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Background: Conventional treatments for eating disorders are associated with poor response rates and frequent
relapse. Novel treatments are needed, in combination with markers to characterize and predict treatment
response. Here, resting-state functional magnetic resonance imaging (rs-fMRI) was used to identify predictors
and correlates of response to repetitive transcranial magnetic stimulation (rTMS) of the dorsomedial prefrontal
cortex (dmPFC) at 10 Hz for eating disorders with refractory binge/purge symptomatology.
Methods: 28 subjects with anorexia nervosa, binge−purge subtype or bulimia nervosa underwent 20–30

sessions of 10 Hz dmPFC rTMS. rs-fMRI data were collected before and after rTMS. Subjects were stratified into
responder and nonresponder groups using a criterion of ≥50% reduction inweekly binge/purge frequency. Neural
predictors and correlates of response were identified using seed-based functional connectivity (FC), using the
dmPFC and adjacent dorsal anterior cingulate cortex (dACC) as regions of interest.
Results: 16 of 28 subjects met response criteria. Treatment responders had lower baseline FC from dmPFC to
lateral orbitofrontal cortex and right posterior insula, and from dACC to right posterior insula and hippocampus.
Responders had low baseline FC from the dACC to the ventral striatum and anterior insula; this connectivity in-
creased over treatment. However, in nonresponders, frontostriatal FC was high at baseline, and dmPFC-rTMS
suppressed FC in association with symptomatic worsening.
Conclusions: Enhanced frontostriatal connectivity was associated with responders to dmPFC-rTMS for binge/purge
behavior. rTMS caused paradoxical suppression of frontostriatal connectivity in nonresponders. rs-fMRI could prove
critical for optimizing stimulation parameters in a future sham-controlled trial of rTMS in disordered eating.
© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Recurrent episodes of binge eating and purging behavior occur in
both anorexia nervosa, binge−purge subtype (AN−BP) and bulimia
nervosa (BN). In women, the lifetime prevalence of AN and BN is 0.9%
and 1.5% respectively (Hudson et al., 2007). Eating disorders, in particu-
lar AN, have among thehighestmortality rate of all psychiatric disorders
(Sullivan, 1995), and treatment options are limited for severe forms of
AN and BN, particularly for AN−BP (Arcelus et al., 2011). Conventional
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treatments include psychotherapy, pharmacotherapy and inpatient
treatments, but rates of treatment dropout, limited treatment response
and relapse rates are substantial (Carter et al., 2012; Hay et al., 2012;
Mitchell et al., 2007; Olmsted et al., 2005; Shapiro et al., 2007). New
treatment options are urgently needed.

Therapeutic brain stimulation is a novel approach in treatment-
refractory eating disorders (ED), as recently demonstrated in a pilot
study using deep brain stimulation (DBS) in AN (Lipsman et al., 2013).
Non-invasive techniques such as repetitive transcranial magnetic
stimulation (rTMS) would offer greater accessibility and lower medical
risk than DBS, if suitable stimulation targets could be identified. Neuro-
imaging research has identified a variety of neuroanatomical substrates
of ED pathophysiology. For example, on structural imaging, ED patients
show reductions in gray matter volume in regions involved in reward,
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impulse control, and emotion regulation: the caudate nucleus, ventral
striatum (VS), anterior cingulate (ACC) and orbitofrontal cortex (OFC)
(Friederich et al., 2012; Schäfer et al., 2010; Titova et al., 2013; Van
den Eynde et al., 2012). Likewise, functional magnetic resonance imag-
ing (fMRI) studies in ED reveal abnormal patterns of resting-state con-
nectivity in the default-mode network (Cowdrey et al., 2014) and
other intrinsic brain networks incorporating the ACC and insula
(Amianto et al., 2013). ED patients also show abnormal VS activation
in response to rewarding and aversive stimuli (Wagner et al., 2010,
2007). Patients with BN show hyperactivity in medial frontal lobe re-
gions during inhibition of prepotent actions (Lock et al., 2011), and
hypoactivity in response to food cues (Joos et al., 2011).

