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Abstract

The use of poultry litter as a biological soil amendment presents a risk for the preharvest

contamination of fresh produce by Salmonella. In order to properly assess this risk, it is

important to understand the factors influencing the persistence of Salmonella in poultry litter.

This research was performed to investigate the influence of indigenous microflora on the

survival of Salmonella Typhimurium in poultry litter. Microcosms of irradiated (sterilized) and

natural poultry litter were inoculated with S. Typhimurium, adjusted to pH 8.0, 0.92 water

activity (aw), and stored at 30˚C for 6 days. S. Typhimurium populations (log CFU g-1)

declined in both litter treatments and there were no significant differences (P > 0.05) in

recovery between litter treatments on any sampling days (0 to 6). The pH of the natural litter

significantly increased (P < 0.05) from 8.42 on day 0 to 9.00 on day 6. By day 6, S. Typhi-

murium populations in both litter treatments fell below the limit of detection (1 log CFU g-1).

The inactivation kinetics of S. Typhimurium in both litter treatments were described by the

Weibull model. Under the experimental conditions (pH 8.0, 0.92 aw, 30˚C), the presence or

absence of poultry litter microflora did not significantly influence the survival of S. Typhimur-

ium. This study demonstrates that the mere presence of poultry litter microflora will not

inhibit Salmonella survival. Instead, inhibitory interactions between various microorganisms

in litter and Salmonella are likely dependent on more favorable environmental conditions

(e.g., aw, pH) for growth and competition.

Introduction

The poultry industry in the United States (U.S.) produces an estimated 14 million tons of poul-

try litter and manure each year [1]. Poultry litter is a mixture of poultry excreta, feathers,

wasted feed, and bedding materials [2, 3]. Litter is commonly applied to agricultural lands as

an organic fertilizer to recycle nutrients such as nitrogen, phosphorus, and potassium [4].

However, it is also a known source of human pathogens such as Salmonella enterica, Listeria
monocytogenes, and Campylobacter jejuni [2, 3]. The use of animal manure products, such as

poultry litter, is recognized as a major pathway for the preharvest contamination of fresh
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produce [5]. Several studies have demonstrated Salmonella’s survival in field soils amended

with poultry manure or litter, and the potential for contamination of fresh produce grown in

amended soils [6–9].

To accurately assess the risks of using poultry litter as a biological soil amendment, it is

important to understand how long Salmonella may survive in litter before it is applied to fields.

The survival of Salmonella in poultry litter depends on various extrinsic (e.g., litter treatments,

temperature) and intrinsic factors (e.g., pH, microflora) [10–13]. Laboratory studies have

observed Salmonella’s survival in poultry litter varying from 2 days [14] to 18 months [15]

depending on these factors. Further studies of poultry litter have identified pH, moisture con-

tent, water activity (aw), ammonia, and microflora as major intrinsic factors influencing the

survival of Salmonella [12–14, 16, 17].

The microflora of poultry litter has been well characterized in numerous studies [18–25].

Poultry litter may contain bacterial populations as high as 1011 CFU g-1 [19, 20, 26]. However,

the influence of this microflora on Salmonella’s survival in litter is not well understood. Studies

on the practice of re-using poultry litter for multiple flocks have suggested that the reduced

prevalence of Salmonella in re-used litter is due to competitive exclusion or bacterial antago-

nism of the microflora in this litter [17, 27, 28]. Few studies have directly investigated the influ-

ence of poultry litter microflora on the survival of Salmonella [13, 14, 29, 30]. Alexander et al.

[29] reported that Salmonella survived longer in autoclaved (63 days) than non-autoclaved (29

days) litter samples. Similarly, Erickson et al. [30] observed significantly lower populations of

S. Enteritidis after three days in non-autoclaved chicken manure compared with autoclaved

chicken manure. However, the authors of this study attribute the decline of Salmonella popula-

tions to an increase in the pH of the non-autoclaved litter to alkaline levels [30]. While

autoclaving will reduce microbial populations in poultry litter and manure, it is typically not

sufficient to achieve sterilization [30]. Turnbull and Snoeyenbos [14] conducted a series of

studies to determine the effects of ammonia, pH, aw, and litter microflora on the survival of

Salmonella in poultry litter. They reported that unfavorable aw levels and high pH, resulting

from dissolved ammonia, were the main factors causing Salmonella die-off in the litter [14].

