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A growing number of studies use the combination of eye-tracking and

electroencephalographic (EEG) measures to explore the neural processes that underlie

visual perception. In these studies, fixation-related potentials (FRPs) are commonly

used to quantify early and late stages of visual processing that follow the onset of each

fixation. However, FRPs reflect a mixture of bottom-up (sensory-driven) and top-down

(goal-directed) processes, in addition to eye movement artifacts and unrelated neural

activity. At present there is little consensus on how to separate this evoked response

into its constituent elements. In this study we sought to isolate the neural sources of

target detection in the presence of eye movements and over a range of concurrent

task demands. Here, participants were asked to identify visual targets (Ts) amongst

a grid of distractor stimuli (Ls), while simultaneously performing an auditory N-back

task. To identify the discriminant activity, we used independent components analysis

(ICA) for the separation of EEG into neural and non-neural sources. We then further

separated the neural sources, using a modified measure-projection approach, into six

regions of interest (ROIs): occipital, fusiform, temporal, parietal, cingulate, and frontal

cortices. Using activity from these ROIs, we identified target from non-target fixations

in all participants at a level similar to other state-of-the-art classification techniques.

Importantly, we isolated the time course and spectral features of this discriminant activity

in each ROI. In addition, we were able to quantify the effect of cognitive load on both

fixation-locked potential and classification performance across regions. Together, our

results show the utility of a measure-projection approach for separating task-relevant

neural activity into meaningful ROIs within more complex contexts that include eye

movements.
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INTRODUCTION

Goal-directed eye movements are a ubiquitous component of everyday life and integral to our
perception of the world. Over recent decades, numerous visual search studies have used eye
movement patterns to better understand perceptual and attentional processes that underlie human
vision (Kowler, 2011). In contrast, the majority of human electrophysiological studies of visual
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search continue to use fixation constrained paradigms, artificially
limiting the natural linkage between attentional shifts and
subsequent eye movements. Thus, extending these paradigms
into a framework of overt visual search would enable the
validation of attentional models in a more natural context.
However, a number of potential confounds and analytical
challenges emerge when interpreting electroencephalography
(EEG) in the presences of eye movements (Nikolaev et al.,
2016). One of the primary confounds is the large eye movement
related signals around the events of interest, namely saccades
and fixations. These include the corneo-retinal and saccadic
spike potentials along with eyelid artifacts. Importantly, the
magnitude of these signals systematically scale with the direction,
amplitude, and velocity of the saccade. Furthermore, saccade
features themselves can systematically vary with task design or
conditions. To address this concern, a number of methods have
been developed to account for the effects of saccade sequence
(Dandekar et al., 2012b) or isolate eye movement related signals
within the EEG record (Plöchl et al., 2012). These approaches
have been successful to the degree that they were able to
reveal task-relevant activity, such as the P3 component, that
may otherwise have been conflated with eye movement related
artifacts (Dandekar et al., 2012a; Devillez et al., 2015).

Robust saccade detection and quantification presents another
methodological challenge. Previously, EEG studies often
relied on an explicit electrooculography (EOG) measurement,
horizontal or vertical, for detecting the onset of a saccade
(Gaarder et al., 1964; Thickbroom et al., 1991; Kazai and Yagi,
1999). The benefit of using this signal is both the high temporal
resolution and the de facto alignment with the EEG record.
Unfortunately, the lack of precision in determining the direction
and distance of saccades limits these studies to paradigms with
a small number of predetermined fixation locations. However,
recent advances in the speed and accuracy of infrared eye-
tracking technology has made it possible to link gaze position
with neural activity at both high spatial and temporal resolution.
This has led to a growing number of studies that explore the
neural correlates of target detection during visual search, in both
controlled (Brouwer et al., 2013) and free-viewing paradigms
(Kamienkowski et al., 2012; Dias et al., 2013; Jangraw et al., 2014;
Kaunitz et al., 2014; Ušćumlić and Blankertz, 2016; Wenzel et al.,
2016).

