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Visual search is an integral part of human behavior and
has proven important to understanding mechanisms of
perception, attention, memory, and oculomotor control.
Thus far, the dominant theoretical framework posits
that search is mainly limited by covert attentional
mechanisms, comprising a central bottleneck in visual
processing. A different class of theories seeks the cause
in the inherent limitations of peripheral vision, with
search being constrained by what is known as the
functional viewing field (FVF). One of the major factors
limiting peripheral vision, and thus the FVF, is crowding.
We adopted an individual differences approach to test
the prediction from FVF theories that visual search
performance is determined by the efficacy of peripheral
vision, in particular crowding. Forty-four participants
were assessed with regard to their sensitivity to
crowding (as measured by critical spacing) and their
search efficiency (as indicated by manual responses and
eye movements). This revealed substantial correlations
between the two tasks, as stronger susceptibility to
crowding was predictive of slower search, more eye
movements, and longer fixation durations. Our results
support FVF theories in showing that peripheral vision is
an important determinant of visual search efficiency.

Introduction

Trying to find what we are looking for is common to
our everyday lives. Moreover, anyone who has looked
for an item in a supermarket aisle has experienced that
such visual search behavior is limited, as we cannot
attend everywhere simultaneously. Hence, central to
visual search is the decision on where to look next—a
decision that involves mechanisms of perception,

attention, and memory (Chan & Hayward, 2013; Eimer,
2015; Nakayama & Martini, 2011; Wolfe, 2015). In
modeling such decisions, researchers have focused on
the influence of both stimulus properties (e.g., Itti
& Koch, 2000), as well as top-down and contextual
factors (e.g., Castelhano & Henderson, 2007; Wolfe &
Horowitz, 2017).

An important question is what the underlying
causes of the limitations in visual search are. The
dominant theoretical framework over the past four
decades has assumed that central, covert attentional
mechanisms make up the main bottleneck in visual
search (Wolfe, 2014). This line of theory goes back to at
least (Hoffman, 1979) but received a major boost with
Treisman’s Feature Integration Theory (Treisman &
Gelade, 1980), which posited that while target objects
defined by single salient features may be detected in
parallel, objects that can only be distinguished as a
combination of features require covert attention to be
directed to them, in a serial fashion. Wolfe’s Guided
Search model (Wolfe et al., 1989; Wolfe, 1994; Wolfe &
Gray, 2007) also assumes that visual search is essentially
limited by the speed with which covert attention can
be directed to individual items within a single glance,
resulting in what has been referred to as the “car wash”
model. In this model, items enter a serial processing
stream one-by-one, even though multiple items can be
“in the process” at a time (up to a maximum of four).
Which items are eligible for entering the car wash is
then mainly determined by top-down weighting of
task-relevant features, which occurs in parallel across
the visual field. This architecture of initial parallel
stage of feature processing followed by a second stage
involving some central attentional bottleneck is still
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echoed in much of modern thinking about visual search
(e.g., Eimer, 2015; Liesefeld & Müller, 2020; Wolfe,
2017).

Note that hitherto, central bottleneck theories have
assumed the input to be of homogeneous resolution
across the visual field—though see Wolfe (2003)
for pointing out that this does not have to be the
case. In fact, the parallel feature detection stages
of these theories rely on such features being readily
available across the visual field. However, the visual
system is heavily foveated, as already starting in the
retina, photoreceptor density rapidly decreases with
eccentricity (e.g., Curcio et al., 1990). In addition,
compared to the fovea, peripheral vision is assigned
much less of the cortical surface, as is expressed in
the cortical magnification factor (Duncan & Boynton,
2003). This results in worse detection of visual search
targets in the periphery unless stimuli are rescaled
according to this factor (Carrasco et al., 1995, 1998;
Carrasco & Frieder, 1997; Motter & Simoni, 2007).
Moreover, attention itself appears to be biased toward
the center of vision (Wolfe et al., 1998), and attentional
resolution—defined as the smallest spatial region within
which individual objects can be selected by visual
attention—is severely limited in the periphery with
even a coarser scale than the resolution of the input
signal (Intriligator & Cavanagh, 2001; He et al., 1996).
Together, many of these factors probably contribute
to what is known as crowding (Bouma, 1970; Toet &
Levi, 1992; Wolford & Chambers, 1983; see Levi, 2008;
Whitney & Levi, 2011, for reviews). Crowding is the
phenomenon upon which stimuli become difficult to
impossible to discriminate when embedded in clutter
and occurs through competitive interactions between
the target and surrounding stimuli (the flankers).
Crowding is most pronounced in peripheral vision,
although studies have also shown effects of crowding
in central vision (Coates et al., 2018; Lev et al.,
2014). It imposes a major limitation on peripheral
vision, impairing perception beyond mere acuity
(Rosenholtz, 2016). However, none of these limitations
play any role in central bottleneck theories of visual
search.