Predictive microbiology is an ever-evolving discipline within microbiology that involves

the use of mathematical and statistical models to describe and predict microbial behavior [31].

Early predictive models were developed to describe bacterial death kinetics during thermal

processing in the food industry. Current modeling methodologies can be used to predict the

growth and inactivation of microorganisms under various conditions [32]. Modeling studies

of animal manures have typically been applied to understand the transport and fate of patho-

gens and indicator microorganisms in the environment [33–36]. Studies modeling the survival

of Salmonella in poultry litter are limited [12, 37, 38]. Whereas several studies focus on model-

ing the thermal inactivation of Salmonella in poultry litter [37, 38], Payne et al. [12] used the

Churchill model [39] to describe the growth and inactivation of Salmonella in poultry litter

under various pH (4, 7, 9) and aw (0.84, 0.91, 0.96) conditions. Further applying modeling

methodologies to survival studies in animal manures, such as poultry litter, will help

strengthen our understanding of pathogen persistence in these biological soil amendments.

Current research suggests that poultry litter microflora may influence the survival of Salmo-
nella, however few studies have directly assessed this potential influence [13, 14, 29, 30]. In this

study, poultry litter samples were sterilized via irradiation treatment. Irradiated and natural lit-

ter samples were inoculated with S. Typhimurium, adjusted to pH 8.0 and a aw of 0.92 based

on previous survey studies [40, 41], and stored at 30˚C. Salmonella populations, pH, and aw

were monitored daily for 6 days. Total ammonia nitrogen (TAN) was measured on days 0, 3,

and 6. The objective of this study was to assess the influence of the litter microflora’s presence

or absence on the survival of S. Typhimurium in irradiated and natural poultry litter
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microcosms. Furthermore, Salmonella survival data was fitted using non-linear survival mod-

els to describe the inactivation kinetics of both litter treatments.

Methods and materials

Poultry litter

Poultry litter was collected from a commercial poultry producer in North Florida. The litter

collected had been removed from broiler houses and piled in a covered, two-wall, open air

shed. Pine shavings were the bedding material used by this producer. The collected litter was

passed through a brass sieve (0.25 in. [6.3 mm]; Fisher Scientific, Fair Lawn, NJ) to remove

large clumps and feathers. The microflora of the litter was enumerated, in triplicate, by trans-

ferring 10 g of litter into sterile filtered Whirl-Pak1 bags (7.5 x 12 in. [19.0 x 30.4 cm]; Nasco,

Fort Atkinson, WI) with 90 mL of buffered peptone water (BPW; BD, Difco, Sparks, MD) fol-

lowed by 1 min homogenization in a Smasher Lab Blender (AES Chemunex, Bruz, France).

Ten-fold dilutions were performed in 0.1% peptone water (PW; BD, Difco), and 0.1 mL was

plated onto tryptic soy agar (TSA; BD, Difco) and dichloran rose-bengal chloramphenicol agar

(DRBC; BD, Difco) to determine aerobic plate counts (APC) and yeast and mold counts

(YMC), respectively. The limit of detection (LOD) for APC and YMC was lowered to 1 log

CFU g-1 by spread plating four 250 μL subsamples from the Whirl-Pak1 bags onto TSA and

DRBC. The TSA and DRBC plates were incubated at 35˚C for 18–24 h and 25˚C for 5 days,

respectively. To determine the presence or absence of Salmonella, the Whirl-Pak1 bags were

incubated at 37˚C for 18–24 h and transferred to selective media. Selective enrichment was

performed by transferring 0.1 mL and 1 mL from each bag to 10 mL of Rappaport-Vassiliadis

R10 broth (RV; BD, Difco) and tetrathionate broth (TT, Remel, Lenexa, KS), respectively.

Both broth enrichments were incubated at 42˚C for 24 h in a shaking incubator at 100 rpm.

