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ABSTRACT The promoter region is a key element required for the production of
RNA in bacteria. While new high-throughput technology allows massively parallel
mapping of promoter elements, we still mainly rely on bioinformatics tools to
predict such elements in bacterial genomes. Additionally, despite many different
prediction tools having become popular to identify bacterial promoters, no sys-
tematic comparison of such tools has been performed. Here, we performed a
systematic comparison between several widely used promoter prediction tools
(BPROM, bTSSfinder, BacPP, CNNProm, IBBP, Virtual Footprint, iPro70-FMWin,
70ProPred, iPromoter-2L, and MULTiPly) using well-defined sequence data sets
and standardized metrics to determine how well those tools performed related
to each other. For this, we used data sets of experimentally validated promoters
from Escherichia coli and a control data set composed of randomly generated se-
quences with similar nucleotide distributions. We compared the performance of
the tools using metrics such as specificity, sensitivity, accuracy, and Matthews
correlation coefficient (MCC). We show that the widely used BPROM presented
the worse performance among the compared tools, while four tools (CNNProm,
iPro70-FMWin, 70ProPred, and iPromoter-2L) offered high predictive power. Of
these tools, iPro70-FMWin exhibited the best results for most of the metrics
used. We present here some potentials and limitations of available tools, and we
hope that future work can build upon our effort to systematically characterize
this useful class of bioinformatics tools.

IMPORTANCE The correct mapping of promoter elements is a crucial step in micro-
bial genomics. Also, when combining new DNA elements into synthetic sequences,
predicting the potential generation of new promoter sequences is critical. Over the
last years, many bioinformatics tools have been created to allow users to predict
promoter elements in a sequence or genome of interest. Here, we assess the predic-
tive power of some of the main prediction tools available using well-defined pro-
moter data sets. Using Escherichia coli as a model organism, we demonstrated that
while some tools are biased toward AT-rich sequences, others are very efficient in
identifying real promoters with low false-negative rates. We hope the potentials and
limitations presented here will help the microbiology community to choose pro-
moter prediction tools among many available alternatives.

KEYWORDS promoter prediction, bacterial promoters, cis-regulatory elements,
bioinformatics, promoter prediction

Promoter regions are intrinsic DNA elements located upstream of genes and re-
quired for their transcription by the RNA polymerase (RNAP) (1). Thus, the correct

mapping of promoters is a critical step when studying gene expression dynamics in
bacteria. While the definition of promoters could vary widely, here we will consider
promoters as the core elements recognized by the sigma subunit of the RNAP. In
Escherichia coli, seven alternative sigma factors are responsible for gene expression,
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while sigma 70 is the most important one as it is required for the expression of
housekeeping genes (2, 3). Therefore, this sigma factor recognizes a consensus region
about 35 bp in length with two key elements, the �10 box (with consensus motif
TATAAT) and the �35 box (TTGACA) which are separated by 17 � 2 bp (1, 2). In
addition to the core promoter region, other cis-regulatory elements can play
relevant roles in the regulation of gene expression (4). In this sense, the production
of RNA at the transcription start site (TSS) is the result of the interplay between the
core promoter region and the cis-regulatory elements (5). Mapping of functional
promoter elements have been performed mostly using low-throughput techniques
(such as promoter probing, primer extension, DNA footprinting, etc.) or more
recently, by high-throughput experimental approaches (RNA-seq [high-throughput
RNA sequencing], SELEX [genomic systematic evolution of ligands by exponential
enrichment], Sort-seq [flow cytometry, sorting, and next-generation sequencing], etc.)
(6–11). However, the rapidly growing number of fully sequenced bacterial genomes
greatly exceeds our ability to map promoter elements experimentally. Therefore,
diverse computational tools have been created to predict promoters/TSSs at specific
genes or genomic levels.