This contrasts with a different class of theories
that does not assume homogeneous resolution.
Instead, these theories see the above mentioned
inherent limitations of peripheral vision as the major
determinant of visual search efficiency, rather than some
central covert attentional bottleneck (Akbas & Eckstein,
2017; Engel, 1977; Geisler & Chou, 1995; Hulleman
& Olivers, 2017; Motter & Simoni, 2008; Rosenholtz
et al., 2012; Rosenholtz, 2016; Zelinsky, 2008). These
theories can be collectively described as FVF theories,
after the construct of the “functional viewing field”
(FVF; also known as “useful field of view”; Ball et al.,
1988; Sanders, 1970). The FVF is the area of the visual
field, centered on fixation, within which a certain target
stimulus can still be discerned. By definition, the size

of the FVF is determined by any factors that limit
peripheral vision, as listed above. In contrast to central
bottleneck theories, FVF theories of search assume
that all stimuli are processed in parallel within one
eye fixation. Instead, the seriality of search emerges
when the FVF is smaller than the to-be searched
area, and thus not all display items can be sufficiently
discriminated from peripheral vision. The solution to
deal with these limitations is for the system to make eye
movements, which bring potential target candidates
back within the FVF. In other words, search becomes
serial because eye movements are serial and not because
of a central cognitive limitation (Hulleman & Olivers,
2017). Several computational implementations have
indeed generated positive results in terms of predicting
both manual responses and eye movements (Hulleman
& Olivers, 2017; Najemnik & Geisler, 2005; Parkhurst
et al., 2002; Young & Hulleman, 2013; Zelinsky, 2008).
Moreover, Akbas and Eckstein (2017) have shown
that a foveated convolutional neural network generates
search performance that comes close to a network
with full resolution input but at considerably reduced
computational (and hence metabolic) costs.

FVF theory predicts that visual search efficiency
is determined by the efficacy of peripheral vision,
rather than a central bottleneck (Hulleman & Olivers,
2017). The present study tested this prediction by
capitalizing on individual differences in sensitivity to
crowding. Specifically, we hypothesized that individuals
who present stronger crowding should also show less
efficient visual search. We focused on crowding as it is
such a strong determinant of peripheral vision, and
thus the FVF. Previous studies have provided evidence
for a potential link between crowding and visual search
performance by showing that when the discrimination
of target stimuli in the periphery becomes more
difficult—be it due to either closer proximity or
similarity between targets and nontargets—search for
a target under the same circumstances also becomes
less efficient (Engel, 1977; Geisler & Chou, 1995;
Gheri et al., 2007; Motter & Simoni, 2008; Wertheim
et al., 2006). For example, both Wertheim et al. (2006)
and Gheri et al. (2007) found that targets defined by
a unique and salient feature relative to surrounding
distractors can be distinguished better than targets
defined by a conjunction of features, both in a
peripheral detection task and in a visual search task.
This provides initial qualitative evidence that what
benefits one task also benefits another. Using a different
approach, Rosenholtz and colleagues have argued that
a single model of statistical transformations of different
stimulus types in peripheral vision can explain both
crowding and visual search performance (Rosenholtz
et al., 2012; Zhang et al., 2015). They showed that the
peripheral discriminability of statistically transformed
stimuli indeed predicts search efficiency (with better
predictability than classic search models, as can been
seen in Chang & Rosenholtz, 2016). However, they did
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Figure 1. Schematic illustration of stimuli and experimental procedure of both tasks. (A) Crowding task. A tilted target Gabor patch
with two flankers was shown for 50 ms, after which participants had up to 1,950 ms to indicate the direction of tilt. Stimuli could
appear at one of three possible eccentricities (4, 8, and 12 deg), on either the left or the right side of the fixation mark. Distance
between target and flankers was staircased per eccentricity. (B) Visual search task. Displays consisted of a tilted target Gabor patch
surrounded by distractors, making a total of 5, 15, or 30 items on screen. The target was presented at the same eccentricities as used
for the crowding task. Participants indicated the tilt direction of the target.

not investigate a direct empirical link between classical
measures of crowding and visual search.

Here we aimed to more directly test the link between
crowding and search by using a well-established
measure of crowding, referred to as the critical spacing
(CS). The CS is the minimum distance below which
target-flanker proximity impacts discrimination
performance (Whitney & Levi, 2011). In his original
study, Bouma (1970) estimated the CS to be around
half the eccentricity, but it is known to depend on
stimulus properties (e.g., Rosen et al., 2014; Scolari
et al., 2007) as well as attention (Grubb et al., 2013;
Rashal & Yeshurun, 2014; Strasburger & Malania,
2013; Yeshurun & Rashal, 2010). Additionally, studies
have shown that crowding magnitude differs across
individuals (Frömer et al., 2015; He & Fang, 2019), and
it is this variability that we made to use in this study. To
this end, we devised an experiment consisting of two
parts, both of which are illustrated in Figure 1. In the
first part, the crowding task, participants discriminated
the orientation of a target Gabor pattern at three
fixed eccentricities left or right from fixation. On most
trials, the target was accompanied by two flankers. A
staircase procedure varying the target-flanker distance
allowed us to estimate the CS for each individual,
which we defined as the spacing that allowed for ∼80%
accuracy. In the second part, the same participants then
completed a visual search task, using the same type of
stimuli, but now randomly arranged and with larger set
sizes. We hypothesized that the individual CS values,
as obtained in the first part, would be predictive of
search performance both in terms of manual Reaction
Times (RTs) as well as eye fixations. A more detailed
description of the methods follows below.