In addition to the above measurement and signal processing
challenges, there is the more nuanced task of interpreting brain
activity in the context of planned and executed eye movements
(Nikolaev et al., 2016). This remains a significant obstacle for
studies focusing on both perceptual and cognitive phenomena.
First, there is the task of quantifying or controlling for stimulus
properties. When the eyes are free to move, stimuli impinging on
the retina will necessarily vary across conditions and participants,
even when gaze position is guided by the task sequence. In
more controlled settings, experimental design can ensure that
small differences in eye position do not significantly bias the
statistics of the stimuli. However, this becomes more challenging
for the ultimate goal of free-viewing in natural scenes where
spatial frequency, orientation, and chromatic distributions can
vary widely within a single image. Likewise, there is the challenge

of separating saccade planning and execution from the perceptual
or cognitive signal of interest. Even when utilizing high density
EEG and source localization techniques, the spatial resolution of
the saccadic preparatory signals is limited. Thus, accounting for
these signals via subtraction across equated conditions (Nikolaev
et al., 2013), regression (Dandekar et al., 2012b), or other
techniques (Dias et al., 2013) is an important factor for the
interpretation of para-saccadic neural activity.

Despite these recent advancements, there remains a need for
development and validation of methods for the quantification
of both perceptual and cognitive phenomena in the presence of
eye movements. Part of this process is the evaluation of novel
analytical approaches within paradigms that enable a more direct
comparison to related fixation-constrained studies. Similarly, any
particular methodmay only address some of the above challenges
while still providing valuable insight when applied within the
appropriate constraints or combined with other techniques. It
is within this context that we propose the following approach
for separating neural activity into meaningful regions of interest
(ROIs) in the presence of eye movements. To evaluate our
approach, we utilized data from a previously publish study (Ries
et al., 2016) that employed a dual-task paradigm, visual target
detection and auditory N-back, to quantify the effect of working
memory load on the lambda response. The primary observation
from this study was a small but significant reduction in the
lambda amplitude with increasing cognitive load.

Here, we were able to separate the neural response to each
fixation into six ROIs by applying a technique that linearly
combines activity from independent sources based on their
equivalent dipole location. Within each ROI we show a distinct
neural response that, to varying degrees, discriminated target
from non-target fixations and was differentially modulated by
cognitive load. While the task design mitigated the overlapping
response from adjacent saccades, common in free-viewing visual
search, this approach is a substantive step in the interpretation
of fixation-related brain activity. When combined with GLM-
based techniques for the deconvolution of overlapping FRPs, this
approach can be applied to more natural contexts where the
interplay between bottom-up and top-down neural activity is not
well understood.

MATERIALS AND METHODS

The experiment used in this study has been described in a
previous publication (Ries et al., 2016). Here, we provide a
summary of stimuli and procedure, followed by a more detailed
description of the novel ROI analysis method.

Participants
Fourteen participants volunteered for the study; all participants
were right-handed males with an average age of 32.8 years. All
participants had 20/20 vision or corrected to 20/20 vision. This
study was conducted in accordance with the U.S. Army Research
Laboratory’s IRB requirements (32 CFR 219 and DoDI 3216.02).
The voluntary, fully informed consent of research participants
was obtained in written form. The study was reviewed and
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approved by the U.S. Army Research Laboratory’s IRB before the
study began.

Stimuli and Procedure
Participants performed a guided visual target detection task on
a 7 × 7 grid (23.9◦ × 23.9◦ visual angle) of equally spaced
and variably oriented “T” or “L” characters (1.1◦ visual angle)
presented on a low contrast 1/f noise background from a viewing
distance of approximately 65 cm (Figure 1). Eye fixations were
guided across the grid by a red annulus (2.3◦ visual angle)
that randomly surrounded one of the characters for a duration
of 1 s before moving to the next randomly selected character.
Participants were instructed to saccade to and fixate on the
character in the center of the red annulus and to press a button
(left hand) only when a “T” (visual target) was present. Visual
target characters appeared on 10% of trials. Participants were
instructed to maintain fixation on the character until the next red
annulus appeared. All red annuli surrounding a non-target “L”
were at least two characters from any “T” present on the grid to
minimize peripheral detection. The guided visual target detection
task was performed in one of five conditions: visual alone (silent
condition), while ignoring binaurally presented digits (numbers
0–9), or while using the auditory digits in a 0, 1, or 2-back
working memory task. The digit “0” was only used in the 0-
Back condition where it served as the auditory target. Auditory
stimuli were presented every 2 s with a 500ms offset from a
shift in the red annulus location. Participants were instructed
to make a button press (right hand) for auditory targets, which
occurred on 20% of trials. Thus, the same number of targets
appeared in both tasks during the 0-back, 1-back, and 2-back
conditions. Participants performed two consecutive blocks of the
same condition (silent, ignore, 0-back, 1-back, 2-back) with the
condition order counterbalanced. Each of the 10 blocks had a
duration of 200 s with self-paced rest periods between blocks.
Participants were given practice in each N-back condition, prior
to experimental data collection, until they reached above chance
performance.