Among the various neural substrates implicated in ED pathology, a
target of particular interest that is accessible to rTMS is the dorsomedial
prefrontal cortex (dmPFC). The dmPFC plays an important role in forms
of self-control, including self-inhibition of movements (Brass and
Haggard, 2007), self-cessation of loss-chasing in pathological gamblers
(Campbell-Meiklejohn et al., 2008), self-suppression of emotional re-
sponses (Kühn et al., 2011), and impulse control (Cho et al., 2013). Like-
wise, non-invasive stimulation of medial prefrontal areas, via rTMS,
enhances inhibitory control over prepotent responses (Obeso et al.,
2013), improves subjective choice for delayed rewards in a delayed
discounting task, and interferes with striatal dopamine (Cho et al.,
2015). In sum, stimulation of the medial prefrontal cortex using rTMS
may alter the top-down executive control of the dmPFC to striatal re-
gions associated with the urge to binge and purge, thereby improving
symptom severity.

Considering this literature on the role for the DMPFC in self-
regulation, one potential implication is that DMPFC-rTMS might be
worth exploring as a therapeutic approach for addressing self-
regulatory deficits in ED. To date, most previous rTMS studies in ED
have focused on the conventional target, the left dorsolateral prefrontal
cortex (dlPFC). Although dlPFC-rTMS reduces cue-induced food craving
in BN (Uher et al., 2005; Van den Eynde et al., 2010), a double-blind trial
of dlPFC-rTMS for binge−purge symptoms found no significant im-
provement over sham (Walpoth et al., 2008).

There are few reported studies of dmPFC-targeted rTMS to date. How-
ever, we recently investigated dmPFC-rTMS in major depression (MDD),
finding efficacy rates comparable to dlPFC-rTMS, butwith sharply dichot-
omous outcomes of improvement (Downar et al., 2014). Using resting-
state functional MRI (rsfMRI), we found that low dmPFC–subcortical
connectivity predicted successful outcome, and that symptomatic im-
provements were associated with increased dmPFC connectivity. We
also reported the serendipitous finding of full remission from binge−
purge symptoms during dmPFC-rTMS for comorbid depression, in a
patient with treatment-refractory BN (Downar et al., 2012). These obser-
vations suggested that dmPFC-rTMS might treat a subset of BN patients,
and that enhanced frontal−subcortical connectivity on rsfMRI might
accompany symptomatic improvement.

Here we used rsfMRI to identify patterns of functional connectivity
associated with response to dmPFC-rTMS, delivered as an
intervention-probe to a series of 28 ED patients with treatment-
refractory binge and purge behaviors. Based on our previous findings,
we formulated two hypotheses: first, that lower baseline dmPFC con-
nectivity on rsfMRI would predict successful treatment; second, that
successful treatmentwould be associatedwith increases in connectivity
through a fronto-subcortical circuit incorporating the dmPFC.

2. Methods

2.1. Subjects

28 subjects (26 female, age range = 20− 56 years, mean= 31.0 ±
9.5 years) meeting DSM-5 criteria for AN−BP (n = 11), BN (n = 17)
participated in this proof-of-concept, open-label study. Subjects includ-
ed individuals with bingeing and purging behavior, both at a normal
and lower than normal weight. BMI ranged from 14.5–28.8. AN−BP
participants displayed both bingeing and purging behaviors. While
there are certainly important differences in the clinical features of
these disorders (e.g., failure to maintain normal body weight, or the
presence of restricting symptoms), binge and purge behaviors were
the specific target symptom for the purposes of this pilot study. Subjects
engaged in ≥2 cumulative objective binge/purge episodes weekly at
baseline to be included in the study. Diagnoses were established
through interviews with 2 independent, Canadian Royal College-
certified psychiatrists (authors JD, PG, PC, BW). In recognition of the
high prevalence of psychiatric comorbidities in this population, and in
order to characterize rather than minimizing sample heterogeneity,
common comorbidities were not excluded This inclusion of comorbidi-
ties is in line with our previous work in MDD (Downar et al., 2014). Co-
morbid diagnoses included MDD (n = 16), obsessive–compulsive
disorder (n = 6), post-traumatic stress disorder (n = 8), and bipolar
disorder (n= 6). Patients with a history of a psychotic disorder, neuro-
logical disorder, active substance abuse, or contraindications to MRI or
rTMS were excluded. All subjects had no improvements in bingeing/
purging to or were unable to tolerate at least 1 previous medication
trial (n= 27), and had also not responded to previous inpatient/outpa-
tient treatment courses in terms of an improvement of binges and
purges (n = 25). On average, patients had not respond to 2.61 ± 2.44
inpatient/outpatient treatments, and 3.00 ± 2.37 medication trials.
Current medications included SSRIs (n = 11), antipsychotics (n =
11), benzodiazepines (n = 8), trazodone (n = 5), and SNRIs (n = 3).
As routinely stipulated (Salomons et al., 2014), subjects were required
to refrain from any medication changes during and for ≥4 weeks before
rTMS.