Some of the first approaches to map promoters have been based on the use of
position weight matrices (PWMs) of �10 and �35 box motifs, taking into account the
distribution of the spacer length between the motifs and their distance from TSSs (12,
13). Yet, over the past years, a growing number of computational strategies have
evolved in complexity. Notable novel approaches raised, such as sequence alignment-
base kernel for support vector machine (14, 15), profiles of hidden Markov models
combined with artificial neural networks (16), or weighted rules extracted from neural
network models (17). Also, new ways to extract information from DNA sequences to
perform predictions have appeared. Thus, there are now several numerical represen-
tations of DNA sequences in which each one carries its properties (18–20), such as
methods that use k-mer frequencies or variations (21, 22) and other methods that
include physicochemical properties of DNA (23).

Recently, machine learning (ML) techniques have been used to obtain insight from
different sources from diverse biology fields (an extensive survey can be seen in
Libbrecht and Noble [24], Camacho et al. [25], and Zou et al.[26]), and in the past few
years, this has been applied to the recognition of promoters, TSSs, and regulatory
sequences. Among most of the ML algorithms used for this purpose, we can mention
support vector machine (27), neural networks (28), logistic regression (29), decision
trees (30), and hidden Markov models (31, 32). Despite the existence of all these
modern techniques, promoters cannot always be inferred based on their sequence
only, and currently, we have no clue on how efficient these tools are. This occurs since
each new tool is validated without the use of standardized data sets or methods,
making it difficult to compare novel emerging alternatives with the current state of the
art. In this work, we summarize general aspects of the available promoter prediction
tools, exposing comparatively their main strong and weak features. For this, we
compared the performance of these tools using experimentally validated promoters
from E. coli. Unexpectedly, we show that some very popular tools such as BPROM
performed very poorly compared to tools created over the last 2 years. We hope our
results can help both community users to choose a suitable tool for their specific
applications, as well as developers to construct novel tools overcoming key limitations
reported here.

RESULTS AND DISCUSSION
Describing the tools: methods, availability, and usability. In this section, we

present a succinct explanation of each methodology (see Table 1) as well as the
usability information about their use requirements, acceptable file types, etc. (see
Table 2). Below, we describe briefly for each tool how they have been built and some
of the main features.
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(i) BPROM. BPROM (33) was developed as a module of an annotation pipeline for
microbial sequences to find promoters in upstream regions of predicted open reading
frames (ORFs). To train the model, the authors used a data set of experimentally
validated promoters from elsewhere (14). They applied linear discriminant analysis to
discriminate between those promoters and inner regions of protein-coding sequences.
For attributes, they used five position weight matrices of promoter conserved motifs
and they also consider the distance between the –10 and –35 boxes and the ratio of
densities of octanucleotides overrepresented in known bacterial transcription factor
binding site (TFBS) relative to their occurrence in coding regions. This tool is available
as a web application, and users can submit a local file or paste the sequence in the web
form. It quickly returns the results in the screen with the possible –10 and –35 boxes
of predicted promoters and their positions in the submitted sequence.

(ii) bTSSfinder. bTSSfinder (23) is a tool that predicts putative promoters for
different sigma factors in E. coli and cyanobacteria. Its positive data set consists of
experimentally validated E. coli TSSs from Regulon DB and different experimentally
mapped cyanobacterial TSSs provided by several works. Its negative data set consists
of genomic regions where there is no experimental evidence for the presence of TSSs.
They started with 30 features distributed between these types: promoter element
motifs (PWMs), the distance between the elements, oligomer scores, TFBS density, and
physicochemical properties. The final set of features was selected by evaluating the
predictive power of these features by calculating Mahalanobis distance and used to
train a neural network. This tool is available as a web application or as a stand-alone
tool for Linux. On the website, an e-mail is needed to login and the results are saved
for a week.

(iii) BacPP. BacPP (17) is a prediction tool to find E. coli and other Enterobacteriaceae
promoters. For a positive data set, the authors used promoter sequences from Regulon
DB for six different sigma factors in E. coli and other Enterobacteriaceae promoter
sequences obtained from several works. For its negative data set, they used two
approaches: (i) random sequences generated with a probability of 28% for nucleotides
adenine and thymine and 22% for cytosine and guanine; (ii) random selected intergenic
regions. Each nucleotide of these sequences was transformed into binary digits and
used to train neural networks. To use this tool, the user must create a login in the
website, then paste the sequences or fasta file according to their model, and select the
sigma factors of interest.