Eye Tracking
Eye-tracking data were sampled at 250Hz using the SMI RED
250 system (Teltow, Germany). A 15-point calibration was
performed prior to the practice and experimental blocks. A post-
hoc model was fit to the eye-tracking data for each participant to
increase accuracy of the gaze position estimate. Briefly, we used
the expected eye position (i.e., location of the red annulus) to fit a
quadratic regression model for both the horizontal and vertical
gaze position vectors (Figure 2). A temporal lag (250ms) was
applied to the expected location (red annulus) to account for the
delay between annulus onset and subsequent fixation.

Saccades and fixations were detected in the eye-tracking data
using a velocity-based algorithm (Engbert and Mergenthaler,
2006; Dimigen et al., 2011). Saccades and fixations were detected
using a velocity factor of 6 (standard deviations of the velocity
distributions), minimum saccade duration of 20ms, minimum
fixation duration of 350ms. If two saccades occurred within a
350ms window, only the fixation corresponding to the largest

FIGURE 1 | Guided visual target detection task with concurrent auditory

N-back task. Example search grid containing target (“T”) and non-target (“L”)

stimuli. A red annuls, surrounding one character, randomly shifted grid location

every second. Auditory stimuli consisted of digits (numbers 0–9), binaurally

presented 500ms after annuls onset. Auditory task conditions included silent

(no auditory stimuli), ignore, 0-back, 1-back, and 2-back.

saccade was preserved. Fixations were only considered task-
relevant or “valid” if they were within 3 degrees of the current
stimulus location. These criteria were chosen to focus analyses
on the first saccade onto the new stimulus (red annulus)
location.

Electroencephalography and Feature
Extraction
Electrophysiological signal acquisition and analysis steps are
outlined in Figure 3. EEG recordings were digitally sampled at
1,024Hz from 64 scalp electrodes over the entire scalp using a
BioSemi Active Two system (Amsterdam, Netherlands). External
leads were placed on the outer canthi, and above and below the
orbital fossa of the right eye to record electrooculography (EOG).
EEG was referenced offline to the average mastoids, down-
sampled to 256Hz (fs), and digitally high-pass filtered above 1Hz
using the EEGLAB toolbox (Delorme and Makeig, 2004). Large
artifacts were detected using a previous described technique
(Touryan et al., 2016). Briefly, EEG sessions were segmented into
high-resolution 100ms epochs, with a 10ms step size. Epochs
were marked as high noise if the average power between 90
and 120Hz was greater than three standard deviations above
the mean for all epochs. These epochs were then removed
and the remaining EEG record was lowpass filtered below
50Hz.
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FIGURE 2 | Gaze location estimation. (A) Example X and Y gaze vectors

before and after correction. Dashed red line indicates location of the red

annulus. (B) Example search grid overlaid with aggregate gaze position across

all blocks for one participant. Black circle illustrates the fixation area

considered valid for that stimulus location.

FIGURE 3 | Flowchart of EEG preprocessing and model fitting. The four steps

of the analysis include: preprocessing (blue), feature extraction (red),

ROI-based measure-projection (green), and hierarchical classification (purple).