2.2. Clinical outcomes

The clinical outcome of interest, weekly frequency of binge and purge
episodes, was monitored via a structured clinical interview, the Eating
Disorder Examination (EDE), administered 1 week before treatment, at
eachweek during treatment, and at 4weeks post-treatment. For the pur-
poses of stratification, responsewas defined as ≥50%decrease in objective
binge (N1000 calories per binge) and purge episode frequency from pre-
rTMS to 4 weeks post-rTMS (at follow-up). Pre-treatment EDE assess-
ments acquired binge/purge frequency for the 4 weeks prior to
treatment, and the post-treatment EDE acquired frequency for the
4 weeks following treatment, and so the pre- and post-treatment scores
were obtained from weeks outside of the rTMS treatment sessions. Data
on bingeing and purging frequencies derived from the EDE was divided
by 4 to generate a weekly frequency for bingeing and purging. To obtain
weekly scores, EDE frequencies (which measure severity over 4 weeks)
were divided over the 4 weeks. Although a more conservative criterion
is sometimes used in clinical efficacy studies, our primary aim was to
characterize and distinguish the neural activity of subpopulations of pa-
tients showing improvement versus non-improvement in this popula-
tion. A set of clinical and psychometric data, including the 17-item
Hamilton Rating Scale for Depression (HamD17), Beck Depression
Index-II (BDI-II) and Beck Anxiety Index (BAI) were also collected as sec-
ondary metrics. To assess the distribution of outcomes across the study
sample, we employed kernel density estimation by applying the
Epanechnikov kernel (Epanechnikov, 1969) in Stata13 (StataCorp).
Two-tailed t-tests (Bonferroni-adjusted) were performed to determine
the significance of differences in clinical measures between groups and
between timepoints. The nonparametric Mann–Whitney U test was per-
formed for comparisons of binge and purge frequency do to themarkedly
non-normal distribution of these data.

2.3. Neuroimaging acquisition

The neuroimaging protocol followed parameters reported in detail
in our previous studies of rsfMRI with dmPFC-rTMS (Downar et al.,



Fig. 1. Probability distribution function of binge and purge percent improvement across all
patients following dmPFC-rTMS.
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2014; Salomons et al., 2014). All subjects underwent 3 T MRI the week
prior to and theweek after rTMS, with a T1-weighted (TE=12ms, TI=
300 ms, flip-angle = 20°, 0.94 × 0.94 × 1.5 mm voxels) and a 10-min
eyes-open resting state functional MRI scan (TE = 30 ms, TR =
2000 ms, flip-angle = 85°, 3.4 × 3.4 × 5 mm voxels).

