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Abstract
Pseudomonas aeruginosa biofilms contribute heavily to chronic lung infection in cystic fibrosis patients, leading to morbidity
and mortality. Nitric oxide (NO) has been shown to disperse P. aeruginosa biofilms in vitro, ex vivo and in clinical trials as a
promising anti-biofilm agent. Traditional NO donors such as sodium nitroprusside (SNP) have been extensively employed in
different studies. However, the dosage of SNP in different studies was not consistent, ranging from 500 nM to 500 μM. SNP is
light sensitive and produces cyanide, which may lead to data misinterpretation and inaccurate predictions of dispersal responses
in clinical settings. New NO donors and NO delivery methods have therefore been explored. Here we assessed 7 NO donors
using P. aeruginosa PAO1 and determined that SNP and Spermine NONOate (S150) successfully reduced > 60% biomass
within 24 and 2 h, respectively. While neither dosage posed toxicity towards bacterial cells, chemiluminescence assays showed
that SNP only released NO upon light exposure inM9media and S150 delivered much higher performance spontaneously. S150
was then tested on 13 different cystic fibrosis P. aeruginosa (CF-PA) isolates; most CF-PA biofilms were significantly dispersed
by 250 μM S150. Our work therefore discovered a commercially available NO donor S150, which disperses CF-PA biofilms
efficiently within a short period of time and without releasing cyanide, as an alternative of SNP in clinical trials in the future.

Key points
• S150 performs the best in dispersing P. aeruginosa biofilms among 7 NO donors.
• SNP only releases NO in the presence of light, while S150 releases NO spontaneously.
• S150 successfully disperses biofilms formed by P. aeruginosa cystic fibrosis clinical isolates.
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Introduction

The major cause of morbidity and mortality in cystic fibrosis
(CF) patients is the chronic bacterial colonization of patients’
lungs and airways leading to pulmonary dysfunction and in-
fection (Gilligan 1991; Govan and Deretic 1996). When

bacteria invade healthy individuals, opportunistic pathogens
that overcome mucociliary clearance can be targeted by
phagocytic cells and specific opsonizing antibodies (Govan
and Deretic 1996). However, in CF patients, the dehydrated
surface liquid on respiratory epithelium results in defective
mucociliary clearance and frustrated phagocytosis due to the
impaired opsonisation process, hence contributing to the
chronic colonizat ion (Govan and Deret ic 1996) .
Pseudomonas aeruginosa has been well recognized as the
most commonly found and important pathogen in progressive
and severe CF lung disease. CF P. aeruginosa clinical isolates
frequently show higher levels of persister cells and antibiotic
resistance (Saiman et al. 1996; Mulcahy et al. 2010).
Furthermore, P. aeruginosa tend to form aggregates/biofilms
in vivo, leading to a much higher tolerance to treatments,
driven by both the protective extracellular polymeric
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substances (EPS) produced by bacteria and local host environ-
ment (Ciofu and Tolker-Nielsen 2019). Once biofilms
are established, they are almost impossible to eradicate
(Høiby et al. 2005).