Materials and methods

The study design and analyses were preregistered at
the Open Science Framework (https://osf.io/mv8hw/).
Customized code used to produce the figures and
values presented in this document can be found at
https://github.com/iverissimo/Crowding.

Participants

Participants were recruited from the student
population of the Vrije Universiteit Amsterdam.
Participants were naïve with respect to the purpose of
the experiment and reported normal or corrected-to-
normal vision. All participants gave written informed
consent and were compensated for their time (either
financially or through course credits). The study
procedures were approved by the ethics committee of
the Faculty of Behavioral and Movement Sciences.
Sample size was predetermined using G*Power (Faul
et al., 2009), assuming a moderate effect size of 0.6,
which indicated a minimum sample size of 26. We
decided on a minimum of 30 participants meeting the
predetermined inclusion criteria, but allowing for as
many additional participants as feasible within the time
period of the study (with no optional stopping). In
the end, a total of 62 participants were recruited, of
whom 44 met the inclusion criteria and were entered in
subsequent analyses (7 male, mean age 20, age range
18–31). Inclusion criteria were defined as follows: With
regards to the crowding task, accuracy on the target
alone condition, without flankers, should not be below

https://osf.io/mv8hw/
https://github.com/iverissimo/Crowding
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60% (note that accuracy on the trials with flankers was
staircased to 75%). Additionally, participants should
have no more than 25% of missed trials (trials where
no response was given) and should not deviate their
gaze from fixation (>1 degree of visual angle — deg)
during stimulus presentation for more than 10% of
the trials, in any of the conditions. Finally, to prevent
floor or ceiling effects, the staircased estimates of CS
should not be at minimum or maximum values. After
running the experiment, we realized that we obtained
three CS values (one for each eccentricity), and we
decided to only include participants for whom at least
two out of the three CS estimates had not reached
bottom or ceiling. With regards to the search task,
participants were included if overall accuracy (across
set sizes) was at least 85% and at least 75% for any given
set size.

Experimental setup

The session consisted of two tasks: first a crowding
task, followed by a visual search task. The entire
session lasted about 60 to 90 min, and participants
were allowed to take breaks between blocks and
tasks. For both tasks, visual stimuli were generated
with custom-made code developed with Python 2.7
(Python Software Foundation, Beaverton, OR, USA),
using Psychopy functions (Peirce et al., 2019). The
display was presented on a Samsung SyncMaster
2233RZ monitor (native resolution of 1,680 × 1,050,
screen height 30 cm, and refresh rate of 120 Hz),
with a gray background (mean luminance of 15
cd/m2), at a viewing distance of 57 cm. A chinrest
was used to stabilize participants’ head position. Eye
movements were recorded throughout both parts
of the experiment using an EyeLink 1000 remote
eye-tracker system (SR Research, Ontario, Canada)
with a refresh rate of 1,000 Hz. At the start of each
task, a standard calibration-validation procedure was
performed.

Experiment Part I—crowding task

Figure 1A illustrates the procedure of the crowding
task. Throughout the experiment, a white cross of
0.5 deg diameter was positioned at the center of the
screen, and participants were asked to keep fixation
on that point at all times. Each trial displayed a target
Gabor patch on either the left or the right side of the
fixation cross, and subjects were asked to indicate its tilt
(7 deg from vertical, either clockwise or anti-clockwise)
by pressing the right or left arrow keys. This target
Gabor could appear either on its own (one sixth of
the trials) or accompanied by two vertically positioned

flanker patches (five sixths of the trials), with vertical
orientation. To avoid grouping by collinearity, a slight
jitter was applied to the flanker positions by randomly
shifting them horizontally between −0.5 and 0.5 deg
relative to the target. All presented Gabor patches had
a diameter of 2.2 deg and a spatial frequency of 4
cycles/deg (standard deviation of 0.12 deg, Michelson
contrast of 99.5%). The stimuli were displayed for
50 ms at an eccentricity of 4, 8, or 12 deg from central
fixation, after which participants had an additional
1,950 ms to respond. The intertrial interval (ITI) was
500 ms, during which only the fixation mark was
presented. The crowding task was divided into four
equal-length blocks, with a total of 576 trials. The
experiment was preceded by an additional 72 practice
trials. Eccentricity, visual hemifield (left/right), and
presence of flankers were balanced and presented
in a randomized order. The distance between target
and flankers was staircased according to participants’
performance in a 1-up-3-down scheme, with a fixed
step size of 0.05 deg. At the beginning of the task,
the distance between target and flankers was set at
the maximum of 0.80 × eccentricity, and this value
decreased if the participant correctly indicated (in
three consecutive trials) the orientation of the target,
up to a minimum value of 0.20 × eccentricity. Three
separate staircases were used, one per eccentricity
level.