Following selective enrichment, 10 μL was streaked onto xylose lysine deoxycholate agar

(XLD; BD, Difco) and incubated at 37˚C for 18–24 h. Presumptive Salmonella colonies were

transferred to TSA and incubated at 37˚C for 18–24 h. Presumptive Salmonella isolates on

TSA were confirmed via agglutination assay with Salmonella O Antiserum Poly A-I & Vi (BD,

Difco) [42]. A portion of the litter was sent to the Sterigenics irradiation facility (Mulberry,

FL) to be sterilized. The litter was irradiated with a minimum dose of 26.04 kGy. The efficacy

of the irradiation treatment was confirmed by repeating the microflora enumeration proce-

dures previously described. Both irradiated and natural litter were stored at -20˚C during the

study.

Inoculum preparation

A Salmonella Typhimurium (ST) isolate previously recovered from poultry litter [41] was used

in this study. Stepwise exposures were used to induce antimicrobial resistance in the ST isolate

to 200 μg mL-1 rifampicin (RIF; Sigma-Aldrich, St. Louis, MO). The ST inoculum was pre-

pared by transferring a frozen culture to 10 mL of tryptic soy broth (TSB; BD, Difco) with

80 μg mL-1 RIF and incubating at 37˚C for 18–24 h in a shaking incubator at 100 rpm. This

overnight culture was transferred once more into 10 mL TSB with 80 μg mL-1 RIF and incu-

bated under the same conditions. The final culture was prepared by transferring the overnight

culture to 25 mL of TSB with 80 μg mL-1 RIF in a 50 mL conical centrifuge tube (Fisher Scien-

tific) and incubating under the same conditions. The final inoculum was prepared by

centrifuging (1,789 x g, 10 min) and washing the cells twice with 0.1% PW. The cells were

resuspended in 25 mL of 0.1% PW. Enumeration of the inoculum was performed by spreading

0.1 mL of 0.1% PW serial dilutions onto TSA with 80 μg mL-1 RIF, in duplicate, and incubating

at 37˚C for 18–24 h before counting.
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Litter inoculation and adjustment (pH and aw)

Two hundred grams of irradiated or natural poultry litter were placed in a sterile sample bag

(7 x 12 in. [17.7 x 30.4 cm]; Fisher Scientific) and adjusted to pH 8.0 by adding 2 M HCl or 1

M NaOH. The litter was thoroughly mixed by hand for 2 min after each addition. The litter

pH was determined by adding 3 g of litter to 15 mL of deionized water, vortexing for 30 s, and

letting stand for 1 min before measuring with a pH probe (model: HI72911B; Hanna Instru-

ments, Smithfield, RI). After adjusting the pH, the litter was inoculated with two consecutive

10 mL aliquots of the ST inoculum. After each inoculum addition, the litter was thoroughly

mixed by hand for 2 min. Sterile deionized water was added to adjust the litter aw to 0.92. Litter

aw was measured according to the manufacturer’s instructions using an AquaLab Model 4

Water Activity Meter (Decagon Devices Inc., Pullman, WA). The pH of irradiated litter sam-

ples was readjusted to 8.0 after being inoculated. Twenty grams of inoculated litter were trans-

ferred to six sterile sample bags (4.5 x 9 in. [11.4 x 22.8 cm]; Fisher Scientific) and stored at

30˚C.

Sampling procedure

Litter samples were stored at 30˚C and collected on days 0, 1, 2, 3, 4, 5, and 6. Each sample bag

was thoroughly mixed by hand for 1 min before sampling. Day 0 litter samples were collected

from the inoculation sample bag. To enumerate ST populations, 10 g of litter was added to 90

mL of BPW in a sterile filtered Whirl-Pak bag (7.5 x 12 in. [19.0 x 30.4 cm]) and homogenized

for 1 min in a Smasher Lab Blender (AES Chemunex, Bruz, France). Ten-fold dilutions were

performed in 0.1% PW, and 0.1 mL was plated onto XLD supplemented with 80 μg mL-1 RIF

and incubated at 37˚C for 18–24 h. When litter samples approached the LOD (1 log CFU g-1),

four 250 μL subsamples from the Whirl-Pak1 bag were plated onto XLD supplemented with

80 μg mL-1 RIF. Litter enrichments were performed by incubating the Whirl-Pak1 bags for

18–24 h at 37˚C, followed by selective enrichment in RV and TT broth and streaking onto

XLD as previously described. Presumptive ST isolates were subcultured on TSA, incubated at

37˚C for 18–24 h, and confirmed via agglutination assay with Salmonella O Antiserum Group