One promising strategy is to combine biofilm dispersal
agents and conventional antibiotics, where bacterial cells be-
comemore susceptible once reversed back to planktonic form.
Nitric oxide (NO) was discovered to be an anti-biofilm signal-
ling molecule and the mechanisms are still under investigation
(Barraud et al. 2006). In P. aeruginosa, biofilm phenotypes
have been associated with an important secondary messenger,
cyclic-di-GMP (c-di-GMP), which contributes to a myriad of
physiological changes and the establishment of biofilms. A
decrease in intracellular c-di-GMP level promotes motile
mode of growth of bacteria and triggers biofilm dispersal
(Ute Römling et al. 2013). NO was demonstrated to reduce
c-di-GMP level by stimulating the activities of phosphodies-
terases responsible for the hydrolysis of c-di-GMP, upregulate
genes involved in motility and downregulate those related to
the expression of adhesins and virulence factors (Rinaldo et al.
2018; Barraud et al. 2009b). Although NO can be endoge-
nously generated by P. aeruginosa, which facilitates biofilm
dispersal at the late stage of biofilm life cycle, exogenously
added NO significantly accelerates the procedure and can also
prevent the early attachment. Previous studies reported that
the efficacies of conventional antibiotics towards established
biofilms were significantly enhancedwhenNOwas applied as
a dispersal agent (Barraud et al. 2006; Howlin et al. 2011;
Soren et al. 2019). NO gas has also been applied in clinical
trials, where it increased the efficacy of conventional antibi-
otics in CF lung infection treatment (Howlin et al. 2017;
Cathie et al. 2014). Therefore, NO has been regarded as a
putative anti-biofilm adjunctive therapy. Conventional NO
donors such as sodium nitroprusside (SNP), S-Nitrosothiols
(RSNOs) and Diazeniumdiolates (NONOates) have been ap-
plied as dispersal agents against biofilms formed by different
clinically relevant bacterial species such as P. aeruginosa,
Escherichia coli, Neisseria gonorrhoeae, Staphylococcus
aureus and Staphylococcus epidermidis (Barraud et al. 2006;
Barraud et al. 2009a; De La Fuente-Núñez et al. 2013; Barnes
et al. 2013; Sulemankhil et al. 2012; Falsetta et al. 2009;
Jardeleza et al. 2011). Along with these, many studies were
also carried out to explore novel methods for NO delivery,
such as incorporating NO donors into nanoparticles and poly-
mer coating (Sadrearhami et al. 2017; Duong et al. 2014a;
Nablo and Schoenfisch 2003; Nablo et al. 2005). However,
more often than not these studies tested different concentra-
tions of NO donors towards early stage biofilms formed by
type strains, or did not specify optimal treatment time which is
crucial for the interpretation of data from young biofilms to
distinguish between prevention and dispersal (Barraud et al.
2009a; Barnes et al. 2013; Sadrearhami et al. 2017; Duong
et al. 2014a; Shen et al. 2019; Duong et al. 2014b; Zhu et al.

2018; Marvasi et al. 2014). To this end, we systematically
compared the optimal concentrations and treatment time of 7
NO donors for triggering biofilm dispersal using
P. aeruginosa PAO1, including SNP, S-nitroso-glutathione
(GSNO), S-nitroso-N-acetyl-DL-penicillamine (SNAP),
1-(hydroxy-NNO-azoxy)-L-proline (PROLI NONOate),
6-(2-hydroxy-1-methyl-2-nitrosohydrazino)-N-methyl-1-
hexanamine (MAHMA NONOate) , (Z)-1- [N-[3-
aminopropyl]-N-[4-(3-aminopropylammonio)butyl]-
amino]diazen-1-ium-1,2-diolate (Spermine NONOate) and
diethylammonium (Z)-1-(N,N-diethylamino)diazen-1-ium-
1,2-diolate (DEA-NONOate). The selection was based on dif-
ferent categories of NO donors previously reported to be used
in laboratories, animal experiments or clinical settings with
different NO release mechanisms. While SNP has been tradi-
tionally and widely applied, the mechanism for NO release is
very complicated depending on conditions and involves three
stages (Smith and Dasgupta 2002). GSNO and SNAP belong
to S-nitrosothiols, a class of NO donor releasing NO and
nitrosonium (NO+) spontaneously from the moiety (-SNO)
(Napoli and Ignarro 2003). Both GSNO and SNAP were ini-
tially investigated for their role as antiplatelet agents in car-
diovascular system, as S-nitrosothiols do not appear to engen-
der vascular tolerance (Belcastro et al. 2017; Brisbois et al.
2013). In contrast, NONOates, i.e. diazeniumdiolates, consist
of a diolate group [N(O-)N=O] bound to a nucleophile adduct
via a nitrogen atom (Maragos et al. 1991). Although not yet
approved for clinical use so far, NONOate is one of the most
investigated NO donors due to its capability to release two
moles of NO per mole of donor at physiological conditions,
showing outstanding clinical application prospects (Yang
et al. 2018; Li et al. 2020). As such, four different
NONOates previously investigated in other biofilm studies
(Barnes et al. 2013; Barnes et al. 2015; Zhu et al. 2018;
Marvasi et al. 2014) were chosen in this study. After a high-
throughput screening, both 250 μM SNP and Spermine
NONOate (S150) showed great dispersal efficacies after
24 h and 2 h, respectively. However, by employing a highly
sensitive chemiluminescence detection method, we confirmed
that S150 exhibited better performance in releasing NO and is
more suitable for testing biofilm dispersal response to NO.