Experiment Part II—visual search task

Figure 1B illustrates the visual search procedure.
Fixation cross, background, and Gabor patches were
the same as in the crowding task. Search displays
comprised a 22-deg (wide) by 14-deg (tall) virtual oval
grid of 156 possible item positions, arranged in 11
concentric rings, with a minimum distance of 2 deg
between adjacent items. Item position was randomized
per trial. After participants directed their gaze at the
fixation mark, a search display—composed of a tilted
Gabor target patch among vertically oriented distractor
patches—appeared. Participants were instructed to find
the target as quickly as possible and indicate the target
orientation by pressing the right or left arrow keys. In
contrast to the crowding task, observers were now free
to move their eyes. The search display disappeared after
response, with only the fixation cross remaining. A new
trial would start once participants returned their gaze
to fixation. The experimental design contained two
main factors. First, display set size was varied between
5, 15, and 30 items. Second, the target was presented at
an eccentricity of 4, 8, or 12 deg from central fixation.
All levels were balanced and randomly mixed within
blocks. There were four equal-length blocks of 180
trials each, giving a total of 720 trials, and 80 trials per
set size × eccentricity combination.
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Data processing and analyses

Behavioral and eye movement data from both tasks
were analyzed with custom-written code in Python 3.6.
All following processing and analyses steps here were
preregistered. Any unforeseen or additional, more
explorative analyses will be pointed out in the Results
section.

Crowding data. Average response accuracy with
and without flankers was compared using a Wilcoxon
signed-rank test (because of the expected non-Gaussian
distribution of the data). The main measure of interest
was the CS, which was estimated for each participant
per eccentricity. The CS was computed as the median
target-flanker over eccentricity ratio of the last 96 trials
(the last one sixth of the total number of trials). These
ratios were then averaged over eccentricities, to produce
one mean CS value per participant.

Visual search, manual response data. For the RT
analysis, we excluded incorrect trials, and RTs faster
than 250 ms or slower than 5,000 ms after stimulus
onset. Mean RTs were then computed per participant,
for each combination of set size and eccentricity, and
submitted to a two-way repeated-measures analysis
of variance (ANOVA) with set size and eccentricity
as factors, and α = 0.05. As a secondary measure, we
also computed average response accuracy and entered
this in the same type of ANOVA. Next, we fitted a
linear regression to the individual RT data in order to
compute the slopes of the search functions across set
size, for each target eccentricity.

Visual search, eye-tracking data. The criteria
for fixation and saccade detection were based on
the Eyelink standard criteria. Eye-tracking data
were processed using the PyGazeAnalyser package
(Dalmaijer et al., 2014). We excluded early fixations
(up to 150 ms after display onsets) as well as target
fixations, since these were not deemed indicative of
the search process itself. For each participant, we then
computed the average number of fixations, per set
size and eccentricity, and submitted these to the same
ANOVA as above. We also computed slopes across set
size.

Correlation analyses. Crucially, to assess if crowding
performance was indeed predictive of visual search
performance, we then correlated the CS obtained in the
crowding task with the abovementioned visual search
measures. Specifically, we correlated CS with the search
RTs for each set size and eccentricity, the RT × set
size slopes, the number of fixations for each set size
and eccentricity, and the fixations × set size slopes.
As these correlations were all planned, were clearly
predicted by our hypotheses, and were all predicted to
be interrelated (and thus to go in the same direction),
they were not Bonferroni corrected. However, as we
had no a priori assumptions about the nature of the
relation (whether linear or not) and normality of the

distributions of the underlying measures, we chose the
more conservative option of the Spearman correlation
(a nonparametric measure of rank correlation) over the
Pearson correlation.

Results

Crowding

Table 1 shows the average accuracy for flanker
and no-flanker trials, for each eccentricity. As would
be expected, accuracy on trials with flankers was
significantly worse than on trials without flankers (83%
vs. 89%; p = 6.64 × 10−6 < 0.001; this also held for each
eccentricity separately, all with p < 0.01). Note that,
due to the staircase, the actual values here have limited
meaning, but the result indicates that the flankers
caused crowding. Note further that performance on
the no-flanker trials was well above chance and did not
significantly vary with eccentricity (Friedman test with
p = 0.203 > 0.05; see also Supplementary Figure S1),
suggesting overall little limitation in terms of visual
acuity.