B (BD, Difco). Litter pH and aw were determined on each sampling day as previously

described. Litter total ammonia nitrogen (TAN) was also sampled on days 0, 3, and 6. Litter

samples were stored at -20˚C until TAN was measured. To measure litter TAN, 1 g of litter

was added to 100 mL of deionized water in a 125 mL Erlenmeyer flask and mixed for 1 h at

175 rpm [43]. The litter solution TAN was measured according to the manufacturer’s instruc-

tions for the ammonia combination ion-selective electrode (ISE) (model: HI4101; Hanna

Instruments) using a pH/ORP/ISE meter (model: HI98191; Hanna Instruments). Litter TAN

was calculated using the following equation (Eq 1), where the final weight (g) is the sum of the

deionized water and litter sample weight added into the flask.

Litter TAN ppmð Þ ¼ soln:TAN ppmð Þ �
final weight ðgÞ � litter sample ðgÞ

litter sample ðgÞ
ð1Þ

Statistical analysis

Bacterial plate counts (CFU g-1) were log-transformed (log10 CFU g-1) for statistical analysis.

Enrichments were performed when ST populations in litter samples fell below the plating

method LOD (10 CFU g-1; 1 log CFU g-1). Positive enrichments were assigned a value of 5

CFU g-1 (0.70 log CFU g-1), halfway between zero and the LOD. A two-way ANOVA followed

by Tukey’s honest significance test was used to compare mean ST populations, pH, aw, and

TAN between the litter treatments on each sampling day. Experiments in the irradiated and
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natural litter were performed in triplicate. Statistical analyses and visualizations were per-

formed in R version 4.0.4 [44] with significance set at α = 0.05.

Inactivation models, parameter estimation, and goodness-of-fit

Several primary inactivation models were fitted to the survival data in order to determine the

best fitting model. The following models were considered: log-linear [45], bilinear (with and

without tailing or shoulder effects) [46], Geeraerd (with and without tailing or shoulder

effects) [47], Weibull [48], Weibull with tailing effects [49], and double Weibull [50]. ST con-

centration (log CFU g-1) data from each litter treatment were fitted to these models using the

nls() function in R [44]. Bootstrapped confidence intervals were generated for the fitted model

parameters using the nlsBoot() function from the nlsMicrobio R package [46]. The Akaike

information criterion (AIC; Eq 2) [51] and Bayesian information criterion (BIC; Eq 3) [52]

were used to assess the goodness-of-fit for the fitted models.

AIC ¼ p � Ln
RSS
p

� �

þ 2k ð2Þ

BIC ¼ p � Ln
RSS
p

� �

þ k � Ln pð Þ ð3Þ

In both Eqs (2 and 3), RSS is the residual sum of squares, p is the number of data points

used to fit the model, and k is the number of parameters in the model. Lower AIC and BIC

scores indicate a better fitting model.

Inactivation kinetics in this study were described by the Weibull model. The Weibull model

(Eq 4) is an empirical inactivation model which accounts for the non-linearity of microbial

survival curves as an alternative to the classical Bigelow model of first-order kinetics [53].

log
10
ðNÞ ¼ log

10
ðN0Þ �

t
d

� �p

ð4Þ

In this model (Eq 4), N is the number of survivors (CFU g-1), N0 is the initial inoculum

concentration (CFU g-1), t is the time (days), p is the shape of the inactivation curve (dimen-

sionless), and δ is the time (days) to the first decimal reduction of the microbial population

[53].

Results

Litter microflora and physicochemical parameters (aw, pH, and TAN)

The natural poultry litter microflora populations were 6.57 ± 0.10 and 3.01 ± 0.03 log CFU g-1

for APC and YMC, respectively. After irradiation, no growth was observed (< 1 log CFU g-1)

on plates for both APC and YMC. No indigenous Salmonella were recovered from the natural

or irradiated litter.