As CF-PAs can undergo genetic adaption catalysed by
hypermutation in chronic infection lungs (Mena et al. 2008;
Bianconi et al. 2019; Caçador et al. 2018; Winstanley et al.
2016), it is suspected that some CF-PA isolates may contain
mutations that lead to higher tolerance to NO. Using 250 μM
S150, we tested the NO response of 72-h biofilms inmicrotiter
plates formed by 13 different CF-PA isolates and most strains
were successfully dispersed. In summary, our study showed
that (1) S150 is superior to SNP, which can be applied in
wider settings as it does not require light to release NO; (2)
S150 can disperse biofilms formed by genetically different
CF-PA strains, indicating its potential clinical applications.
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Materials and methods

Ethics for cystic fibrosis patient sputum collection

Sputum samples from 72 patients with CF were obtained by
CF physiotherapist-assisted sample expectoration following
Good Clinical Practice guidelines (ICH) (Blau et al. 2014;
Aaron et al. 2004). All sampling protocols and procedures
were approved by UK NHS Research Ethics Committee
(South Central – Hampshire A Research Ethics Committee,
Reference 08/H0502/126, Mechanisms of lung infection and
inflammation in respiratory disease). Informed consent was
obtained from all subjects or, if subjects were under 18, from
a parent and/or legal guardian.

Bacterial strains and culture conditions

Bacterial strains used in this study are listed in Supplementary
Table S1. All bacterial overnight cultures were grown in lysog-
eny broth (LB) medium for 15 h at 37 °C. For CF-PA isolation,
sputa samples were digested using Mucolyse™ Sputum
Digestant (Pro-Lab Diagnostics, UK) for 15 mins at 37 °C,
followed by culture on P. aeruginosa-specific cetrimide agar
(Sigma-Aldrich, UK). Multiplex PCR was used to confirm
P. aeruginosa as previously described by De Vos et al. (1997).

Preparation of NO donor/NO scavenger solution

NO donors with different half-lives in pH 7.4 buffer tested in
this study are listed in Table 1. Sodium nitroprusside (SNP),
S-nitroso-N-acetyl-DL-penici l lamine (SNAP), S-
nitrosoglutathione (GSNO), MAHMA NONOate (NOC-9),
PROLI NONOate and Spermine NONOate (S150),
diethylamine NONOate sodium salt hydrate (DEA
NONOate) and carboxy-PTIO potassium salt (PTIO) were
purchased from Sigma Aldrich, UK. SNP and RSNOs stock
solutions were prepared in phosphate saline buffer (pH 7.4),
with SNP prepared and kept in dark. NONOates stock solu-
tions were prepared in 0.01MNaOH. All stock solutions were
filter sterilized and diluted into fresh M9media on ice. During
preparation procedures, all solutions were kept on ice before

use and SNP was kept in the dark. All treatments were con-
ducted at 37°C, with SNP exposed to light.

Batch cultured biofilms

For microtiter plate–based biofilm assays, 100 μl of each cul-
ture inM9medium (OD600nm ~ 0.01) was inoculated into each
well. Microtiter plates were incubated statically for 24 h, and
biofilms stained with 0.1% (w/v) crystal violet after two
washes, dissolved in 30% (v/v) acetic acid. Crystal violet
staining was quantified at a wavelength of 584 nm.

For microscopic biofim examination, 3 ml of culture in M9
medium (OD600nm ~ 0.01) was inoculated into a MatTek
plates (P35G-1.5-14-C). Plates were shaken at 50 rpm and
biofilms stained with LIVE/DEAD® BacLight (Invitrogen,
UK) and examined by confocal laser scanning microscopy
(CLSM). A wavelength of 488 nm was used for SYTO-9
and 561 nmwas used for propidium iodide excitation. At least
3 image stacks were taken from random locations in each
MatTek plate. Total biomass for biofilms in each micrograph
was calculated by software COMSTAT (Heydorn et al. 2000).