2.4. Neuronavigation and rTMS treatment

Neuronavigation and rTMS treatment followed our previously re-
ported protocols for dmPFC-rTMS in MDD (Downar et al., 2014;
Salomons et al., 2014). Neuronavigation employed the Visor 2.0 system
(Advanced Neuro Technologies, Enschede, Netherlands) to target the
stereotaxic coordinate (X = 0, Y = +30, Z = +30) in Talairach space
(Talairach and Tournoux, 1988). rTMS employed the MagPro-R30 sys-
tem (MagVenture, Farum, Denmark) and a Cool-DB80 coil. Motor
thresholds were determined via contractions of the extensor hallucis
longus (Hayward et al., 2007). Stimulation of the dmPFC was delivered
at 120% resting motor threshold, at 10 Hz, 5 s on, 10 s off, 3000 pulses/
hemisphere, with left then right lateralized coil orientation (Terao
et al., 2001). Unilateral stimulation was achieved by orienting the coil
vertex at the stereotactic target laterally, with current flow oriented to-
wards the desired hemisphere (Harmer et al., 2001). If a patient missed
an rTMS session for logistical reasons, an additional session was added
at the end of the course of treatment (no patient required more than 4
such sessions). Patients underwent 20 sessions of dmPFC-rTMS on
weekdays; responders with any residual binge/purge symptoms were
extended to 30 sessions (mean= 21.2 ± 3.7 sessions, range= 18–30).

2.5. MRI preprocessing, seed selection and statistical analysis

Preprocessing of resting-state fMRI data from patients employed FSL
(Jenkinson et al., 2012), following methods as reported in our previous
dmPFC-rTMS studies (Salomons et al., 2014) for slice-timing correction,
segmentation, motion correction, spatial smoothing (6 mm FWHM
Gaussian kernel), correction for white matter and cerebrospinal fluid
signal artifacts, bandpass filtering (0.009–0.09 Hz), and linear co-
registration to the MNI-152 template.

Seed regions-of-interest (ROIs) were defined a priori from the
parcellation atlas of Craddock et al. (2012) for the dmPFC and adjacent
dorsal ACC (dACC) based on proximity to the stimulation target, follow-
ing our analyses in a previous study of dmPFC-rTMS in MDD (Salomons
et al., 2014). The seeds are described in detail in that study; their
centroids were MNI = −4, 44, 42 for dmPFC and MNI = 0, 38, 24 for
dACC (see Figs. 2 and 3 for images of the ROIs). For first-level analysis,
each seed ROI was co-registered to each subject3s brain via nonlinear
transformation, then applied as masks to extract the mean ROI time
series. These time series were used to generate whole-brain maps of
positively and negatively correlated voxels with the seed ROI before
and after treatment, via a linear regression analysis using a fixed effects
model at the individual-subject level.

Group level analysis was performed using FSL3s FLAMEmixed effects
model (Beckmann et al., 2003). We first identified regions where the
degree of correlation at baseline to the ROIs differed significantly be-
tween responders and non-responders. To assess whether differing
changes in resting-state connectivity over treatmentwould be associat-
edwith different outcomes,we then compared pre- and post-treatment
scans to identify regions where the pre- to post-treatment change in
correlation to the seed ROIs differed significantly between responders
and non-responders. The results of these analyses were transformed
into z-scoremaps, correcting formultiple comparisons using a Gaussian
random field theory cluster-based correction (z-score N 1.96, cluster
significance p N 0.05, corrected). Finally, the clusters previously obtain-
ed from group-level baseline predictor and change analyses were co-
registered to patients3 individual scans, and connectivity values were
extracted for each subject.
3. Results

3.1. Primary clinical outcomes

No serious or treatment-limiting adverse effects occurred, and sub-
jects reported only the localized scalp discomfort and transient head-
ache routinely associated with rTMS treatment sessions.

Baseline binge and purge episode frequency perweekwas 11.1±SD
18.6 and 17.6 ± SD 31.7 (Table 1). Combining both subpopulations,
there was no significant overall change in binge frequency (post-rTMS
mean = 8.6 ± 2.9, mean percent improvement = 20.4 ± 77.0,
Wilcoxon signed-rankW27 = 1.29, p = 0.20) but a significant decrease
in purge frequency was found (post-rTMSmean= 20.33 ± 10.2, mean
percent improvement = 35.7 ± 62.1, Wilcoxon signed-rank W27 =
2.20, p = 0.03). 16 of 28 subjects achieved ≥50% reduction in binge
and purge frequency from baseline to follow-up. However, outcomes
were widely divergent across individuals, ranging from full remission
tomarkedworsening of symptoms (Fig. 1). The degree of improvement
across individuals followed a non-normal distribution (Shapiro–Wilk
W27= 0.85, p= 0.001). For this reason, subsequent analyses were per-
formed to characterize responder and non-responder subpopulations
separately.