(iv) CNNProm. CNNProm (34) is a web tool that can predict prokaryotic and
eukaryotic promoters from big genomic sequences or multifasta files. In the case of E.
coli promoters, the authors took the sequences from Regulon DB, and the negative
controls (nonpromoter sequences) were randomly selected from the opposite chain of
coding regions in genomes. Each of these sequences was transformed into a binary
four-dimensional vector and used directly as features to train a convolutional neural
network. To use this predictor, users must enter the sequences or the file on the
website and choose the organism model.

(v) IBBP. IBBP (35) is a stand-alone application that implements a new approach
called “image-based promoter prediction.” This approach consists of generating mul-
tiple “images”: template strings carrying possible features/elements presented in pro-
moters and their spatial relationships. The image generation and selection are con-
ducted by applying an evolutionary approach and calculating the similarity of these
images in a set of E. coli sigma 70 promoters. The authors measured the accuracy of the
tool by analyzing the set of promoters and protein-coding sequences. To use this
software, it is necessary to download the executable files, execute the evolutionary
algorithm with the promoters of interest, and then implement the classifier software,
which uses the resulting model generated in the previous step.

(vi) Virtual Footprint. Virtual Footprint (36) is a web framework for prokaryotic
regulon prediction. This framework makes use of several PWMs provided by PRODORIC
(37) and other PWMs from other sources. To make the prediction, it is necessary to
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upload a DNA sequence or a fasta file, select different PWMs for core promoter
elements or other transcription factor binding sites, and set some parameters.

(vii) iPro70-FMWin. iPro70-FMWin (38) is a web application for sigma 70 promoter
prediction. Its training data set consists of sigma 70 promoter sequences from data set
Regulon DB 9.0 and sequences randomly chosen from coding and intergenic regions of
E. coli as positive and negative data sets, respectively. For feature extraction, 22,595
sequence-based features were generated for “multiple windows,” i.e., different regions
of the promoter sequence. These features include, for example, different kinds of k-mer
and g-gapped k-mer compositions and statistical and nucleotide frequency measures.
Among the machine learning methods tested by the authors, logistic regression
achieved better results. They also applied the AdaBoost technique for feature selection
to improve prediction.

(viii) 70ProPred. 70ProPred (39) was built using sigma 70 promoter sequences from
Regulon DB 9.0 and randomly generated sequences from coding and noncoding
regions of the E. coli genome to train a support vector machine (SVM) model. The
attributes generated from the sequences were position-specific trinucleotide propen-
sity and electron-ion interaction pseudopotentials of nucleotides, considering single- or
double-stranded DNA, to reveal trinucleotide distribution differences between the
samples and represent the interaction of trinucleotides, respectively.

(ix) iPromoter-2L. iPromoter-2L (40) is an online tool that provides the prediction
for all E. coli sigma promoters. This method has two “layers” of classification applying
random forests; first, it resolves whether a given sequence is a promoter, and then it
selects the sigma factor class. For model training, the authors used experimentally
confirmed promoter sequences from Regulon DB 9.3 as the positive data set, and
randomly extracted sequences from the middle regions of long coding sequences and
convergent intergenic regions as the negative data set. It is important to emphasize
that sequences with more than 0.8 pairwise sequence identity for a given sigma factor
promoter data set were removed to reduce identity biases. Their feature extraction was
based on multiwindow-based pseudo K-tuple nucleotide composition, which consists
of a sliding window, extracting and encoding physicochemical attributes of different
regions of a given sequence.

(x) MULTiPly. The MULTiPly (41) web application provides promoter prediction for
all E. coli sigma factors. To train their model, the authors used experimentally validated
promoter sequences from Regulon DB for all type of sigma factors in E. coli. Their
feature extraction was divided into two types; the first one was used to represent global
features, applying biprofile Bayes and KNN (k-nearest neighbor) features, and the
second one was used to represent local features, applying k-tuple nucleotide compo-
sition (sequence-based feature) and dinucleotide-based auto-covariance (which con-
siders physicochemical properties). This method also performs two steps of classifica-
tion: first, it resolves whether a given sequence is a promoter or not, and then it decides
to which class of sigma promoter it belongs. The authors used the SVM method for
classification and the F-score method for feature selection.