For NO donor screening assay using PAO1 biofilms, NO
donors were added to the 24-h pre-established biofilms in
microtiter plates and then incubated for a further 1, 2, 4, 6,
8, 12 or 24 h as treatment. For NO-induced dispersal in PAO1
and CF-PA biofilms, S150 was added to 72-h pre-established
biofilms in both microtiter plates and MatTek plates and then
incubated at 37 °C for 2 h to trigger dispersal.

Bactericidal test

Bactericidal test method was modified from Barnes et al. (2013).
Briefly, 1 ml overnight cultures were centrifuged at 4000 × g for
10 mins to harvest the cells in Eppendorf tubes, washed twice in
sterile PBS and re-suspended in 1 ml M9. Serial dilutions of the
cells were made to approximately 104 CFU/ml in M9. SNP and
S150 donor stock solutions were added into the culture making a
desired final concentration. Cells were then incubated at 37 °C
for 2 h or 24 h inM9 before determining the final CFU following
a modified Miles et al. (1938).

NO release quantification using chemiluminescence

NO gas released by SNP and S150 inM9mediumwas detect-
ed in a chemiluminescence CLD 88Y NO analyser
(EcoPhysics, Durnten, Switzerland) with synthetic air
(99.99999% BOC) as an inert carrier. The photomultiplier
detects emissions above 600 nm, and the NO concentration
was calculated from the emitted intensity against a calibration
standard using NaNO2 as previously reported (standard curve
at 250, 375, 500, 750 and 1000 pmol NO, Supplementary Fig.
S1) (Piknova and Schechter 2011). Tracings were recorded at
4-Hz frequency using PowerChrom® (eDAQ Pty LtD,

Table 1 NO donors tested in this study and their half-lives at 37°C, pH
~ 7.4

SNP < 2 mins

SNAP 6 h

GSNO 1–3 h

PROLI NONOate 1.8 s

MAHMA NONOate 1 min

Spermine NONOate (S150) 39 min

DEA-NONOate 2 min
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Australia). Data were plotted using Origin 9, calculating areas
to quantify total NO release within 2 h, comparing NO donor
samples against standards.

Statistical analyses

All assays were assessed using the two-tailed Student’s T test.
Statistical significances were P < 0.05 for all measurements
reported unless otherwise stated. Statistics and graphs were
produced using GraphPad Prism.

Results

SNP and S150 successfully remove PAO1 biofilms

The efficacies of 7 donors in M9 medium at 9 concentrations
(1 μM, 2.5 μM, 5 μM, 10 μM, 25 μM, 50 μM, 100 μM,
250 μM and 500 μM) and 7 treatment time periods (1 h, 2 h,
4 h, 6 h, 8 h, 12 h, 24 h) were systematically tested at 37°C in
microtiter plates. All data were shown in Supplementary Fig.
S2–8. Among all conditions, 24-h 250 μM SNP treatment and
2-h 250 μM S150 treatment were determined as optimal (>
60%) for triggering P. aeruginosa dispersal (Fig. 1).
500μM dosage for both compounds performed compa-
rably with 250 μM. To avoid overexposure of NO,
250 μM was selected for further tests.

S150 exhibits higher NO release efficiency than SNP

Gas phase chemiluminescence is a sensitive method to record
and quantify the precise NO release, which was therefore
employed in this study to compare the difference between
SNP and S150. Due to the 1 ppm maximum detection limit
of CLD 88Y, NO released from 5 μM S150 and SNP was
quantified in M9 media at 37°C across ~ 1.5 h timeframe as
shown in Fig. 2a and b. Results showed that at 37°C, S150
spontaneously released NO upon contact with the medium,
while SNP steadily released low amount of NO. As 1 mole-
cule of S150 releases 2 molecules of NO and SNP only re-
leases 1, the predicted NO release from S150 is twice more
than the same amount of SNP. However, the efficiency of
S150 within 1.5 h was 68.4 ± 8.1%, while SNP was only
29.2 ± 2.2% (Fig. 2b). Therefore, it can be concluded that at
the same concentration, S150 is more effective in releasing
NO within a relatively short time frame. As SNP degradation
is associated with light exposure, a PHOTONIC PL3000 de-
vice (maximum light intensity 26 Mlx, colour temperature
3250 K) was applied for a constant cold light source without
disturbing the incubation temperature. 500μM SNP was cho-
sen for more obvious releasing curves, and foil paper was used
to wrap the whole system when light was forbidden in the
tests. From Fig. 2c, it can be concluded that SNP effectively
released NO when light was present. However, SNP stopped
releasing NO immediately after the light exposure was with-
drawn, confirming the necessity of light for SNP as a NO
donor. Even at a concentration of 500 μM, the peak NO con-
centration released from NO only reached 0.8 ppm, while
S150 immediately released 0.35 ppm at 5 μM. Therefore,
S150 was chosen for its spontaneous, more consistent and
efficient performance without the production of cyanide in
further assays.