Each “clean” EEG session was decomposed into independent
components using the Extended Infomax ICA algorithm
implemented in EEGLAB (Delorme and Makeig, 2004). The

equivalent dipole locations of these independent sources were
then estimated using the EEGLAB implementation of DIPFIT
(Scherg, 1990; Pascual-Marqui et al., 1994). IC activation epochs
were extracted around each valid fixation using a temporal
window spanning 300ms before and 1,000ms after fixation
onset. Time-frequency features were also calculated for each
epoch using a wavelet transform (Torrence and Compo, 1998).
Specifically, we used the Morlet wavelet function:

ψ0(t) = cπ−1/4eiω0te−t2/2 (1)

where ω0 is the central frequency and c the normalization
constant. This function was used to create a basis set of
30 wavelets covering the available frequency range with
minimum scale of 2/fs and a discrete step size of 0.25
(wavelet transform software available at http://paos.colorado.
edu/research/wavelets/). After the wavelet transform, the spectral
power of each epoch was computed via multiplication with the
complex conjugate of the corresponding epoch. While this time-
frequency decomposition included frequencies from 1 to 128Hz,
only frequencies below 32Hz were included in subsequent
analyses.

To isolate activity in brain regions of interest (ROIs), the above
IC activation epochs were linearly mixed based on equivalent
dipole location using the initial steps of measure-projection
analysis (Bigdely-Shamlo et al., 2013). ICs with equivalent dipoles
outside of the MNI model brain volume were identified and
excluded from analysis (see Supplementary Section 3). These ICs
often corresponded to corneo-retinal potentials (i.e., EOG) or
muscle artifacts (i.e., EMG). The remaining k IC processes were
preserved and their corresponding fixation-locked activation
epochs used as the “measure” for each dipole location in the
mixing process. Specifically, the fixation-locked activations or
measures can be indexed as Mi, i = 1. . .k for each IC, and the
equivalent dipole location x ∈ V ⊂ R3 indexed as D (xi) , i =

1 . . .k. Importantly, there exists uncertainty in dipole localization
arising from errors in tissue conductivity parameters, electrode
co-registration, noise in the IC estimate process, and between-
subject variability in the location of equivalent functional cortical
areas. To capture this uncertainty in the mixing process we
can instead model each equivalent dipole as a spherical (3-D)
Gaussian with uniform covariance σ 2, centered at the estimated
dipole location xi. The spherical Gaussian is truncated at t∗σ to
minimize the erroneous influence of distant dipoles in sparsely
populated regions. Thus, the probability of dipole D

(
xj

)
being

located at position y ∈ V now becomes Pj
(
y
)
= TN(y; xj, σ

2, t),
where TN is a truncated normal distribution centered at xj. Then
for an arbitrary location y ∈ V , the expected value of the measure
becomes:

E
{
M

(
y
)}

= 〈M
(
y
)
〉 =

∑k
i=1 Pi

(
y
)
Mi

∑k
i=1 Pi

(
y
) (2)

Where M(y) is the combined fixation-locked activity at location
y from all proximal ICs. We used this approach to calculate the
aggregate measure

〈
M(y)

〉
, either fixation-related potential (FRP)

or time-frequency spectrum, for specified regions of the brain
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volume. For this study, six a priori ROIs (Figure 4) were defined
using the Measure Projection Toolbox (http://sccn.ucsd.edu/
wiki/MPT). Each ROI consisted of all regions of LONI LPBA40
atlas (Shattuck et al., 2008) that included the corresponding
anatomical label (e.g., “occipital”). The only additional parameter
σ (standard deviation of the Gaussian distribution) in this
calculation was set to 12mm. This value produced smooth spatial
distributions in each ROI given the relatively small number of
participants (N = 14). The six ROIs included: occipital, fusiform,
temporal, parietal, cingulate, and frontal cortices.

Hierarchical Classification
For the classification step, we used a two-stage hierarchical
approach to dissociate target and non-target fixation epochs.
In the first stage, ridge regression (MATLAB R© ridge function)
was applied separately to the time-frequency epochs from each
ROI. Specifically, we applied regularized regression to the entire
temporal epoch and frequencies up to 32Hz. The regularization
parameter was determined via calculating the effective degrees of
freedom as a function of lambda (λ):

df (λ) = tr

(
X

(
XTX + λI

)−1
XT

)
=

m∑

j=1

d2j

d2j + λ
(3)

where dj are the singular values of the n x m data matrix X. As
these functions were roughly similar across ROIs (Supplementary
Figure 3), we selected a hyperparameter value (Lemm et al.,
2011) such there were approximately 1 target and 10 non-target
observations per degree of freedom (see Model Considerations
for a discussion of the validity of this approach). However, the
exact value had minimal effect on the results (see Supplementary
Section 2). The second stage utilized the regression output, or
latent variable estimate, from the six ROIs to provide a single
classification score and label for each fixation epoch. In this
second stage, we employed linear discriminant analysis (LDA;
MATLAB R© fitcdiscr function) and coefficients for both stages
were fit within a single 5-fold cross-validation scheme. Area
under the ROC curve (Az) was calculated for each ROI, as
well as for the second-stage LDA classifier. Finally, for direct
inference into the discriminant neural activity we calculated the
forward model for each ROI (Haufe et al., 2014). Specifically, the

