 
and long-range distance (f) ~ (j) (r = 13.0) with different ρ.
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particle concentration between two regions gets larger, so that the attractive force is strengthened. For ρ = 0.075, 
as shown in Fig. 6h, both two wedges can capture enough active particles and the collective behaviour reaches 
saturation. The number of particles captured by left wedge is more than that of right wedge, which induces a net 
repulsive force between two wedges. Further increasing ρ to 0.1 and 0.2 after saturation, more active particles can 
destroy the collective structure of the outer layer in the cusp of the left wedge, see Fig. 6i, j. Meantime, some active 
particles are also gathered in the left side of each wedge, which then weakens the effective repulsive force F(r).

For Model II, it is equivalent to exchange the position of the two wedges directly corresponding to Model I. 
As shown in Fig. 7, for ρ = 0.01, two wedges have no interaction for r < 3.0 as no particles are captured by wedge, 
and then repel with each other for r > 3.0 due to a few of particles are trapped preferentially by left wedge with 
θ1 = 90°. Increasing the particle density from ρ = 0.01 to 0.025, 0.075, 0.1 and even 0.2, the effective force oscillates 
and remains constant with r, which is similar to the case of Model I shown in Fig. 5. The oscillation of interaction 
at short-rang distance results from the oscillation of particle concentration difference between inside and outside 
of two  wedges43,62,63. For ρ = 0.025, the attractive force F(r) increases compared with ρ = 0.01 at r < 3.0 because 
more particles are trapped by right wedge, and a transition from attraction to repulsion appears at r > 10.0. The 
transition from attraction to repulsion suggests that more particles are trapped by left wedge as increasing r. 
Further increasing ρ = 0.075 enhances the strength of the effective force, because the number of particles trapped 
by wedge increases with ρ increasing. For a higher particle density ρ = 0.1 and 0.2, the effective force decreases as 
ρ increasing. As the number of particles trapped by wedges has arrived at saturation, increasing ρ would reduce 
the difference of particle concentration between inside and outside of two wedges.

To explore the relationship between the effective force F(r) and the particle density in more detail, we calcu-
late the effective force F(r) as a function of ρ for Model I- and II-wedges. We first discuss the case of long-range 
distance (r = 13.0) shown in Fig. 8a. For Model I, a transition from attraction to repulsion occurs with increasing 
ρ. There are two critical points (about at ρ1* ≈ 0.025 and ρ2* ≈ 0.06). The attractive force increases as the num-
ber of particles trapped by the right wedge with θ2 = 90° get larger with increasing ρ. Then the attractive force 
decreases to zero and reverse to repulsive force as more particles are captured by left wedge with θ1 = 165°, and the 
left wedge also gets saturation corresponding to the second critical point (ρ2* ≈ 0.06). Here two critical particle 
densities (ρ1* ≈ 0.025 and ρ2* ≈ 0.06) occur in the dilute regime, which are also consistent with the studies by 
Kaise et al.36,66. For a higher particle density (ρ = 0.1 and 0.2), more particles swim outside of two wedges, reduce 
the particle concentration difference between inside and outside of two wedges, and weaken the repulsive force 
between two wedges. Although the apex angle θ of the wedges plays a key role in determining the trapping effi-
ciency of wedge, the total number of active particles trapped by the wedge also relies on the particle density ρ of 
active  particles36,66. Symmetrically, for Model II, there is a transition from repulsion to attraction with increasing 
ρ. To clarify the underlying mechanism of this behaviour caused by particle density, we explore the independent 
force exerted by active particles of each side of two wedges, where the results are shown in Fig. 9. Figure 9a, b 
show that for low particle densities such as ρ < 0.025, there are more active particles gathered in the cusp of the 
right wedge than the left one, which leads to a fact that  F2 is always close to 0, and  F4 increases abruptly with 
particle density increasing. However, for ρ > 0.025, active particles are gathered massively in the cusp of the left 
wedge and  F2 increases more greater than  F4, which leads to the maximum of the difference between  F4 and  F2 
at ρ = 0.060. As known, there are different collective abilities for the wedges with different angles of θ1 = 165° and 
θ2 = 90°. When ρ increases further,  F4 increases slowly and the right wedge reaches saturation finally. However, 
 F2 drops slowly instead because the overflowing particles would collide and even disturb the collective layer of 
the left wedge. Caprini and Marconi have investigated the effects of geometric confinement on the steady-state 
properties of a one-dimensional active suspension subject to thermal noise, and the random active force on the 
confining wall is studied both numerically, by integrating the Langevin governing equations, and analytically by 
solving the associated Fokker–Planck equation under suitable  approximations67. They obtained a non-uniform 
density profiles because active particles accumulate near the wall, and the force exerted on the wall depends on 

Figure 7.  Effective force F(r) between two wedges as a function of r for Model II-wedges with different ρ.
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the wall separation. Inspired by their work, we also calculate the independent force exerted on two sides of each 
wedge, explaining the attraction–repulsion transition of effective force between two asymmetric wedges. The 
force acting on the wedge originates from the average collision of active particles, and the underlying mecha-
nism attributes the accumulation to the reduction of the active particles’ mobility in the presence of the wedges.