Figure 2 shows the average CS and its distribution
for each eccentricity. Given Bouma’s law, we expected
the CS values to remain relatively constant across
eccentricity (Bouma, 1970). However, a Friedman
test revealed a significant effect of eccentricity

4 deg 8 deg 12 deg Average

Flankers 81.3% 83.8% 82.7% 82.6%
No flankers 91.3% 88.8% 86.6% 88.9%

Table 1. Average accuracy for trials with and without flankers,
for each eccentricity, as well as averaged across eccentricity.

Figure 2. Violin plots of the average critical spacing values and
their distribution, per eccentricity. Asterisks indicate the
significance levels for the pairwise comparisons (**p < 0.01;
***p < 0.001).
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Figure 3. Violin plots of mean search RTs and their distributions, as a function of set size and eccentricity.

5 15 30
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5 15 30

8 deg

5 15 30
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Figure 4. Violin plots of mean number of fixations in the search task and its distribution, as a function of set size and eccentricity.

(p = 2.09 × 10−7 < 0.001). Figure 2 indicates that CS
was lower for the middle than for the inner and outer
eccentricity difference, which was confirmed with post
hoc Bonferroni-correctedWilcoxon tests of the pairwise
comparisons (4 vs. 8 deg, p = 2.37 × 10−6 < 0.001; 8 vs.
12 deg, p = 4.18 × 10−4 < 0.01; with no significant
difference between 4 and 12 deg, p = 0.07). We did not
expect this relative benefit for the middle eccentricity,
and we suspect this may reflect a strategy of attending
to the center of the eccentricity distribution. Given that
this is not crucial for the current purpose, and given a
high correlation of CS values between eccentricities,
we took the average CS value across eccentricities
per participant as the main indicator of crowding
for the correlation with visual search performance
here. In addition, we report all analyses for each
eccentricity-specific CS estimate separately in the
Supplementary Figures.

Visual search

Figure 3 shows the mean search RTs as a function
of set size, separately for each target eccentricity. A
two-way repeated-measures ANOVA with set size
(5, 15, and 30 items) and eccentricity (4, 8, and
12 deg) as factors revealed significant effects of set
size, F (2, 86) = 202.70, p = 2.83 × 10−33 < 0.001;
eccentricity, F (2, 86) = 298.99, p = 1.89 × 10−39 <
0.001; as well as their interaction, F (4, 172) =
88.79, p = 8.68 × 10−41 < 0.001. As can be seen from
Figure 3, search times increased with set size and with
targets being further away from the center, and these
effects amplified each other.

The same analyses were performed on the number
of fixations. Figure 4 shows the distribution of
the average number of fixations as a function of
set size and eccentricity. The ANOVA revealed
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4 deg 8 deg 12 deg

5 items 97.8% 97.8% 95.8%
15 items 97.9% 96.4% 94.2%
30 items 97.7% 96.2% 91.3%

Table 2. Average accuracy in the search task, per set size and
eccentricity.

a significant main effect of set size, F (2, 86) =
196.47, p = 8.54 × 10−33 < 0.001; eccentricity,
F (2, 86) = 277.50, p = 3.08 × 10−38 < 0.001; as well as
an interaction, F (4, 172) = 119.63, p = 1.32 × 10−48 <
0.001. Similar to the search times, number of fixations
too increased with increasing eccentricity and set size,
and these effects amplified each other.

Finally, Table 2 shows the average search
accuracy values per set size and target eccentricity.
The same ANOVA on these values revealed a
significant main effect of set size, F (2, 86) = 14.82, p =
2.94 × 10−6 < 0.001; eccentricity, F (2, 86) = 61.30, p =
2.84 × 10−17 < 0.001; as well as an interaction between
them, F (4, 172) = 10.18, p = 2.03 × 10−7 < 0.001.
Overall accuracy was high, and the pattern followed
that of the RTs, with diminished accuracy for both
increasing eccentricity and set size. There was therefore
no sign of a speed/accuracy trade-off.

Correlation analyses

To investigate if the CS values obtained from the
crowding task are indeed predictive of visual search
performance, we computed the Spearman correlation
coefficient between crowding and several search
outcomes. Figure 5 shows the correlations between CS
and search RT, per eccentricity and set size. We can
observe that, for all conditions, the correlations are
positive and statistically significant (ρ between 0.38 and
0.50, ps ≤ 0.01). Supplementary Figure S2 presents the
same analyses, but then taking the CS value for each
eccentricity separately. It shows essentially the same
results.

Analogous results were found when correlating CS
with the number of fixations that participants made
during the search task. In Figure 6, we can observe
that for the majority of conditions, the correlations
are significant and positive, with ρ ranging between
0.31 and 0.40, ps < 0.05, with the exceptions of set
size 5, eccentricity 4 deg (ρ = 0.29, p = 0.054), and
set size 15, eccentricity 12 deg (ρ = 0.25, p = 0.103).
Supplementary Figure S3 presents the same analyses,
but then taking the CS value for each eccentricity
separately. It again shows essentially the same results.