FIGURE 4 | Pupil size, relative to the session average, as a function of

auditory task condition. Error bars represent standard error of the mean (SEM).

regression weights (W) were used to estimate the forward model
(A), such that A =6XW6̂s, where 6X and 6̂s are the empirical
data and score covariance respectively.

To facilitate comparison with other approaches, we included
two techniques commonly used for single-trial classification of
EEG. Both methods were applied directly to the filtered EEG data
(64 channels) using the same fixation epochs described above.
First, Hierarchical Discriminant Components Analysis (HDCA)
was applied with each epoch divided into 8 equal-sized temporal
windows (Gerson et al., 2006). Second, we used the xDAWN
algorithm (Rivet et al., 2009) to identify the 8 most discriminant
spatial filters followed by a Bayesian linear discriminant analysis,
collectively referred to as XD+BLDA (Cecotti et al., 2011). Area
under the ROC curve was calculated for both of these classifiers
on all participants.

RESULTS

Behavioral and Ocular Measures
Detailed behavioral analysis of this study has been previously
reported (Ries et al., 2016), however the relevant statistics
are summarized below for comparison with the classification
results. Reaction time and accuracy were analyzed separately
for the visual and auditory tasks using a one-way repeated
measures ANOVA (Greenhouse-Geisser correction reported
where appropriate). The primary factor was auditory task
condition, which had five levels in the visual task (Silent, Ignore,
0-Back, 1-Back, 2-Back), and three levels in the auditory task (0-
Back, 1-Back, 2-Back). There was a trend for decreased accuracy
in the visual task as a function of cognitive load (i.e., auditory
N-back level); however this was not statistically significant
(Table 1). We did observe a highly significant effect of cognitive
load on reaction time (RT) in the visual task [F(2.73, 35.44) =

29.24, p < 0.001, η2 = 0.69] showing that visual target RT
increased as a function of cognitive load. Likewise, analysis of
the auditory task showed both a significant decrease in accuracy
[F(1.61, 20.96) = 6.74, p < 0.01, η2 = 0.34] and increase in RT
[F(1.60, 20.79) = 17.64, p < 0.001, η2 = 0.58] with increasing
auditory task demands. While the behavioral results showed
that auditory working memory load had a significant negative
impact on visual task performance, exhibited through increased
RT, the near-ceiling accuracy likely mitigated any decline of this
corresponding metric. Together, the behavioral results suggest
that participants were not exclusively favoring one modality as

TABLE 1 | ANOVA statistics for accuracy and RT in visual and auditory tasks.

Factor df F p η
2

VISUAL TARGET (BY CONDITION*)

Accuracy 2.67,34.77 2.43 0.088 0.16

RT 2.73,35.44 29.24 <0.001 0.69

AUDITORY TARGET (BY CONDITION*)

Accuracy 1.61,20.96 6.74 0.008 0.34

RT 1.60,20.79 17.64 <0.001 0.58

*Auditory N-back level: Silent, Ignore, 0-Back, 1-Back, 2-Back.
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performance declined in both the visual and auditory tasks with
increased cognitive load.

Since eye movements were constrained by the nature of the
visual task (guided target detection), the majority of ocular
metrics did not significantly differ across blocks or conditions. As
expected, we found no significant difference in fixation duration
(0.962 ± 0.053 s; mean ± STD) or saccade distance (13.316
± 1.072 degrees) across auditory task conditions. However,
we did observe a large change in pupil dilation as a function
of cognitive load (Figure 4). Specifically, we calculated the
average pupil size in each condition relative to the average size
across each participant’s entire session. This relative pupil-size
metric was significantly modulated by auditory task condition
[F(3.04, 39.57) = 7.98, p < 0.001, η2 = 0.38], exhibiting
an increase in size with working memory load. Due to static
luminance and counterbalanced condition order (see Materials
and Methods), this modulation was unlikely to be a consequence
of either changes in luminance or time-on-task (Beatty, 1982).
Thus, our results indicate that the task-induced cognitive load
increased the arousal level of participants, as has been shown in
similar paradigms (Kahneman and Beatty, 1966).