The aw levels decreased significantly (P< 0.05) over the 6-day sampling period by 0.012

and 0.009 for the irradiated and natural litter microcosms, respectively (Table 1). In the

irradiated litter, the pH decreased from 7.96 (day 0) to 7.87 (day 6), but this change was not

statistically significant (P> 0.05). In contrast, there was a significant increase (P< 0.05) in the

pH of the natural litter from 8.42 (day 0) to 9.00 (day 6). The pH of the natural litter was also

significantly higher (P< 0.05) than the irradiated litter on all sampling days. The TAN level in

both litter treatments did not significantly change during the sampling period (P> 0.05)

(Table 1).
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Salmonella Typhimurium (ST) survival in irradiated and natural poultry

litter microcosms

On day 0, the ST inoculum (log CFU g-1) was higher in the irradiated litter (6.14) than the nat-

ural litter (5.52), though this difference was not significant (P> 0.05) (Fig 1). In the natural lit-

ter the ST population increases slightly from day 3 to 4 (2.24 to 2.48 log CFU g-1), but this

increase was not statistically significant (P> 0.05). Between days 4 and 5, ST populations were

only reduced by 0.17 and 0.29 log CFU g-1 in irradiated and natural litter samples, respectively.

On each sampling day, there were no significant differences (P> 0.05) between ST popula-

tions recovered from both litter treatments (S1 Table). Salmonella populations in both litter

treatments fell below the LOD (1 log CFU g-1) on day 6 (Fig 1).

Table 2 shows the goodness-of-fit measures (AIC and BIC) for the different inactivation

models tested. For both litter treatments, the Geeraerd model without tailing resulted in the

lowest AIC and BIC scores. Despite these lower scores, this model is disqualified because its

shoulder parameter (Sl), the duration of the shoulder effect, was negative, which is not physi-

cally possible [47, 54]. As a result, the inactivation kinetics of ST in both litter treatments was

best fitted to the Weibull model. Parameter values for the Weibull model survival curves are

presented in Table 3. The fitted survival models for both irradiated and natural litters represent

convex curves (p< 1) with no shoulder (delayed response) or tailing (stabilized decline) effects

(Fig 2). While the δ value was lower in the irradiated litter (0.27) than the natural litter (0.58),

these parameters were not significantly different according to their 95% confidence intervals

(Table 3).

Discussion

Numerous studies of Salmonella in poultry litter and manure have suggested that microflora

may decrease the prevalence and survival of Salmonella via competitive exclusion or bacterial

antagonism [20, 27, 28, 55]. Roll et al. [27] and Muniz et al. [28] attributed the decreased prev-

alence of Salmonella in reused poultry litter to the complex microbial communities in reused

litter. In their study of litter microflora, Lu et al. [20] identified several bacterial species which

may be involved in composting organic matter and suggested that this may explain the absence

of human pathogens in certain poultry litters. In laboratory studies, the presence of different

genera have been positively and negatively correlated to Salmonella populations in the litter

[13]. This study sought to determine the influence of litter microflora on Salmonella by inocu-

lating ST into poultry litter with (natural) and without (irradiated) microflora present.

Survey studies have reported that Salmonella prevalence is highest in poultry litter at aw lev-

els of 0.90–0.95 [16, 56, 57]. Poultry litter studies have frequently observed the average pH of

Table 1. Water activity (aw), pH, and total ammonia nitrogen (TAN) measures in poultry litter.

Day

Measurement Litter treatment 0 1 2 3 4 5 6

aw Irradiated 0.919 ± 0.002abc 0.912 ± 0.002cdef 0.912 ± 0.002cdef 0.911 ± 0.001def 0.911 ± 0.002def 0.909 ± 0.001ef 0.907 ± 0.002f

Natural 0.925 ± 0.002a 0.921 ± 0.002ab 0.920 ± 0.002abc 0.917 ± 0.001bcd 0.918 ± 0.004abc 0.915 ± 0.005bcde 0.916 ± 0.003bcde

pH Irradiated 7.96 ± 0.05a 7.88 ± 0.04a 7.86 ± 0.04a 7.85 ± 0.03a 7.88 ± 0.02a 7.86 ± 0.06a 7.87 ± 0.04a

Natural 8.42 ± 0.08b 8.49 ± 0.03b 8.54 ± 0.03b 8.76 ± 0.00c 8.89 ± 0.05d 8.93 ± 0.06d 9.00 ± 0.03d

TAN (ppm) Irradiated 1,383 ± 300abc ND ND 1,640 ± 92ab ND ND 1,708 ± 49a

Natural 1,255 ± 162bc ND ND 1,230 ± 56c ND ND 1,421 ± 52abc

Reported values are mean ± standard deviation (n = 3). For each measurement, means with the same letter across rows and columns are not significantly different