Among responders, symptom frequency improved from 7.5 ± SD
5.4–1.4 ± SD 1.9 binge episodes/week (Wilcoxon signed-rank W15 =
3.39, p = 0.0007) and from 8.7 ± SD 6.9–1.3 ± SD 2.0 purge
episodes/week (W15 = 3.49, p = 0.0005). Among non-responders,
symptom frequency before and after treatment showed a nonsignifi-
cant worsening from 20.5 ± SD 26.8–18.3 ± SD 19.41 binge episodes/
week (W11 = −1.30, p = 0.20) and 36.7 ± SD 44.3–54.5 ± SD 76.9
purge episodes/week (W11 = −0.59, p = 0.55). There was no signifi-
cant difference between responders and non-responders at baseline
for either binge (Mann–Whitney U26 = 0.91, p = 0.36) or purge
(U26 = 1.21, p = 0.23) frequency. Further results pertaining to global
and subscale changes on the EDE are reported in our supplementary
document.

3.2. Psychometric outcomes

We also assessed the relationships between the following pre-
treatment clinical measures and binge/purge percent improvement:
baseline BMI, illness duration, baseline binge/purge severity, age, ED di-
agnosis (AN−BP or BN), presence of co-morbidity (MDD, obsessive–
compulsive disorder, post-traumatic stress disorder, bipolar disorder),
current medication (benzodiazepine, selective serotonin reuptake in-
hibitor, antipsychotic), and baseline severity and percent improvement
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of secondary measures (HamD17, BDI-II, BAI). No clinical measures,
diagnoses, or medications predicted rTMS treatment response, or
percent improvement in binge/purge frequency, either before or after
Bonferroni correction for multiple comparisons (Spearman3s rank
correlation coefficient ρ26 b 0.30, p N 0.12 for each comparison above).
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3.3. Functional connectivity predictors of response

Pre-treatment rsfMRI revealed significant differences between
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Table 1
Descriptive statistics for all patients, rTMS responders and non-responders.

All subjects (n = 28) rTMS responders (n = 16) rTMS non-responders (n = 12) Responder vs. non-responder difference (p)

Females (males) 26 (2) 15 (1) 11 (1) t0.04 (0.97)
Age 31.04 (±9.48) 30.75 (±8.23) 31.42 (±11.32) t0.04 (0.97)
Duration of ED (years) 14.75 (±10.19) 12.75 (±7.51) 17.42 (±12.83) t0.84 (0.41)
# Prior treatments 2.61 (±2.44) 2.63 (±2.06) 2.58 (±2.97) t0.04 (0.97)
# Prior medications 3.00 (±2.37) 2.38 (±2.00) 3.83 (±2.66) t0.99 (0.33)
# of hospitalizations 3.57 (±4.20) 5.00 (±3.14) 6.42 (±5.35) t0.65 (0.52)
Baseline BMI 19.03 (±5.33) 19.81 (±3.68) 18.05 (±3.22) t1.35 (0.19)
AN−BP (BN) 12 (16) 5 (11) 7 (5) t0.87 (0.39)
Weekly binge frequency (pre-rTMS) 11.14 (±18.59) 7.48 (±5.41) 20.55 (±26.82) U = 0.91 (0.36)
Weekly purge frequency (pre-rTMS) 17.57 (±31.72) 8.75 (±6.93) 36.68 (±44.30) U 1.21 (0.23)
Weekly binge frequency (post-rTMS) 8.32 (±15.09) 1.39 (±1.88) 18.25 (±19.41) U 4.12 (b0.0001)**
Weekly purge frequency (post-rTMS) 19.63 (±53.96) 1.34 (±2.01) 54.53 (±76.93) U 3.51 (0.0004)**