S150 triggers biofilm dispersal through NO, not
cytotoxicity

Previous studies have shown that NO scavenger (PTIO) can
abolish the dispersal effect from SNP (Barraud et al. 2006;
Howlin et al. 2017). Here, we also tested whether biofilm
dispersal triggered by S150 was due to side effects or NO
released from the donor using NO scavenger PTIO. Usually
a higher concentration of PTIO than that of NO donor was
added to ensure all NO could be scavenged (Barraud et al.
2006). As shown in Fig. 3a, 250 μM S150 triggered dispersal
in 2 h, while PTIO abolished biofilm dispersal totally (bio-
mass increased by 33.4 ± 9.7%, P < 0.001). For control +
PTIO, a higher increase occurred (47.2 ± 11.3%). The colour
of combination of S150 and PTIO turned yellowwhile control
added in PTIO remained purple in Fig. 3b, indicating S150
was reacting with PTIO. Thus, PTIO prevented NO release
from S150, and the increase of biofilm might be due to

Fig. 1 Biomass reduction of pre-established 24-h biofilms after SNP or
S150 treatment (SNP treatment for 24 h, S150 for 2 h), shown by CV
staining in microtiter plates. Reduction percentages were labelled above
each treatment group. ** denotes 0.01 < P < 0.05, *** denotes P < 0.01.
n = 3 independent experiments × 6 technical replicates
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excessive PTIO inhibited NO release from nitrite reductase
(Barraud et al. 2006).

After confirming it was NO triggering biofilm dispersal,
we next determined if the removal of biofilms was due to

the bactericidal effect. The toxicity of NO was tested for
planktonic PAO1 cells in M9 media at 37°C using an initial
inoculum of CFU ~ 1 × 104/ml. Planktonic cultures were treat-
ed for 2 h using S150, and 24 h using SNP according to their
optimal dispersal time. Figure 4 showed that both SNP and
S150 surprisingly enhanced planktonic cells’ number at
higher concentrations. Theoretically 250 μM S150 and
500 μMSNP should release the same amount of NO, and they
increased CFU by 2.4 ± 0.6-fold (P < 0.001) and 46 ± 8-fold
(P < 0.001), respectively. Whether it was NO per se or the
breakdown products from donors that enhanced the growth
remains unknown. Nevertheless, the long treatment time
(24 h) needed for SNP contributed to much larger errors in

a

b

Fig. 3 aBiofilm removal test of S150 with NO scavenger PTIO. b PAO1
biofilms in microtiter plates treated by S150 and PTIO. ** denotes 0.01 <
P < 0.05, *** denotes P < 0.01. n = 3 independent experiments × 6
technical replicates
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Fig. 2 aNO release curves fromCLD tests of 5μMS150, 5μMSNP and
M9 media. b Total NO amount (nmol) released from 10 ml 5 μM S150/
SNPwithin 1.5 h. ** denotes 0.01 < P < 0.05, *** denotes P < 0.01. cNO
release curve from 500 μM SNP with/without cold light source at 37 °C
in M9 media. n = 3 independent experiments
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data interpretation due to much higher increase in CFU, and
S150 was therefore again proven to be superior.