Then consider the case of short-range distance (r = 1.0) shown in Fig. 8b, differently from the long-range 
distance. For Model I, the repulsive force increases first and then decreases with increasing particle density ρ 
shown in Fig. 8b. Meantime, Fig. 9c, d show how the independent forces rely on the particle density ρ. With a low 
ρ, few particles are found in the confinement of two wedges. As increasing ρ, more particles flock into the con-
finement area, which is also reflected by the rapid growth of  F2 and  F3 shown in Fig. 9c, and leads to the increase 
of the repulsive force between two wedges. Once the number of particles trapped in the confinement achieves 
saturated, further increasing ρ would reduce the independent forces of  F2 and  F3 because more active particles 
can destroy the collective structures of active particles in the outer layer, which weakens the repulsive force a 
little. This result originates from the instability of trapping of active particle, which agrees well with the Kaiser’s 
 results36,66,68. However, for Model II, two wedges attract first and then repel with each other with increasing ρ, 
different from the case of Model I. At a low particle density (ρ < 0.06), with increasing ρ, more and more particles 
are captured by right wedge, and the attraction gets stronger. As ρ > 0.06, more particles run into the confinement 
area, the attractive force is decreased to be zero and then reversed to repulsive force. From Fig. 8, we can conclude 
that by exchanging the position of the two asymmetric wedges, the transition of effective forces is symmetrical 
at long-range distance, while symmetry destruction occurs in short-range situations. Different behaviour for 
effective force between two asymmetric wedges at the long-range and short-range distances represents a typical 
ratchet phenomenon in active particle system in which it breaks the thermodynamical equilibrium, as well as it 
violates the left–right  symmetry38,51,52,54.

Effects of the apex angles of wedge. Finally, we investigate the effects of wedge shape on the interaction 
between two wedges. Here, we underline the asymmetric transition of the effective force at short-range distance 
and symmetric transition at long-range distance as a response to the interchange of two wedges positions, and 

Figure 8.  The repulsion-attraction transition for Model I- and II-wedges in an active bath induced by the 
density ρ at long-range distance (r = 13.0) (a) and short-range distance (r = 1.0) (b).
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the results are shown in Fig. 10. At long-range distance (r = 13.0) shown in Fig. 10a, the effective force displays 
symmetry for both cases: θ1 variable with θ2 = 90°, and θ1 = 90° with θ2 variable. For the former, an attraction–
repulsion transition occurs as θ1 increases from θ1 = 0° to 180°. For a small angle (θ1 = 5°), most active particles 
are collected by right wedge, while hardly any particles are captured by left wedge, leading to an attraction 
between two wedges. Increasing θ1 from θ1 = 5° to 90°, the trap efficiency of left wedge improves, which would 
diminish the difference in the number of particles captured by two wedges and weaken the attraction. Similarly, 
increasing θ1 from 90° to 165°, more particles trapped by left wedge until the trap efficiency is maximized. 
Further increasing θ1, the trap efficiency of left wedge declines, which can lead to an attraction interaction 
between two wedges. As shown in Fig. 10b, one apex angles of two wedges is fixed at θ = 165°. For θ1 variable 
with θ2 = 165°, the interaction between two wedges is attractive overall, and the attraction increases and then 
decreases as θ1 increases. There is an optimal angle of θ1 = 165°, in which the trap efficiency reaches a maximum 
and two wedges have no interaction equivalently. In order to unveil the physical reason of the phenomenology 
observed, we monitor the independent force of each wedge attributed by the collisions between active particles 
and the wedge, and the results are given in Fig. 11. Figure 11a shows that  F1,  F3, and  F4 keep unchanged, and 
only the force  F2 acting on the inside surface of the left wedge varies as the apex angle increases, which leads to a 
non-monotonic behavior for the effective force F(r) between two wedges, as shown in Fig. 11b.

In addition, at short-range distance (r = 1.0) shown in Fig. 10c, the effective force shows two distinctive 
behaviours for both cases: θ1 = 90° with θ2 variable, and θ1 variable with θ2 = 90°. For θ1 = 90° with θ2 increasing 
from 5° to 60°, the repulsive force increases gradually. At θ2 = 5°, compared to this narrow angle, part of active 
particles is prioritized in the cusp of left wedge, which leads to a repulsive interaction between two wedges. 
With increasing θ2, particles bridges are formed gradually and a greater repulsion is produced. Especially for 
θ2 = 90°, few particles can swim into the confinement because the confinement is rather narrow, which results 
in an attraction. As 90° < θ2 < 120°, more particles can move into the confinement to enlarge the effective force. 
For 120° < θ2 < 165°, due to the trap efficiency of right wedge improving with the increase of the apex angle, the 
repulsive force decreases and even turns to be an attraction at θ2 = 165°. For θ2 > 165°, the trap efficiency of right 