Abbreviations: AN−BP= Anorexia nervosa binge/purge subtype; BMI= bodymass index; BN= bulimia nervosa; ED= eating disorders; rTMS= repetitive transcranial magnetic stim-
ulation. Values indicate means, with standard deviations reported in brackets.
U indicates nonparametric significance testing using the Mann–Whitney U.
** pb 0.05.
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treatment connectivity to bilateral temporal pole, OFC, and right
posterior insula, and higher connectivity to bilateral lateral and medial
occipital cortex (Table 2). Pre-treatment functional connectivity from
dmPFC to left and right lateral OFC was slightly positive in responders
(z = 1.12 ± 0.56), and positive in both non-responders (z = 4.75 ±
0.56). Parameter estimates also revealed that pre-treatment functional
connectivity from dmPFC to right insula was negative in responders
(z = −3.36 ± 0.39) and non-responders (z = −0.20 ± 0.73)
(Fig. 2B). Both dmPFC–insula and dmPFC–OFC connectivity at baseline
were significantly anti-correlated to binge/purge percent improvement
(r = −0.42 p = 0.03 and r = −0.46 p = 0.01, respectively).

From the dACC seed, responders had significantly lower pre-
treatment connectivity to the right posterior insula, putamen, hippo-
campus, and middle temporal gyrus, and higher connectivity to superi-
or parietal and medial occipital cortices and precuneus (Table 2;
Fig. 2C). Parameter estimates revealed that pre-treatment functional
connectivity from dACC to right hippocampus was negative in re-
sponders (z = −3.69 ± 0.42), non-responders (z = −0.44 ± 0.46).
Pre-treatment functional connectivity from dACC to right insula and
thalamus was negative in responders (z = −3.15 ± 0.74) but positive
in non-responders (z= 0.51± 0.53) (Fig. 2D). dACC–insula connectiv-
ity at baseline significantly anti-correlated to binge/purge percent
improvement (r = −0.38 p = 0.01).
Table 2
Brain regions where pre-treatment functional connectivity to dmPFC and dACC seeds dif-
fered significantly between rTMS responders and nonresponders.

Seed Brain region Brodmann
area

MNI coordinates z

X Y Z

dACC Nonresponders N responders
R Posterior insula 13 44 −6 4 3.70
R Hippocampus 32 −28 −8 3.61
R Posterior superior/middle

temporal gyrus
21/22 50 −18 −8 3.78

Responders N nonresponders
R Precuneus 7 10 −58 58 3.64
L Precuneus 7 −20 −58 60 4.00
R Intracalcarine cortex 18 8 −80 2 3.04
B Cuneus 18 8 −90 22 3.11

dmPFC Nonresponders N responders
R Lateral OFC 25/47 34 24 −14 2.83
L Lateral OFC 47 −34 22 −24 3.87
R Posterior insula 13 38 −10 4 3.79
L Temporal pole 28/38 −38 −10 −20 3.84
R Temporal pole 28/38 52 4 −24 3.35

Responders N nonresponders
B Intracalcarine cortex, lingual

gyrus
18 4 −80 2 4.06
3.4. Functional connectivity changes associated with response

There were also significant differences between responders and
non-responders in terms of the observed changes in functional connec-
tivity to the dACC and dmPFC before and after treatment. Compared to
non-responders, responders underwent significantly greater increases
in functional connectivity between the dACC and bilateral caudate nu-
cleus and VS, anterior insula, inferior frontal gyrus and adjacent OFC,
and right putamen (Table 3, Fig. 3A). Responders also showed greater
increases in functional connectivity between the dmPFC and right
middle temporal gyrus, and greater decreases in functional connectivity
between the dmPFC and bilateral thalamus (Table 3).

Inspection of parameter estimates revealed marked differences
between responders and non-responders in how dACC–VS functional
connectivity changed following treatment (Fig. 3B). The responder
group showed lower functional connectivity between the dACC and
VS prior to treatment, increasing significantly following successful treat-
ment (t12 = 2.37, p = 0.035). Conversely, connectivity in non-
responders decreased significantly (t8 = 2.316, p = 0.05), becoming
significantly lower than treatment responders post-treatment (t20 =
2.409, p = 0.03). A similar pattern of significant increases in functional
connectivity in responders (t12 = 3.314, p = 0.006), but decreases in
functional connectivity in non-responders, trending to significance
(t8= 2.078, p= 0.07), was observed between the dACC and left anteri-
or insula over the course of treatment (Fig. 3B). Binge/purge percent
Table 3
Brain regions where the change in functional connectivity to dACC and dmPFC seed from
pre- to post-treatment differed significantly between rTMS responders and
nonresponders.