S150 successfully disperses biofilms formed by CF-PAs

As CF-PA strains often go through genetic adaptation in
chronically infected lungs, we tested whether the biofilms
formed by different clinical isolates can also be dispersed by
optimized NO donor. However, most clinical isolates exhibit
much slower growth rates and biofilm establishment com-
pared with type strain PAO1. Previous microtiter plate screen-
ing in the lab showed that most CF-PA isolates formed the
thickest biofilms at 72 h, after which the automatic dispersal
stage began (data not shown). S150 treatment was also carried
out on 24-h, 48-h, 72-h, 96-h, and 120-h PAO1 biofilms, and
the results showed that the biomass reduction of 72-h PAO1
biofilms after S150 treatment was around 40–45%. As such,

to test S150 on the most robust CF-PA biofilms, a 72-h incu-
bation time was chosen. As shown in Fig. 5, 72-h biofilms
formed by 12 out of 13 CF-PA strains can be successfully
dispersed by S150 within 2 h despite the different response
compared with PAO1, with only PA58 being an exception
showing tolerance to NO. Microtiter plate results were re-
enforced by selected CLSM micrographs in Fig. 6. PAO1
WT, PA10, PA21, PA26, PA30, PA58, and PA68 were se-
lected due to their substantial multilayer biofilm formation in
MatTek plates. However, PA58 biofilms formed in MatTek
plate also showed significant dispersal (67.5 ± 21% biomass
reduction) here. We speculate that the discrepancy was due to
the fact that CV staining is a relatively rough method, staining
biofilm rings formed at both air-liquid surface and the bottom
of each well containing cells and EPS. In contrast, confocal
microscopic method measured just total cell mass attached to
the bottom of each well. Nevertheless, S150 successfully dis-
persed biofilms formed by most CF-PA strains tested in
this study and thus may also be efficient towards a
variety of P. aeruginosa strains with different sources
and genetic backgrounds.

Discussion

Low-dose nitric oxide has been repeatedly reported to disperse
biofilms formed by different species. Traditionally used SNP
was reported to reduce biofilms formed by P. aeruginosa,
Vibrio cholerae, Serratia marcescens, Escherichia coli,
Bacillus licheniformis and Neisseria gonorrhoeae, with a
working concentration ranging from 25 to above 500 nM.
(Barraud et al. 2009a; De La Fuente-Núñez et al. 2013;
Barnes et al. 2013; Sulemankhil et al. 2012; Falsetta et al.

Fig. 4 Bactericidal test for a different concentrations of S150 (2 h) and b
different concentrations of SNP (24 h) on PAO1 WT planktonic cells
grown in M9. ** denotes 0.01 < P < 0.05, *** denotes P < 0.01. n = 3
independent experiments × 4 technical replicates

Fig. 5 Pre-established, 72-h CF-PA biofilms treated with 250 μM S150.
Biomass reduction percentage of each CF-PAwas compared with PAO1.
PA58 was shown as red due to the fact that the biomass difference be-
tween control and treated groups were not significant. *** denotes
P < 0.01, ** denotes 0.01 < P < 0.05. n = 3 independent experiments × 6
technical replicates
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PAO1 Ctrl

PAO1 S150

PA10 Ctrl

PA10 S150

PA21 Ctrl

PA21 S150

PA26 Ctrl

PA26 S150

PA30 Ctrl

PA30 S150

PA58 Ctrl

PA58 S150 PA68 S150

PA68 Ctrl

a

b

Fig. 6 a Selective confocal laser scanningmicroscopic micrographs of 72-h PAO1, PA10, PA21, PA26, PA30, PA58 and PA68 biofilms grown at 37 °C
with/without S150 treatment. Scale bar = 50 μm. b 72-h CF-PA biofilms with 250 μMS150 treatment. Biomass reduction was analysed by COMSTAT
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2009; Jardeleza et al. 2011). A higher concentration of SNP
(1–10 μM) was required to disperse biofilms formed by
Fusobacterium nucleatum and Staphylococcus epidermidis
(Barraud et al. 2009a). The maximum removal percentage
within 24 h ranged from 38.1% in E. coli to 92.8% in
B. licheniformis, and the average removal rate for different
species was 63%. Therefore, SNP is effective in dispersing
biofilms formed by different bacteria, although each species
shows distinct responses. However, when comparing data on
SNP-induced P. aeruginosa biofilms from various studies,
different groups reported using different concentrations of
SNP ranging from 500nM to 500 μM (Barraud et al. 2006;
Howlin et al. 2011; Barraud et al. 2009a; Chua et al. 2014;
Barraud et al. 2009b; Roy et al. 2012). The discrepancy might
be due to the fact that SNP does not release NO unless after
photolysis or the addition of reducing agents (Kowaluk et al.
1992), resulting in the differences of its efficacy under differ-
ent laboratory light sources. Furthermore, by-products such as
cyanide released from SNPmay cause side effects to cells and
misinterpretation of experimental results, especially when
P. aeruginosa is a cyanogenic bacterium (Arnold et al.
1984; Cipollone et al. 2007).