Fixation-Related Potentials (FRPs) by ROI
We calculated FRPs for each brain region by combining
independent components activations within fixation epochs,
using a ROI-based measure-projection approach (ROI-MPA).
An IC’s contribution to a given ROI was determined by
the overlap between the anatomically defined region and the
equivalent dipole Gaussian density function (see Materials
and Methods). Importantly, by excluding equivalent dipoles

located outside of this brain volume this approach attempts
to minimize the influence of non-brain signals, such as those
generated by eye movements, from the ROIs (see Supplementary
Section 3). Figure 5 shows the grand average FRPs from each
ROI: occipital, fusiform, temporal, parietal, cingulate, and frontal
cortices. To account for the differing number of included ICs,
FRPs from each participant were uniformly scaled by total
variance and are shown in arbitrary units. All Included epochs
were from valid fixations (within 3 degrees of the current
stimulus) and free of large artifacts. The average number of
target and non-target epochs, by condition, are shown in
Table 2.

The ROI FRP waveforms shown in Figure 5 exhibit a

clear distinction across brain regions. Both target and non-

target FRPs show a temporal progression through the visual

cortices (occipital, fusiform, temporal) and reflect known
electrophysiological signatures, such as the P1 or lambda
component. Importantly, the distinction between target and
non-target FRPs is evident in most ROIs. To identify periods
of significant difference in the FRP waveforms we used a
paired t-test at causal time points in each ROIs (255 time
points × 6 ROIs). A single false-discovery-rate correction for
multiple comparisons was then applied to all p-values (Benjamini
and Hochberg, 1995). As expected, visual cortices show this
distinction in earlier epochs, consistent with the visual mismatch
negativity (vMMN: 150–250ms), while the parietal and cingulate
cortex exhibit a clear late positive deflection, indicative of the P3
component. In contrast, the frontal cortex shows little saccade-
related EOG artifact that would be expected to dominate frontal
electrodes (e.g., Fz).

FIGURE 5 | Grand average FRP by ROI. Target and non-target waveforms from each ROI (black line indicates a significant difference, p < 0.01). All voxels included in

the ROI are shown as the inset. FRP response consists of a linear sum of IC activations weighted by their contribution to the corresponding ROI and are shown in

arbitrary units. Note: ICs with equivalent dipoles located outside of the brain volume, such as those produced by EOG, are not aggregated in the ROI FRPs.
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TABLE 2 | Number of epochs included in each condition.

Condition Target epochs Non-target epochs

Silent 21 (5) 209 (49)

Ignore 21 (7) 209 (66)

0-Back 23 (5) 212 (40)

1-Back 21 (5) 218 (48)

2-Back 23 (7) 203 (63)

Total 108 (20) 1,051 (211)

Values represent the mean, standard deviation in parentheses.

For comparison to the standard approach, we also calculated
target and non-target FRPs for electrodes that most directly
correspond to each ROI. Figure 6 shows the grand average FRP
from these corresponding electrodes, using the same fixation
epochs as above (Table 2). For occipital regions, the electrode
and ROI FRPs are quite similar, as these electrodes are least
affected by changes in the corneo-retinal potential and other
saccade related activity. However, EOG artifact increasingly
dominates the anterior regions, especially frontal electrodes (e.g.,
Fz). This can lead to difficulty in dissociating neural from
EOG phenomena in more cognitive processes. For these grand
averages, the number of target epochs was an order of magnitude
lower than that for non-target epochs. However, a similar result
was found for both ROI and electrode FRPs when these numbers
were equated by randomly sampling a subset of non-target
epochs (Supplementary Figures 1, 2).