Seed Brain region Brodmann
area

MNI coordinates z

X Y Z

dACC Increased connectivity in
responders N nonresponders

L Caudate/ventral striatum −14 18 2 3.89
R Caudate/ventral striatum 16 20 0 4.02
R Insula, putamen 13 32 −18 −2 4.03
R Anterior insula/OFC 13/47 36 18 −8 3.49
L Anterior insula/OFC 13/47 −38 14 2 3.16
L Inferior frontal gyrus 47 −34 22 −14 2.66
B Thalamus 14 −18 14 3.13

dmPFC Increased connectivity in
responders N nonresponders

R Middle temporal gyrus 21/22 50 −26 −10 4.27
Decreased connectivity in
responders N nonresponders

B Thalamus −4 −26 6 3.08
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improvementwas significantly correlated with the change in dACC–left
anterior insula connectivity (r = 0.45, p = 0.04) and trended to signif-
icant correlation with the change in dACC–VS connectivity (r = 0.39,
p = 0.07).

4. Discussion

To our knowledge, this is the first report of neuroimaging findings in
ED patients undergoing non-invasive brain stimulation. As an
intervention-probe, dmPFC-rTMS divided patients into treatment-
responsive and nonresponsive groups, with widespread differences in
resting-state connectivity apparent between these groups at baseline.
rTMS-responsive patients showed baseline hypoconnectivity from the
stimulation target to other cortical and subcortical regions, relative to
non-responders. In responders, frontostriatal connectivity was
enhanced following dmPFC-rTMS, in association with improvement in
binge and purge frequency. Conversely, in patients with higher baseline
connectivity, the same intervention produced the opposite effect,
reducing frontostriatal connectivity, in association with non-
improvement or worsening of symptoms.

Of particular interest were the divergent trajectories of outcome
across individuals. While many subjects showedmarked improvement,
a large proportion of subjects did not improve, or even showed
deterioration, when exposed to the same intervention. The observation
of divergent responses to dmPFC-rTMS in ED is in keeping with our
previous report of a sharply bimodal distribution of responses to
dmPFC-rTMS in MDD (Downar et al., 2014). Of note, similarly dichoto-
mous trajectories of improvement have been identified in clinical trials
of duloxetine (Gueorguieva et al., 2011) and escitalopram (Thase et al.,
2011).

The possibility of a neurobiological basis for the responder–non-
responder dichotomy in the present study is supported by differences
in resting-state functional connectivity observed between the two
groups before treatment. In keeping with our first hypothesis, re-
sponders had significantly lower functional connectivity from the
dmPFC and adjacent dACC to subcortical and cortical areas involved in
emotion generation and regulation: hippocampus, lateral orbitofrontal
cortex, and insula. These findings are consistent with several previous
studies inMDDpatients, linking baseline resting-state hypoconnectivity
to better rTMS response (Fox et al., 2013, 2012; Liston et al., 2014;
Salomons et al., 2014).

Another key finding in the present study is that the same 10 Hz in-
tervention had widely divergent effects on functional connectivity
across individuals: patients with high baseline cortico-cortical and
fronto-insular connectivity saw significant reductions after 10 Hz
rTMS, while patients with low baseline frontostriatal and fronto-
insular connectivity saw significant increases after stimulation at the
same frequency. This phenomenon is unlikely to represent a regression
to themean, as the groups showed divergence rather than convergence
in both symptomatology and functional connectivity over treatment.
The results are also consistent with our previously reported observa-
tions of markedly dichotomous effects on striatal, thalamic and cortical
functional connectivity from 10 Hz dmPFC-rTMS in patients with MDD
(Salomons et al., 2014). The results are also consistent with previous
studies of dlPFC-rTMS in depression: while some improved with high-
frequency rTMS, others worsened on this regimen, and instead
responded better to low-frequency stimulation of the same target
(Kimbrell et al., 1999; Speer et al., 2009, 2000). These findings are con-
sistent with mounting evidence that the physiological effects of a given
rTMS protocol can vary widely across individuals, not just in magnitude
but also in direction (Cárdenas-Morales et al., 2014; Eldaief et al., 2011;
Hallett, 2007; Maeda et al., 2000).