Alternative NO donors with more consistent performances
have also been explored. For instance, 200 μM and 1000 μM
DETA-NONOate induced the biofilm dispersal of Shewanella
woodyi and Staphylococcus aureus, respectively (Liu et al.
2012; Jardeleza et al. 2011). 50µM and 100μM DPTA
NONOate reduced Shewanella oneidensis and Vibrio harveyi
biofilms (Arora et al. 2015; Henares et al. 2013). Direct usage
of gaseous NO also led to the dispersal of Staphylococcus
aureus, Acinetobacter baumannii and Nitrosomonas
europaea (Sulemankhil et al. 2012; Schmidt et al. 2004).
SNAP and GSNO were reported to decrease P. aeruginosa
biofilms although less effectively than SNP (Barraud et al.
2006), while MAHMA NONOate, PROLI NONOate and
Spermine NONOate exhibited higher performance against
P. aeruginosa biofilms at 20 μM, 40 μM, and 100 μM re-
spectively (Barnes et al. 2013; Barnes et al. 2015; Zhu et al.
2018). However, the half-lives of MAHMA NONOate and
PROLI NONOate are 1 min and 1.8 s at 37°C, respectively,
limiting their applications under many circumstances. In ad-
dition to the influences from species and chemical structure of
the donors that contribute substantially to the releasing effi-
ciency, other environmental conditions such as temperature,
pH and metal ion also play a role in the efficiency of NO
donors with different releasing mechanisms. For instance,
the addition of Cu2+ to reaction solutions can accelerate the
NO release of SNP, GSNO and SNAP (Smith and Dasgupta
2002; Megson et al. 1999). Basic environment (pH above 8)
can decrease the release rates of S-nitrosothiols and
NONOates (Hornyák et al. 2012; Li et al. 2020). Taken all
these factors into consideration, in this study, we tested 7 NO
donors from different categories, including SNP, SNAP,

GSNO, PROLI NONOate, MAHMA NONOate (NOC-9),
DEA-NONOate and Spermine NONOate (S150), with differ-
ent concentrations and exposure times under the same condi-
tion. Figure 1 showed that 24-h 250 μMSNP treatment and 2-
h 250 μM S150 treatment can effectively disperse
P. aeruginosa PAO1 WT biofilms in microtiter plates to ~
60%. The optimal concentration of SNP (250 μM–500 μM)
from this study is not consistent with the nanomolar range
(Barraud et al. 2006 and 2009a) but agreed with Roy et al.
2012 and Howlin et al. 2017. The required time for SNP
treatment for at least 30% biomass reduction, i.e. at least
12 h, is consistent with Barnes et al. 2013. As such, our study
further demonstrated that SNP can efficiently disperse
biofilms, but the optimal concentration varies greatly under
different settings. Interestingly, while our data did not show
a significant role of MAHMA NONOate and PROLI
NONOate (Supplementary S3 and S4) as reported in some
earlier studies from Barnes et al. in 2013 and 2015 comparing
different NO donors, our selection of Spermine NONOate is
in accordance with the latest NO donor used by the same
group (Zhu et al. 2018). Although the reported concentration
and treatment time for Spermine NONOate was 100 μM and
15 mins, leading to 88% biofilm reduction, the assay was
conducted on very early stage PAO1 biofilms (~ 6 h).
Hence, the optimal dosage of Spermine NONOate determined
on 24-h PAO1 biofilms in this study, i.e. a higher concentra-
tion (250 μM), longer treatment time (2 h) and slightly lower
biofilm removal rate (~ 60%), is reasonable and can be
regarded as in accordance with the previous study.