Figure 7A shows the correlation between CS
values and search efficiency—specifically the search
slopes across set size as computed using simple

linear regression. Slope values showed a significant
correlation with CS for search trials where the target
was presented at 8 deg (ρ = 0.31, p = 0.040 < 0.05),
as well as 12 deg (ρ = 0.36, p = 0.017 < 0.05), and
there was a nonsignificant trend in the same direction
at 4 deg (ρ = 0.25, p = 0.107). The correlation
was reliable when aggregated across eccentricities
(ρ = 0.34, p = 0.025 < 0.05). Figure 7B shows same
the correlations, but now for the number of fixations
slope values. From the results, we observe that the
overall pattern follows a similar trend as for the RT
data, yet with somewhat reduced reliability, as the
positive correlation only reached significance at 4 deg
(ρ = 0.34, p = 0.023 < 0.05). Supplementary Figure S4
presents the same analyses, but then taking the CS value
for each eccentricity separately. Here results show a
strong correlation at 12 deg, but correlations are less
reliable for the remaining eccentricities. The overall
pattern is again similar, though.

As another measure of peripheral vision, we also
correlated search RTs and number of fixations with
accuracy in the no-flanker condition. These correlations
are shown in Supplementary Figures S5 and S6. Here
we used the separate scores for each eccentricity,
as in contrast to CS, acuity would be expected to
be worse for items further away. As can be seen,
there is little correlation with acuity for the lower
eccentricities. However, for the largest eccentricity,
search performance did correlate with accuracy. This
may reflect acuity limitations for targets presented at
the furthest eccentricity, even when presented alone.
However, note that average discrimination performance
was actually not reliably worse for this eccentricity
than for the other eccentricities (see Table 1), and
performance was well above chance. This indicates
that observers could well discern the target tilt even at
the furthest eccentricity, making an acuity explanation
somewhat unlikely. We will return to this in the
Discussion.

Exploratory analyses

We conducted a number of additional analyses. First,
FVF theories predict a strong correlation between
number of eye movements and RTs. Also, given the
strong correlation of both RTs and fixations with CS
values here, one would expect RTs and fixations to
correlate. To assess this, we computed the RT—number
of fixations correlation across trials, for each individual
separately. This yielded a strong correlation, with an
average ρ = 0.78 (SD = 0.08; range 0.55–0.91) across
participants. We in turn correlated these correlations
with the CS values from the crowding task, under
the assumption that especially for those individuals
who are most limited in their peripheral vision, RTs
would be most strongly determined by the number of
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4 deg 8 deg 12 deg

5 items

15 items

30 items

Figure 5. Scatterplots showing the relationship between mean CS and search times, for each set size and eccentricity. The computed
Spearman correlation coefficient (ρ) and associated p-value are shown at the top of each panel.

eye movements. Indeed, as Figure 8 shows, we found
a positive correlation between CS and the extent to
which an individual’s RTs are driven by eye movements
(ρ = 0.40, p = 0.007 < 0.01).

Additionally, we were interested in analyzing two
other eye movement parameters during search and
how these would link to the sensitivity to crowding.
In these exploratory analyses, we first computed the
average distance between consecutive fixations, for each

condition, and correlated these distances with the mean
CS. We assumed that participants with higher CS values
would have a shorter distance between fixations, since
the limits on peripheral vision should lead to smaller
FVFs. However, as can be seen in Figure 9, there was no
correlation between mean CS and interfixation distance
(ρ between −0.08 and 0.24, all p > 0.05). Second, we
analyzed the average fixation duration and correlated
this measure with the mean CS values, as show in
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Figure 6. Scatterplots showing the relationship between mean CS and number of fixations performed during search, for each set size
and eccentricity. The computed Spearman correlation coefficient (ρ) and associated p-value are shown at the top of each panel.

Figure 10. Here the assumption was that observers
may compensate for worse peripheral vision by fixating
longer (cf. Moffitt, 1980). Results show that participants
with a larger CS indeed fixated on items longer during
search. For the majority of conditions, the correlations
are positive and significant, with ρ ranging between
0.35 and 0.46, all p < 0.05, with the exception of set
size 15, eccentricity 4 deg (ρ = 0.27, p = 0.072).