One limitation of this preliminary study involves its relatively small
sample size. Though the sample was slightly larger than those used in
several recent rTMS-fMRI studies in more prevalent disorders such as
MDD (Baeken et al., 2014; Liston et al., 2014; Salomons et al., 2014),
the present study does not allow amore detailed characterization of po-
tentially important clinical markers that could help distinguish treat-
ment subpopulations. Although the present investigation did not find
statistically significant pre-treatment differences between responders
and non-responders in terms of duration of illness, BMI, and binge/
purge frequency, future studies with higher power will be necessary
to better assess whether those with more severe illness in general are
less likely to respond to treatment. Another caveat relates to the inclu-
sion of multiple DSM-5 diagnostic categories in the current sample,
which embraced ED patients with binge−purge behaviors alongside
common comorbidities. On this point, we note that the sample compo-
sitionwas chosen to be representative of clinical populations presenting
with refractory binge−purge symptoms, and that no DSM-5 diagnosis
significantly correlated with rTMS response. More generally, it is un-
clear that current categorical nosologies map particularly well on to
rTMS responsiveness in general; the distinction between unipolar and
bipolar depression had no bearing on outcome in a recent meta-
analysis of rTMS efficacy (Berlim et al., 2014). We aware that some of
our subjects were underweight, and that improvements in bingeing
and purging represent a limited area of improvement for such individ-
uals. However, given the exploratory nature of this trial, and the notori-
ous difficulty in treatment individuals with ANBN, we felt it was
important to include such individuals in the trial. It is clear that the
question of whether dmPFC-rTMS aids other forms of disordered eating
(including restrictive-type behaviors) is still an important area for
future investigation.

Another potential criticism relates to the use of an open-label design
without sham stimulation. Since no previous studies have examined
dmPFC-rTMS in ED, and since the primary aim of the study was to
apply an intervention-probe and characterize neural predictors and cor-
relates of response (as in our recent work in depression), we opted for
the present approach in order to identify sources of heterogeneity that
might confound a future sham-controlled trial. The results suggest
that three potentially critical confounds will need to be accommodated
in future trials: first, the presence of distinct neural endophenotypes,
not readily apparent on standard diagnostic criteria, but with differen-
tial responses to the intervention at both the neural and the clinical
level; second, the need to tailor rTMS parameters to the individual
patient in order to avoid paradoxical effects; third, whether predictors
of improvement relate to illness mechanism, or a capacity to change
with rTMS treatment, or both. Our results suggest that rsfMRI
techniques help address both of these issues in any future randomized
controlled study of rTMS in ED.

In conclusion, dmPFC-rTMS shows promising therapeutic effects in a
subset of ED patients with refractory binge and purge behaviors. As in
MDD, therapeutic effects are associated with increases in initially low
levels of fronto-striatal functional connectivity, detectable on pre-
treatment rsfMRI. However, a significant proportion of patients have
initially higher baseline fronto-striatal connectivity, and in these
patients, the same intervention produces paradoxical decreases in
frontostriatal connectivity after treatment, alongside non-response or
worsening of clinical symptoms. A randomized controlled trial of
dmPFC-rTMS in ED would be a reasonable next step. However, the
results of this study join a growing body of evidence (Fox et al., 2013),
suggesting that future trials of rTMS will need to take into account
both the heterogeneity of individual patients3 neural activity, and the
heterogeneity of effects ensuing from the stimulation itself. Pre-
treatment neuroimaging may eventually play a crucial role in optimiz-
ing stimulation parameters, to maximize the chances of success in
each patient presenting for treatment.
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