These last four web tools (iPro70-FMWin, 70ProPred, iPromoter-2L, and MULTiPly)
are used in similar ways, accepting multifasta formatted sequences on a simple web
form and returning the results on the screen. Information and characteristics of the
tools and a summarization of the approaches discussed above are presented in Tables
1 and 2.

Analyzing the performance of promoter prediction tools. In order to compare
the performance of the promoter prediction tools presented above, we analyzed the
positive and negative data sets as described in Materials and Methods. From the 10
algorithms selected, BacPP could not be tested with our entire data set, because
multifasta files were not supported, and Virtual Footprint produces a large number of
predicted –10 boxes for sigma 70 in both positive and negative data sets, a number
that greatly exceeds the number of sequences analyzed. Thus, these two tools were not
considered in further analyses. Of the remaining eight algorithms, five achieved more
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than 50% of correct classification on the positive data set, while six correctly classified
50% of the negative data set (Fig. 1A). The best performance was observed for
CNNProm (94.8% true positive [TP]), followed by iPro70-FMWin (94.5% TP), 70ProPred
(89.7% TP), iPromoter-2L (83.8% TP), and MULTiPly (81.2% TP). When we compared the
performance parameters (accuracy, Matthews correlation coefficient [MCC], sensitivity,
and specificity), we observed that four of them (CNNProm, iPromoter-2L, 70ProPred,
and iPro70-FMWin) presented the best performance, while MULTiPly scores high only
for sensitivity (Fig. 1B). Therefore, we can observe MCC values close to zero for the
remaining four tools (MULTiPly, bTSSFinder, BPROM, and IBPP), indicating that these
tools performed close to random classifications. It is interesting to notice that BPROM,
a widely cited and used tool, presented the worst results together with bTSSFinder and
the IBBP, but also presented fewer false-positive (FP) results. We also found that IBBP’s
method based on the evolutionary approach classified random sequences as promoters
more often than in the real promoter data set (i.e., it displays a higher FP rate than TP
rate). From the analysis presented in Fig. 1, we can observe that iPro70-FMWin
performed best due to a small number of FP results and the overall best results of all
metrics used (Fig. 1B).

Next, we performed a hierarchical clustering analysis using the results from the five
tools that presented the best results. As can be seen in Fig. 2A for the positive data set,
results obtained with iPromoter-2L were more correlated with CNNProm outcomes,

FIG 1 Analysis of the performance of promoter prediction tools. (A) Percentage of sequences predicted as sigma
70-dependent promoters in both data sets. The percentage of correct classifications of experimental promoters
(blue) and the percentage of misclassified random sequences (gray) are presented. The vertical dashed line
separates the five best tools from the three worse tools analyzed. (B) Metrics used to evaluate the performance of
the tools. Note that MCC values range from �1 to 1. It is important to emphasize that two tools presented the
highest sensitivity associated with low specificity, i.e., tools usually perform good classifications for real promoters
and high misclassification of random sequences. The vertical dashed line divides the four best tools from the four
worse tools.
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since both produced the largest sets of TP predictions, while iPro70-FMWin was more
related to 70ProPred. In general, 573 sequences (62.2%) were correctly classified by all
five algorithms (Fig. 2B). When we analyzed the negative data set (constructed with
random sequences), we do not observe a clear clustering since each tool presented a
different level of FP results, with the lowest level observed for iPro70-FMWin (Fig. 3A).
In this case, only 102 sequences (10.2%) were incorrectly classified as a promoter by all
tools, indicating that each algorithm has specific features to equivocally classify the
random sequences. It is worth mentioning that the three best tools (CNNProm, iPro70-
FMWin, and 70ProPred) are from 2017 to 2019, indicating that, as expected, promoter
prediction algorithms are evolving through the years. Taken together, these results
indicate that four out of eight tools analyzed here display equivalent predicting power
to identify true promoter sequences, while the widely used tool BPROM exhibits a
reduced predictive capability.