Discussion

Theories of visual search differ with respect to the
importance they attribute to central, cognitive versus
more peripheral, sensory limitations in explaining
search efficiency. Here, leveraging individual differences,
we investigated if a major limitation on peripheral
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4 deg 8 deg 12 deg AverageA

4 deg 8 deg 12 degB Average

Figure 7. Scatterplots showing the relationship between mean CS and search slopes, for each eccentricity separately and for all
combined. The computed Spearman correlation coefficient (ρ) and associated p-value are shown at the top of each panel.
(A) Average RT/set size slopes. (B) Average fixations/set size slopes.

vision, crowding, predicts visual search performance.
Crowding impairs the discriminability of the object
features when surrounded by clutter, and we quantified
it by determining the CS between the target object and
the flanking objects. We found the CS to vary across
individuals, between 0.23 and 0.67, with an average
of 0.37, which is not far from the 0.5 proposed by
Bouma (1970), with any differences potentially caused
by different stimulus properties (Pelli et al., 2007; Rosen
et al., 2014; Scolari et al., 2007). However, we did not
find the CS to be entirely constant across eccentricity,
as the middle eccentricity unexpectedly yielded lower
CS values than the inner and outer eccentricities. We
believe that this might be an attentional effect, where
observers center their attention on the middle of
the eccentricity distribution (Eriksen & James, 1986;
Juola et al., 1991; Linnell & Humphreys, 2004; Müller
& Hübner, 2002), and future investigations might
shed more light on this. Important for the present
study, the fact that the CS varied across individuals
is consistent with earlier findings on individual
differences in crowding (Frömer et al., 2015; He & Fang,
2019), and enabled us to link performance to visual
search.

The visual search task revealed effects of both
eccentricity and set size on manual RTs and accuracy,
as well as number of eye movements. Previous studies
have shown similar eccentricity effects (Carrasco
et al., 1995; Scialfa & Joffe, 1998), which could be the
outcome of decreased resolution (Carrasco & Frieder,
1997; Carrasco et al., 1998; Motter & Simoni, 2007)
or a by-product of a central bias in the allocation of
attention (Wolfe et al., 1998). We point out that while
these earlier studies show that targets are more difficult
to find the larger the eccentricity, they did not test
whether differences in peripheral vision (other than
eccentricity per se) are a determinant of visual search
performance—which was the goal of the current study.
Note that here, in our study, the eccentricity was defined
relative to the initial central fixation and would thus
change with subsequent eye movements, but averaged
across fixations this would still result in an eccentricity
difference. Also note that while set size effects were
reliable, they were small, with average RT/set size slopes
ranging from around 6 ms/item for the nearest target
eccentricity to around 23 ms/item for the furthest,
suggesting that a considerable part of search may have
been parallel in nature (Treisman & Gelade, 1980).
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Figure 8. Scatterplot showing the relationship between mean
CS and the RT—number of fixations correlations across trials,
for each individual separately. The computed Spearman
correlation coefficient (ρ) and associated p-value are shown at
the top of each panel.

We point out that such parallel search reduces the
opportunity to find evidence for the core predictions
of FVF theory, namely, a direct relationship between
search RTs and eye movements, and a relationship
between peripheral perception (specifically crowding
here) and search. We therefore believe that the fact
that we nevertheless find substantial evidence for such
relationships (as we will discuss next) is testimony to
the power of our approach.

FVF theory predicts that discrimination capacity
in peripheral vision is what determines visual search
performance (Hulleman & Olivers, 2017). A number
of findings support this prediction. First, subjects with
higher sensitivity to crowding (i.e., higher CS values),
also produced longer RTs during the search task. This
strong positive correlation between CS and RTs was
observed for all eccentricity levels and set sizes. The
same pattern was also observed when correlating search
efficiency, as expressed in RT/set size slopes, with CS,
although with a more modest effect. This might be
due to the fact that overall efficiency was already quite
high, and stronger correlations may be observed for
less efficient searches. These results are consistent with
earlier findings that coupled peripheral discriminability
with search efficacy, as expressed in manual responses
(Gheri et al., 2007; Rosenholtz et al., 2012; Sayim
et al., 2011; Vlaskamp & Hooge, 2006; Wertheim
et al., 2006; Zhang et al., 2015). While these studies
explored the effects of variations in target-distractor
similarity manipulations and found that what is easily
discriminable in one task is so too in another, here,

by directly correlating a classic measure of crowding
with typical search performance outcomes, we provide
another important bridge between crowding and visual
search.

Furthermore, the same positive correlations were
observed between CS and number of fixations, showing
that higher sensitivity to crowding leads individuals
to make more eye movements during search. When
correlating efficiency (here the number of fixations over
set size) with CS, we again observed that the overall
pattern follows a similar trend as for the RT data, yet
with somewhat reduced reliability. Not surprisingly,
then, also strong overall correlations were found
between the number of eye movements and manual
RTs across trials, in line with previous reports (Zelinsky
& Sheinberg, 1995, 1997). Moreover, these individual
RT-fixation correlation values themselves correlated
with the individual CS values, indicating that those
individuals who are most limited in their peripheral
vision RTs also rely most strongly on the number of eye
movements. In support of FVF theories, our results
thus show that the spatiotemporal dynamics of visual
search can be directly linked to the neurophysiological
differences between central and peripheral vision—that
is, in overt vision—without having to assume a covert
central bottleneck. When an observer’s FVF does not
encompass all the objects in the display, he or she
resorts to eye movements as a serial solution, thus
bringing the target object within the FVF.