(P> 0.05). ND, not determined.

https://doi.org/10.1371/journal.pone.0267178.t001
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litter to be 8 [40, 41, 56]. Himathongkham et al. [58] inoculated poultry manure with Salmo-
nella and reported that aw levels of 0.75–0.89 resulted in a 2 to 3 log CFU g-1 reduction within

8 h, and a 6 log CFU g-1 reduction within 8 days at 0.89 aw. Payne et al. [12] investigated the

interaction between aw and pH in poultry litter and reported that Salmonella populations were

able to grow at pH 7 and 9 with a aw of 0.96, whereas the greatest reductions (5 log CFU g-1)

occurred at pH 4 with a aw of 0.84. In their study, pH was the dominant factor influencing the

survival of Salmonella, where Salmonella reductions were fastest in pH 4 trials regardless of the

aw level (0.84, 0.91, 0.96) [12]. In this study, poultry litter was adjusted to pH 8.0 and a aw of

0.92. Over the 6-day sampling period, there were no significant differences (P> 0.05) between

the ST populations recovered from the irradiated and natural poultry litter (Fig 1). The pres-

ence or absence of the litter microflora did not significantly influence the survival of Salmo-
nella as both populations fell below 1 log CFU g-1 on day 6. In contrast, Payne et al. [12]

recovered Salmonella populations at� 1 log CFU g-1 for over 40 days, despite conducting

Fig 1. Survival of Salmonella Typhimurium (ST) in irradiated (■; dashed line) and natural (●; solid line) poultry litter (pH 8.0, 0.92 aw, 30˚C). Limit of detection

(1 log CFU g-1) represented by the dotted line. Data points represent means and error bars represent standard deviations (n = 3).

https://doi.org/10.1371/journal.pone.0267178.g001
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their studies under similar conditions (autoclaved litter, pH 7–9, aw 0.91, 30˚C). Their study

used a cocktail of Salmonella serovars (Heidelberg, Newport, Typhimurium) to inoculate their

litter, suggesting that differences in serovar survival may be responsible for the greater Salmo-
nella persistence they observed [12]. The results of this study suggest that aw was the primary

factor contributing to the inactivation of S. Typhimurium in the poultry litter microcosms.

Previous studies have suggested that ammonia in poultry litter may contribute to the inacti-

vation of Salmonella [14, 27, 59–61]. Ammonia production in litter is greatest at alkaline pH

levels, which leads to ammonia volatilization into the atmosphere as NH3 gas [62]. Turnbull

and Snoeyenbos [14] and Himathongkham et al. [59] showed that NH3 gas could be used to

reduce Salmonella populations in poultry litter and manure. In the present study, the average

total ammonia nitrogen (TAN) in both litter samples increased over time, however this

increase was not statistically significant (P> 0.05) (Table 1). The pH of the poultry litter was

adjusted to 8.0 in both litter treatments. The pH of the natural litter increased significantly

(P< 0.05) to 9.0 on day 6, whereas it did not significantly change in the irradiated litter. In

their study, Turnbull and Snoeyenbos [14] attributed the rise of litter pH they observed to

increased ammonia dissolved in the litter system. While the increased pH of the natural litter

in this study is evidence of microbial activity, it does not appear to be a result of increased

TAN. Koziel et al. [63] determined the minimum inhibitory concentration (MIC) of NH3

against S. Typhimurium to be 0.1 M NH3 (2,775 ppm TAN) in phosphate-buffered saline solu-

tions at pH 9.0. In their study, the antimicrobial effects of NH3 were greatly reduced at pH

levels < 9.0 [63]. With the pH of the litter remaining < 9.0 for most sampling times and the

TAN level not increasing significantly, it is unlikely that ammonia had a major influence on

the survival of the Salmonella.

Table 2. Goodness-of-fit scores for inactivation models fitted to Salmonella Typhimurium (ST) survival data in

irradiated and natural litter.