Identification of promoter features identified during the analyses. As presented
above, we observed a high degree of similarity between the best tools for the
identification of true promoters, but a lower overlap on random sequences equivocally
classified as promoters. This could indicate that each algorithm might identify different
features to assign a sequence as a promoter. To further investigate this process, we
analyzed the information content from the sequences identified as promoters from
the positive and negative data sets for the top five tools analyzed here. The results of
these analyses are presented as sequence logos in Fig. 4 and 5 for the positive and
negative data sets, respectively. As can be seen in Fig. 4, TP sequences identified by all
five algorithms display the same consensus sequence that resembles a strong canonical
�10 box from sigma 70 promoters (2). It is worth noticing that the information content
was higher for iPro70-FMWin (up to 0.4 bits), which also displayed the best performance
according to the metrics used here. However, when we analyzed the data from
promoters identified in the random sequences, we could see a much fuzzier signal for

FIG 2 Analysis of tool performance in the positive data set (natural sequences). (A) Hierarchical
clustering of DNA sequences classified as promoters (blue) or nonpromoters (black). (B) Venn diagram
representing the number of sequences predicted as promoters from panel A.
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MULTiPly, iPromoter-2L, and CNNProm, which were the three tools with the highest FP
rate from the top five tools (Fig. 5), indicating that the rich A (adenine) and T (thymine)
frequencies play a role on false-positive classification. We also could observe that, in the
case of random sequences predicted as promoters for all algorithms, we obtained a
more evident �10 box motif and it still shows high A and T influences (see Fig. S1 in
the supplemental material). This implies that these tools are sensitive to AT content,
which makes sense since iPromoter-2L and CNNProm were trained on coding se-
quences as negative controls (34, 40). On the other hand, 70ProPred and iPro-70FMWin,
which presented the lower FP rate, presented clearer �10-like signals similar to those
identified on the positive sequences, although with lower information content. This
might be explained by these tools classifying sequences that resemble true promoters,
and we could not rule out the possibility that some of these random sequences could
in fact display promoter activity in E. coli if tested experimentally. Taken together, these
results indicate that high rates of FP results observed for some of these algorithms
could be due to the use of unrealistic control sequences (such as coding regions) that
could make the algorithms sensitive to AT-rich regions, highlighting the importance of
choosing appropriate nonpromoter sequences to train these tools.

Conclusions. In this work, we performed a benchmark analysis of the performance
of promoter prediction tools using a well-characterized promoter sequence and ran-
dom sequences. As can be seen from the results above, new tools have emerged with
enhanced performance compared to widely used ones. Although the best performing
tool uses just sequence-based features (a result that corroborates with Abbas et al.
[42]), in general, algorithms using feature extraction that combines attributes derived
from sequence together with physicochemical properties of DNA achieved better
results. It is also clear from our results that choosing the appropriate control (or
negative) data set to construct these algorithms is crucial to avoid false-positive results.
Therefore, coding sequences or sequences with different features render the tools AT

FIG 3 Analysis of tool performance on the negative data set (random sequences). Hierarchical clustering
of DNA sequences classified as promoters (blue) or nonpromoters (black). (B) Venn diagram representing
the number of sequences predicted as promoters from panel A.
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sensitive, increasing the false-positive rate. Furthermore, we still need an experimen-
tally well-validated nonpromoter data set to faithfully use as negative controls in these
predictions, but these sequences are not available yet. In this sense, we expect that the
growing number of high-throughput experiments could become a great source of data
to create novel data sets to train new tools for promoter prediction in the future.
Another complication to this subject comes from recent evidence showing that just one
mutation in random sequences could lead to constitutive transcription in vivo, indicat-
ing that transcription is indeed a robust process (43). Therefore, future attempts have

FIG 4 Analysis of the information content of DNA sequences identified as promoters on the positive data set (natural
sequences). The sequence logos are shown for sequences predicted as sigma 70-dependent promoters by MulTiPly (A),
iPromoter-2L, (B) iPro70-FMWin (C), 70ProPred (D), and CNNProm (E).