Gas phase chemiluminescence (CLD) results have shown
that while the same molarity of SNP is expected to release
50% of NO less than S150, it actually released 78.7% less
NO within 1.5 h (Fig. 2a and b). Furthermore, the decompo-
sition of S150 started as soon as the compound was in contact
with the solution, corresponding to its spontaneous NO release
following the first-order kinetics (Ramamurthi and Lewis
1997). In contrast, SNP remained a constant but slow release
state under normal room lighting. The lower efficacy of SNP
was further confirmed by results in Fig. 2c, where SNP can
only generate NO in the presence of intense light. Even so,
500 μMSNP only reached the maximum 0.8 ppm NO release
peak compared with 0.35 ppm peak from 5 μM S150. As
S150 can efficiently release NO with or without light, it is
more suitable for different applications such as in patients.

While it was shown that S150 efficiently releases NO,
Figs. 3 and 4 confirmed that the biofilm dispersal effect came
from NO rather than any by-product or side effect. When NO
scavenger was added, biofilm dispersal was abolished.
Neither SNP nor S150 posed toxic effects towards planktonic
cells, indicating the biofilm removal was not due to cytotox-
icity. Interestingly, both NO donors significantly enhanced
bacteria numbers without additional nutrients added into M9
media. As NO radical can be readily converted to nitrite and
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nitrate, and previous studies have shown that nitrate can sup-
port the growth of P. aeruginosa in anaerobic/anoxic environ-
ment (Fang et al. 2013; Yoon et al. 2011; Line et al. 2014), the
additional nitrite or nitrate might have contributed to the in-
creased growth of planktonic P. aeruginosa cells.
Alternatively, as the backbone of S150 is rich in carbon and
nitrogen, while cyanide can be degraded and utilized as nutri-
ents (Cipollone et al. 2007; Knowles 1988), the chemical
breakdown products from SNP and S150 may have acted as
additional nutrients for cell growth during the treatment.
However, the precise mechanism of S150/SNP-induced
growth increase is yet to be elucidated. Some previous studies
used ‘increased CFU/OD/turbidity in the effluents’ after SNP
treatment as the indicator of biofilm dispersal into planktonic
forms (Barraud et al. 2006; Howlin et al. 2017; Chua et al.
2014). Depending on the treatment period, this measurement
may not be accurate enough to reflect the dispersal rate, as the
donors may have enhanced the planktonic growth at the same
time. In summary, 250 μM S150 is the optimal NO donor
dosage among all compounds tested here for triggering
P. aeruginosa biofilms. Additionally, due to its desirable de-
composition half-life (39 mins at pH 7.4, 37°C) compared
with other short half-life NONOates such as MAHMA
NONOates and PROLI NONOates, it is easier to prepare
and control under different conditions.

Darling and Evans (2003) reported that NO production
in vivo reduced P. aeruginosa adherence to human bronchial
epithelial cells and enhanced the killing of internalized bacte-
ria. However, various publications indicated that exhaled NO
from CF patients is reduced compared with that produced by
normal patients (Elphick et al. 1999; Jöbsis et al. 2000;
Mhanna et al. 2001). In healthy individuals, inducible NOS
(iNOS) is expressed maximally following an inflammatory
stimulus and produces large, micromolar scale of NO
(Darling and Evans 2003). However, in CF patients’ airways
with chronic severe inflammation, the amount of exhaled NO
is not increased and the expression of epithelial iNOS is re-
duced (Darling and Evans 2003). Therefore, CF-PA biofilms
developed in chronic lung infection may be constantly ex-
posed to sublethal dosage of NO. A recent study stated that
pre-treated biofilms with non-dispersing concentrations of NO
showed much increased tolerance to NO (Zhu et al. 2018). As
CF-PAs usually exhibit much genetic variation compared
with type strains due to in vivo adaption, the repeated NO
exposure may lead to mutations resulting in higher tolerance
to NO. Therefore, we suspected that the biofilms formed by
CF-PAs isolated from sputum samples could develop tolerant
to NO. From Figs. 5 and 6, it can be concluded that biofilms
formed by different CF-PAs sampled from non-familiar pa-
tients were successfully dispersed by S150, regardless of their
total biomass. Our data suggested that S150 can potentially
prevent biofilm formation or disperse pre-established biofilms
in clinical settings by direct application or incorporation into

medical devices such as bone cement, dermal fillers and
wound dressing. It may also be applied in combination with
antibiotics to increase the susceptibility of cells encased in
biofilms.
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