Finally, to quantify the effect of auditory task condition (i.e.,
working memory load) on the ROI FRP we performed the
following analysis. We measured the amplitude of the FRP for
auditory conditions at either end of the difficulty spectrum:
Ignore and 2-Back. These were chosen as representative of low
and high cognitive load conditions; although similar results were
found when comparing the Silent and 2-Back conditions. To
capture the P3 waveform, we calculated the average amplitude
within a 300–700ms post-fixation window. We then applied
a two-way repeated measures ANOVA, with factors ROI and
condition, to quantify the effect of cognitive load on this
components (Table 3). As expected, there was a strong effect of
auditory task condition [F(1, 65) = 22.45, p < 0.001, η2 = 0.15]
with the amplitude of the P3 being significantly smaller during
high, relative to low, working memory load.

Classification by ROI
For single-trial classification, we used fixation-locked time-
frequency features from each ROI. Before linearly mixing
IC activations, we first applied a Morlet wavelet transform
to each epoch. We then calculated the spectral power of
the wavelet transform before combining these time-frequency
epochs. Figure 7A shows the grand average spectral FRPs for
target epochs from each ROI. These average time-frequency
responses, analogous to event related spectral perturbations
(ERSP), show a similar time course as the FRPs above. Visual
cortices have an early, mid-frequency (alpha band) component
that is the spectral equivalent of the lambda response. Similarly,
the parietal, cingulate, and frontal cortices are dominated by

a later lower frequency (delta band) activity, reflecting the P3
component.

To classify target from non-target fixation epochs, we used
ridge regression on these high-dimensional time-frequency
features. We constructed separate classifiers for each ROI that
utilized spectral information, below 32Hz, from the entire
fixation epoch. The forward models for each ROI are shown
in Figure 7B. Again, the time course is similar to the grand
average FRPs, where visual cortices have discriminant activity
with smaller latencies and higher-frequency components. The
marginal activations (Figure 7C) provide a more direct view of
the temporal profile of the discriminant activity.

The relative discriminant power of each ROI was quantified
by using classifier performance in a two-way repeated measures
ANOVA, with factors ROI and auditory task condition (Table 4).
We found a significant modulation of the area under the ROC
curve (Az) by region [F(2.41, 156.73) = 12.84, p < 0.001, η2 =

0.15]. The average performance across all ROIs and participants
was 0.741 ± 0.068 (Figure 8), substantially below behavioral
performance in the visual detection task (average accuracy =

0.974± 0.030).
Integration across regions required a second-stage classifier

applied to the output of the ROI regression step. For each
epoch, the output from the ROI classifiers (i.e., vector of six
classification scores) were combined using a linear discriminant
function. Not surprisingly, this hierarchical approach resulted in
significantly better performance (Az: 0.851 ± 0.096) than the
individual ROI classifiers (p < 0.001; Wilcoxon signed rank test).
Interestingly, there was a wide range in classifier performance
across participants with Az values ranging from 0.708 to 0.947,
indicating that for some individuals our approach was able
to identify visual targets at an accuracy similar to behavioral
performance. This was despite ongoing neural activity related
to the concurrent auditory task as well as the planning and
execution of eye movements.

This hierarchical approach compared favorably to other
common classification techniques (Figure 8B). Specifically,
we applied Hierarchical Discriminant Components Analysis
(Gerson et al., 2006) to the EEG channel data using the
same epochs as above. We also applied the xDAWN filtering
algorithm (Rivet et al., 2009) followed by Bayesian linear
discriminant analysis, or XD+BLDA (Cecotti et al., 2011).
HDCA and XD+BLDA classification accuracies were similar to
our hierarchical approach with HDCA having slightly higher
overall performance (p = 0.013).

While we were able to classify visual target from non-
target stimuli during a concurrent auditory task, there was
a significant modulation of ROI classification performance as
a function of cognitive load (Table 4). Here, this modulation
was the inverse of that observed in the relative pupil size.
Classification performance decreased with increasing auditory
task demands; except in the silent and ignore condition in
which performance was similar. At the hierarchical stage, while
the target scores were significantly modulated by condition
(Figure 9B), the classification performance was not (Table 4,
Figure 9A). Much like behavioral accuracy in the visual task, the
hierarchical classifier performance remained relatively constant
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FIGURE 6 | Grand average FRP by electrode. Target and non-target waveforms from electrodes corresponding to each ROI (black line indicates a significant

difference, p < 0.01).

across auditory task conditions. However, increasing working
memory load clearly affected both the neural activity and pupil
diameter in a manner consistent with increased arousal (Murphy
et al., 2011).