Figure 9.  Independent force F acting on two wedges induced by active particles as a function of ρ for Model 
I-wedges: at long-range distance of r = 13.0 (a) and (b), and at short-range distance of r = 1.0 (c) and (d). Here, 
F12 = F2 − F1, F34 = F4 − F3 , and F(r) = F12 − F34.
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wedge decreases, so that the repulsive force between two wedges gets larger. Conversely, for θ1 variable with 
θ2 = 90°, a weak repulsion increases first and then decreases at 5° < θ1 < 90°, and the effective force increases at 
90° < θ1 < 120°, then slightly decreases as θ1 > 120°. With a very small angle of θ1 = 5°, particles cover the left side 
of the right wedge, so there is a weak repulsive force. Increasing θ1 from 15° to 90°, see Fig. 11c, d, F3 decreases as 
only few particles can stay the left side of the right wedge and  F2 increases first, then decreases because the inside 
area of the left wedge gets larger, leading to a reduction of the effective force. For 90° < θ1 < 120°, the confinement 
can accommodate enough particles and strengthen the repulsive force. For θ1 > 120°, particles cannot stay in the 
confinement between two wedges stably for its large area, decreasing the repulsive force. Our result is consistent 
with the result of Kaiser et al.36,37,66,68, which is that the catching efficiency can be controlled by varying the apex 
angle of the wedge, and the particle density difference decides the direction and strength of the effective force 
between the two wedges.

For comparison, we also fix one apex angles of two wedges at θ = 165° and the other is variable, as shown 
in Fig. 10d. For θ1 = 165° with θ2 variable, the repulsive force increases at 5° < θ2 < 160°, then decreases at 
160° < θ2 < 165°, and finally increases at θ2 > 165°. For 5° < θ2 < 160°, due to the confinement gets smaller, and 
particles bridges are formed leading to a greater repulsion. For 160° < θ2 < 165°, the confinement is too nar-
row to accommodate many active particles, producing a drop in repulsion. For θ2 > 165°, the trap efficiency 
of right wedge declines, so the repulsive force gets larger. For θ1 variable with θ2 = 165°, the attractive force 
increases during 5° < θ1 < 120°, due to the narrow confinement area and the high trap efficiency of right wedge. 
At 120° < θ1 < 155°, dynamic particle bridges are formed between two wedges, which enhances the repulsive 
force. At 155° < θ1 < 165°, the confinement is too narrow to accommodate many active particles, producing a drop 
in repulsion. At θ1 > 165°, particle bridges are formed again in the confinement between two wedges, enhancing 
the repulsion. Our results suggest the shape of wedge plays a crucial role in determining the trap efficiency, and 
there are three distinct states: no trapping at wide angles followed by a sharp transition towards complete trapping 
at medium angles and a crossover to partial trapping at small cusp  angles36. We also explore the effective force of 
two parallel rods (i.e., θ1 = θ2 = 180°) in an active bath, and the results are shown in Supplementary Figure S2. Our 
result is consistent with the Kneževič’s  work62, and some discussions are given in the Supplementary information. 
As a result, by exchanging the position of two asymmetric wedges, the transition of effective forces is symmetric 
for the long-range distance, while it is asymmetric for the short-range case. The dramatic collective response 
of active particles to the exchange of two wedges is noteworthy and never discovered in the passive system. We 
further emphasize the conversion of the interaction orientation is a collective, nonequilibrium behaviour.

Figure 10.  The repulsion and attraction force F(r) between two wedges in an active bath with different types of 
wedges: the apex angle of the one wedge is fixed: 90° (a and c) or 165° (b and d), and the other one is variable 
(0° ~ 180°).
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conclusions
Using computer simulation, we studied the effective interaction between two asymmetric wedges exposed to a 
bath of active particles. The effective force between two wedges is strongly related to the relative position of two 
wedges, the wedge-to-wedge distance r, the particle density ρ, as well as the apex angle of wedge θ (θ1 or θ2). For a 
set of fixed apex angles with θ1 = 165° and θ2 = 90°, by only exchanging the position of the two asymmetric wedges, 
the left–right asymmetry due to this exchange and the self-driven behaviour of active particles together cause 
the two distinct transitions of effective force between two wedges. Further, with the exchange of the two wedge 
positions, whether it’s changing particle density ρ or apex angle (θ1 or θ2), it is found that the effective force shows 
asymmetry for short-range distance between two asymmetric wedges, while it has symmetry for the long-range 
case. Our results further reveal that the effective force transition from attraction to repulsion is attributed to a 
collective, nonequilibrium effect and the self-driven behaviour of active particles. Our investigations may pave 
a novel way to applications for the design of tunable interactions by using active matter.
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