In light of these findings, we then explored whether
varying degrees of crowding leads to different eye
movement strategies. Specifically, we speculated
that if the FVF is small—leading to more eye
movements—then maybe these movements would also
show smaller amplitudes, reflecting a denser sampling
of the search array. However, no correlation was found
between CS and distance between consecutive fixations.
This suggests that observers sampled more of the
display (as expressed in more fixations), but not in
a very systematic fashion (i.e., not in smaller steps).
Instead, there was a positive correlation between CS
and average duration of fixation. These results are
akin to previous studies (Jacobs, 1986; Moffitt, 1980;
Motter & Simoni, 2008; Zelinsky & Sheinberg, 1995)
and suggest that the FVF may be best conceived of as a
dynamic construct, namely, the area of the visual field
within which a target stimulus can be discriminated
within a certain amount of time—something Geisler
and Chou (1995) have referred to as the “speed
window”. That is, the FVF not only reflects whether
sufficient evidence is eventually accumulated in order
to detect a target but also the accumulation rate.
Longer fixations then compensate for slower evidence
accumulation.

While individual differences in crowding were
predictive of visual search performance, they explained
far from all the variability. This may reflect inherent
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Figure 9. Scatterplots showing the relationship between mean CS and mean distance between consecutive fixations in the search
task, for each set size and eccentricity. The computed Spearman correlation coefficient (ρ) and associated p-value are shown at the
top of each panel.

noise in the stimulus displays, the measurements, or
behavior. But it also leaves room for additional factors
determining search efficiency, such as systematic scan
paths (Gilchrist & Harvey, 2006), biases toward clusters
or center of gravity of multiple items (Najemnik
& Geisler, 2005; Pomplun et al., 2003), and even
covert attentional factors (Carrasco & McElree, 2001;

Carrasco & Yeshurun, 1998; Giordano et al., 2009;
Wolfe & Gray, 2007). So it deserves pointing out that
while the current findings provide positive evidence for
FVF theories, they do not provide evidence against
central bottleneck theories. That said, and following
earlier proponents (Carrasco et al., 1995; Engel,
1977; Eriksen & Schultz, 1977; Geisler & Chou, 1995;
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Figure 10. Scatterplots showing the relationship between mean CS and mean fixation duration in the search task, for each set size and
eccentricity. The computed Spearman correlation coefficient (ρ) and associated p-value are shown at the top of each panel.

Hulleman & Olivers, 2017; Rosenholtz et al., 2012),
we argue that it is unnecessary to assume central
bottlenecks where peripheral bottlenecks may already
be doing the job.

What are the key components that lead to the
variability in FVF size and thus to less efficient search
performance? One explanation for such individual
differences might start at the retina. As is well known,
the retina is characterized by a systematic decrease in

photoreceptor density with eccentricity. Moreover, this
decline varies considerably across individuals (Curcio
et al., 1990). Correlations between the accuracy of
the target-only condition at the largest eccentricity of
the crowding task, on the one hand, and search RTs
as well as number of fixations, on the other, suggest
that limitations at the retinal level could already be
predictive of search performance (at least for the
furthest eccentricity). However, when analyzing the
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average discrimination performance in the target-only
condition, we observed no reliable difference in
accuracy between eccentricities and well above chance
performance. This makes acuity per se an unlikely
cause. Perhaps then, the important factor is again
processing speed, in that observers feel that they cannot
resolve the fringes of their FVF in time and thus decide
to make another eye movement. Another potential
source of individual differences lies at the cortical level
(which in turn may or may not find its source in retinal
differences). A recent neuroimaging study showed that
crowding performance related to the size of population
receptive fields (pRFs), specifically in V2, where larger
pRF sizes came with stronger crowding (He & Fang,
2019). Receptive field overlap is thought to be a major
cause of crowding, leading to mutual suppression of
signals, pooling, or both (Levi, 2008). Important within
the present context, given that pRF size can predict
the magnitude of crowding across individual subjects,
the distinct possibility arises that pRF size will also
predict visual search performance. Finally, there may
be individual differences in feedback projections that
shape the FVF, for example, through covert attention.
Several studies have shown that manipulating attention
on search and acuity tasks has effects that are most
pronounced at peripheral locations (Carrasco &
Yeshurun, 1998; Carrasco et al., 2002; Grubb et al.,
2013; Yeshurun & Carrasco, 1999; for a review, see
Anton-Erxleben & Carrasco, 2013). Although to our
knowledge, it has never been tested, it is likely that the
strength of such attentional modulations differs across
individuals, thus contributing to the size and flexibility
of the FVF. Future work will be needed to test these
possibilities.

Conclusion

To conclude, our results show that individual
differences in crowding, as measured by critical spacing,
are predictive of visual search performance. The strong
relationship between the two tasks demonstrates the
relevance of peripheral sensory limits for visual search,
without the need to assume more complex, central
attention mechanisms.

Keywords: visual search, crowding, functional viewing
field (FVF), peripheral vision
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