Cassiano and Silva-Rocha

July/August 2020 Volume 5 Issue 4 e00439-20 msystems.asm.org 10

https://msystems.asm.org


to be made to create complete data sets with very similar promoter/nonpromoter
sequences to train next-generation tools.

Additionally, several sources of prior information could be incorporated into pre-
diction methods to improve the final tools. For instance, the interrelation between the
UP (upstream promoter) element and a subunit of RNAP was found to play a role in
transcription initiation and promoter activity (44) and switch preference of sigma
factors in promoters (45). Besides, specific nucleotide composition and motifs between
�10 and �35 boxes leading to different DNA curvatures were found to influence
transcription initiation and promoter activity (46, 47). Additionally, more than 300
proteins in E. coli are predicted to bind DNA, and half of them have their function

FIG 5 Analysis of the information content of sequences identified as promoters on the negative data set (random
sequences). The sequence logos are shown for DNA sequences predicted as sigma 70-dependent promoters by MulTiPly
(A), iPromoter-2L (B), iPro70-FMWin (C), 70ProPred (D), and CNNProm (E).

Benchmarking Promoter Prediction Tools

July/August 2020 Volume 5 Issue 4 e00439-20 msystems.asm.org 11

https://msystems.asm.org


experimentally characterized (1). These proteins could thus impact promoter activity in
vivo, and their binding sequence preferences could influence promoter discovery.
Finally, recent studies with genomic SELEX show that the number of transcription factor
binding sites (TFBS) annotated in databases is underestimated (11). , it is worth noticing
that a promoter is a complex entity that requires a large number of elements, and
therefore, the transcription observed in vivo for a specific DNA element could be due
to several interacting factors which perhaps could not be predicted using a single tool
(Fig. 6).

A notable characteristic shared by the works mentioned here is that all the available
prediction tools perform only binary classifications, i.e., not considering whether a data
set of promoters contains constitutive or regulated promoters. Therefore, there is no
indication of an activity threshold to classify a given sequence as a promoter, and it is
known that expression levels of different bacterial transcripts vary on a wide range of
magnitude order (48). However, there have been some attempts in the literature to
perform some regression analysis instead of binary classification only. For instance, De
Mey and colleagues (49) synthesized a library of 57-bp-long sequences designed to
have conserved, semiconserved, and random nucleotides and the perfect consensus of
�35 and �10 boxes. They also added variance in sequences that surround the core
promoter and that may play a role in promoter activity. Performing a fluorescence assay
to measure promoter activity and applying a partial least squares regression model,
they attempt to predict promoter strength for sigma 70. Interestingly, their results
found no correlation between promoter strength and anomalies in the spacer se-
quence length or the �10/�35 boxes (49). Yet, only 78 variants were characterized in
this experimental design, and more variants are needed to train an accurate model.
Similarly, Rhodius et al. (50) used 60 promoters for the alternative sigma E, extracting
as attributes, PWMs for different motifs: �35, spacer, �10, discriminator, start, and
initial transcription region. For the far-distal, distal, and proximal motifs, which are
components of the UP element, they constructed a model to extract A/T content and
A- and T-tract length/frequency. Also, a spacer and discriminator length penalty score
was added. Notably, in vivo and in vitro expression was measured in their work, and
promoter activity was also tested by a function of sigma E concentration. Additionally,
partial least squares regression was used to predict promoter activity (50). This ap-
proach is useful to find the elements in a given promoter sequence, and by using