Model Irradiated litter Natural litter

AIC BIC AIC BIC

Geeraerd without tailing -32.89 -29.75 -12.14 -9.00

Weibull -32.06 -28.92 -12.04 -8.91

Geeraerd (shoulder and tailing) -30.90 -26.72 ND ND

Geeraerd without shoulder -20.03 -16.89 -8.24 -5.10

Log-linear - 17.88 -15.79 -10.21 -8.12

Bilinear without shoulder -17.25 -14.12 ND ND

Weibull with tailing ND ND ND ND

Double Weibull ND ND ND ND

Bilinear without tailing ND ND ND ND

ND, not determined (model could not be fitted to the data); AIC, Akaike information criterion; BIC, Bayesian

information criterion.

https://doi.org/10.1371/journal.pone.0267178.t002

Table 3. Parameters values of the fitted Weibull models describing the survival of Salmonella Typhimurium (ST)

in irradiated and natural poultry litter.

Litter treatment N0 δ p
Irradiated 6.12 [5.69, 6.57] 0.27 [0.11, 0.53] 0.54 [0.43, 0.68]

Natural 5.45 [4.80, 6.14] 0.58 [0.19, 1.46] 0.61 [0.41, 0.98]

Best-fit parameter values and their 95% confidence intervals, [CI], are reported. N0, initial inoculum concentration

(log CFU g-1); δ, time (days) to first decimal reduction; p, shape of inactivation curve.

https://doi.org/10.1371/journal.pone.0267178.t003
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Fig 2. Salmonella Typhimurium (ST) survival fitted by Weibull models for irradiated (A) and natural (B) litter microcosm data.

Datapoints (˚) for each sampling time (n = 3) and Weibull model curve are shown.

https://doi.org/10.1371/journal.pone.0267178.g002
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In this study, modeling was used to provide a quantitative description of Salmonella’s inac-

tivation kinetics in the poultry litter microcosms. The Weibull model parameters can be inter-

preted to provide insights about Salmonella’s response to litter conditions. The survival curves

for both litter treatments do not exhibit shoulder or tailing effects (Fig 2). A shoulder effect in

survival models suggests that the microorganism has some initial resistance to the treatment

conditions, which results in a delayed response. A tailing effect indicates a subpopulation that

is more resistant to the treatment than the main population, which results in a slowing inacti-

vation rate over time. The absence of a shoulder suggests that the ST inoculum had no resis-

tance to the litter conditions, resulting in an immediate reduction of the population [64–66].

While there are no tailing effects in the presented models, the greater persistence of Salmonella
observed by Payne et al. [12] suggests that tailing effects are possible in poultry litter under

similar conditions. The p parameter, which determines whether the Weibull survival curve is

concave (p> 1) or convex (p<1), can be linked to physiological effects caused by microbial

stress responses [53, 64]. The p parameters of both litter treatments are < 1, which indicates

that the remaining Salmonella populations at each time point have less probability of dying.

This suggests the existence of a more resistant subpopulation of Salmonella or that the popula-

tion is adapting to the stress over time [53]. These stress adaptation responses of Salmonella
have similarly been reported in studies of Salmonella’s persistence in manure-amended soils,

which often observe persistent populations in soils for >100 days [9, 67, 68]. Altogether, none

of the parameter estimates for both litter models were significantly different. This suggests that

the inactivation kinetics of Salmonella in either litter was not influenced by the presence or

absence of the natural microflora.

This study determined that the presence of poultry litter microflora is not inherently inhibi-

tory to Salmonella. With no significant differences in the survival of Salmonella in the irradi-

ated and natural litter, the aw level is primarily responsible for the inactivation of Salmonella
observed in this study. It should be noted that these conclusions and the applicability of the

survival models developed are limited to the conditions (pH, aw, temperature) specifically set

in this study. Survival times may differ if aw levels are sufficient to allow for the growth of Sal-
monella and other microorganisms in the litter. This change would also likely result in more

apparent differences between the irradiated and natural litter. Any influence on the survival of

Salmonella likely depends on complex interactions between different microbial species present

in the litter, where the nature of their interactions may be protective or detrimental [13]. Fur-

ther research concerning the interactions between litter microflora and pathogens, like Salmo-
nella, is needed. Widening the use of predictive microbiology in these studies to describe

bacterial growth and inactivation kinetics will also allow for deeper understanding of pathogen

behavior under various environmental conditions, which will guide the development of

improved animal manure treatments and management strategies.
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