FIG 6 A putative model for a bacterial promoter region, including a range of experimental attributes. (i)
More than 300 proteins (transcription factors [TFs]) in E. coli are predicted to bind DNA, and there is a lack
of experimental characterization (1). (ii) Recently, high-throughput studies, such as genomic SELEX, are
showing a large number of possible TFBS on genomes (11), which may impact on the composition of
promoter sequences. These regions can have positive (blue regions) or negative (red regions) effect on
promoter activity. (iii) RNAP requires a sigma factor to be recruited to the promoter sequence, and each
sigma factor possesses a preference for a specific motif on DNA (1). (iv) Nucleotide composition and
motifs between �10 and �35 boxes influence transcription initiation and promoter activity (46, 47). (v)
The interrelation between the UP element and a subunit of RNAP were found to play a role in
transcription initiation and promoter activity (44), and the UP element can switch preference of sigma
factors in promoters (45). (vi) The same promoter sequence can respond to diverse sigma factors,
according to experimental characterizations and in silico approaches (36, 61, 62).
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cross-validation, the results appear to be promising, despite the small size of the data
set and the use of PWM (a model that showed poor predictive results on our work).
Moreover, instead of using position weight matrices, energy matrices are being suc-
cessfully built to represent the sequence-dependent binding energy using sequence
libraries with a large number of variants followed by Sort-seq experiments (flow
cytometry, sorting, and next-generation sequencing) (6), and therefore, these energy
matrices are being employed to model promoter activity (51). Urtecho et al. (52)
assembled a large library containing 12,288 variants of sigma 70 promoters, composed
of one of eight defined sequences of �35 boxes, �10 boxes, spacers, backgrounds, and
three defined UP elements to understand the contributions and relations of the cis
elements on promoter sequences. The authors have integrated their expression cas-
sette on different genomic locations and have investigated its effects, applying a
well-suited method for expression normalization. Therefore, their approach explained
most of the variance in promoter activity, as well as discovered nonlinear interactions
between promoter elements by employing neural networks (52). Despite the limitation
of a data set with discrete characteristics, this approach presents a reliable method to
predict promoter strength in a well-defined context, but application of these methods
to natural systems has still to be demonstrated. In the future, approaches to find a
promoter followed by regression models to predict its activity/strength need to be
publicly available to allow the community to reach a better framework for metabolic
engineering and other applications using synthetic biology (53).

One final remark is that the majority of algorithms have been created using data sets
of promoters from just one bacterium, E. coli. Consequently, since each organism has
its particularities in terms of DNA binding proteins and sigma factor elements, we are
still far away from having a prediction tool that can be used for several organisms. To
accomplish that, we would require extensive promoter data sets from several micro-
organisms to construct multipurpose prediction tools. Last, we hope the approach and
metrics used here can contribute to future studies aimed to construct improved
promoter prediction tools.

MATERIALS AND METHODS
Selecting promoter prediction tools. We started this work by searching in the literature for recent

and available prediction tools for E. coli promoters. For each case, when a tool was available online or by
software download, we selected it for posterior analysis. Table 1 shows the summarized information
about the tool methodology (i.e., implementation, the approach used, or process performed), the sigma
factors it can predict, the available format, and the access links. All these descriptions have been
extracted from the original papers describing the tools. Next, we analyzed some usability features of the
tools (such as the file format accepted as input, maximal allowed file size, the output format of results,
etc.) as summarized in Table 2. Then, we selected the ones that accepted our complete data set in
multifasta format as input to perform a comparative analysis.

Promoter data sets used for the analyses. To compare each selected tool, we used an experi-
mentally validated promoter data set for the well-studied E. coli K-12 which is dependent on sigma 70,
as available in the curated database Regulon DB 10.5 (54). We used only sigma 70-dependent promoters
since they are mostly well-characterized in bacteria, and consequently, most tools have been developed
to recognize this class of elements. Thus, our so-called positive data set was formed by 865 natural
sequences extracted from Regulon DB and classified as having a strong evidence/confidence level.
Additionally, we used a negative promoter set consisting of 1,000 randomly generated sequences with
a nucleotide distribution similar to that encountered in the 865 natural sequences, which was con-
structed with an ad hoc script written in Python. We chose this strategy for two reasons: (i) generating
a negative data set with this approach allows us to assess the tool’s capacity to distinguish real promoters
from random sequences, and (ii) to the best of our knowledge, there is no experimentally validated
negative promoter data set available. Also, it is important to stress that many tools, such as BPROM,
70ProPred, and iPro-70FMWin, used coding and intergenic regions as control (negative) sequences, but
this is not appropriate since coding and noncoding regions have different nucleotide compositions and
structural properties (55, 56). In our data sets, the sequences have 81 bp, since most tools consider and
require as input 60 bp upstream and 20 bases downstream of the putative TSS (the region interval [�60,
�20]). In the case where the tool required the entire genome, we used the E. coli K-12 MG1655 genome
(GenBank accession no. U00096.3) and when a tool required a bigger interval than [�60, �20] bp, we
extracted the additional sequence from this same genome. The two data sets (natural and random) used
here are available as Data Sets S1 and S2 in the supplemental material.

Building the negative data set. The strategy employed to generate random sequences was to
create four intervals between 0 and 1 with its divisions strategically delimited to create ranges propor-
tional to the probabilities/percentages of the four nucleotides obtained in the positive data set. Then, we
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obtain a random number between 0 and 1 and check the interval this value belongs to pick a given
random nucleotide. Our code (with a step-by-step guide to using) is available on GitHub: https://github
.com/MuriloACassiano/papers-methodology/blob/master/rand_create.ipynb.

Defining the metrics for promoter analysis. The true promoter (positive) and random (negative)
data sets were used to measure the current tools’ capacity to make the correct identification of promoter
sequences (it is important to emphasize that we are not using our data sets to retrain and test each
methodology). Thus, the results were evaluated comparing the accuracy and Matthews correlation
coefficient (MCC) (57), calculated as the following equations:

Accuracy �
(TP � TN)

(TP � TN � FP � FN)
(1)

MCC �
(TP � TN) � (FO � FN)

�(TP � FP)(TP � FN)(TN � FP)(TN � FN)
(2)

where TP (true positive) is the number of natural sequences classified as promoters, TN (true negative)
is the number of random sequences classified as nonpromoters, FP (false positive) is the number of
random sequences classified as promoters, and FN (false negative) is the number of natural sequences
classified as nonpromoters. We adopted MCC because it is a metric that deals with unbalanced data sets
(i.e., differences in the number of instances in negative and positive data sets), avoiding biases. It
achieves high scores only if TP and TN are high, considering both types of correct classification in a single
metric, and it has been shown that for this type of binary classification (e.g., promoter/nonpromoter), it
is more efficient and less overoptimistic (58).

Sensitivity and specificity scores were also used to give a sense of correct classification of promoters
and nonpromoters and are defined as follows:

Sensitivity �
TP

TP � FN
(3)

Specificity �
TN

TN � FP
(4)

Unlike accuracy, sensitivity, and specificity that range from 0 to 1, MCC ranges from –1 (the worst
predictor) to 1 (the best predictor) and 0 corresponds to a “random” predictor. By testing the tools with
our synthetic random data set, we can measure whether those tools are overfitting their test data sets,
and by testing our positive data set (with strong experimental evidence), we are measuring underfitting,
once some of our positive sequences probably have already been used to train the tool’s algorithms (24).
As some of the tools also predict promoters for other sigma factors, to be able to classify all predictions
as correct or wrong, we considered random sequences classified as any sigma class promoter as FP and
a sigma 70 sequence classified as any other class of sigma promoter as FN. This does not mean that a
sigma70 promoter classified as another sigma factor cannot respond to this sigma or even to sigma 70,
in vivo, as we discuss later.

Data representation. For data representation, heatmaps were created by using the R package
Heatmap.2 (59), with the default method and using the Jaccard distance method to deal with our binary
characteristic vector of 1 (correctly classified) and 0 (wrongly classified) obtained from the tools’ results.
The Venn diagrams were made by using the Python library matplotlib-venn (https://pypi.org/project/
matplotlib-venn/). The logos of count matrices, probability matrices, position weight matrices, and
information matrices were constructed by using Logomaker Python library (60). As every result gener-
ated by the tools has different formats, these were preprocessed using a text editor or ad hoc Python
scripts. The data sets used are available for download as files in the supplemental material.

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
FIG S1, TIF file, 1 MB.
DATA SET S1, TXT file, 0.1 MB.
DATA SET S2, TXT file, 0.1 MB.
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