DISCUSSION

In this study, we used a novel approach to determine if the
neural response associated with visual target detection could be
separated into meaningful components in the presence of eye
movements and concurrent task demands. Here, we employed
a single framework to isolate neural from non-neural activity
and to separate the FRP into cortical regions. Using common
statistical techniques we were then able to classify target from
non-target FRPs across ROIs on a single-trial basis at a level
similar to state-of-the-art machine learning algorithms. By doing
so, we were able to show a clear time-course of discriminant
activity associated with target detection as well as the modulating
effect of cognitive load. While our task design mitigated the
overlapping response from previous or subsequent fixations, the
results demonstrate the potential for separating task-relevant
neural activity in more complex contexts that include eye
movements and concurrent tasks.

The EEG analysis framework described here is both specific
enough to separate activity by ROI and sensitive enough to
evaluate the effects of cognitive load. While more traditional
channel-based approaches of FRP analysis may be able to
separate these effects by scalp location (e.g., Oz vs. Pz), the
inference into the constituent neural sources remains more
difficult. Likewise, channel-based approaches require an explicit
EOG mitigation or removal process, using ICA (Plöchl et al.,

TABLE 3 | ANOVA statistics for P3 amplitude in the visual task.

Factor df F p η
2

P3 AMPLITUDE (300–700ms)

Condition* 1,65 22.45 <0.001 0.15

ROI 2.13,27.70 11.55 <0.001 0.38

Interaction 5,65 1.69 0.150 0.05

*Auditory N-back level: Ignore, 2-Back.

2012) or other techniques (Parra et al., 2005). For example, a
number of recent studies have utilized ICA for the identification
and removal of EOG components (Nikolaev et al., 2011, 2013;
Devillez et al., 2015). However, these studies typically included
a manual or semi-manual step for the identification of ICs
related to corneo-retinal potentials and eyelid artifacts (although
see Mognon et al., 2011; Plöchl et al., 2012). In contrast, our
approach uses equivalent dipole locations to include or exclude
particular ICs.While there is ongoing debate as to the accuracy of
source localization techniques such as LORETA, there is growing
evidence that suggests independent sources are indeed dipolar
(Delorme et al., 2012). Fortunately, eye movement related ICs
typically explained large fractions of the total signal variance
and resolve to equivalent dipoles outside the brain volume with
relatively little residual error.

In comparison, IC clustering results (Makeig et al., 2002) are
highly dependent on the choice of the clustering parameters
(in many cases up to 12 tunable parameters without a clear
physiological interpretation for each parameter) and provide
no guarantees in terms of producing clusters at particular
ROIs. However, the ROI-based measure projection approach
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FIGURE 7 | Grand average fixation-related time-frequency features by ROI. (A) Average time-frequency features of target epochs. (B) Forward model and (C)

corresponding marginal activation showing the discriminant time course of each ROI. Vertical line represents center-of-mass.

TABLE 4 | ANOVA statistics for classifier performance in the visual task.

Factor df F p η
2

ROI CLASSIFIER PERFORMANCE (Az)

Condition* 2.41,156.73 12.84 <0.001 0.15

ROI 2.40,124.59 1.89 0.147 0.03

Interaction 8.94,116.23 1.07 0.388 0.06

HIERARCHICAL CLASSIFIER PERFORMANCE (Az)

Condition* 2.04,26.55 1.16 0.329 0.08

HIERARCHICAL CLASSIFIER SCORE (TARGET)

Condition* 2.66,34.60 3.63 0.026 0.22

*Auditory N-back level: Silent, Ignore, 0-Back, 1-Back, 2-Back.

(ROI-MPA) is able to focus the analysis on selected ROIs
while utilizing only a single parameter with a physiological
interpretation (i.e., the expected spatial uncertainty in IC dipole
localization). Likewise, IC clusters are not well-suited for single-
trial analysis. Simply averaging the single-trial activity of the ICs
contained in each cluster would not properly account the spatial
distribution of dipole locations. For example, ICs adjacent to
the cluster boundary would be excluded (weighted zero) while
ICs just inside the cluster weighted at unity. ROI-MPA directly
incorporates this spatial information and the ROI structure by
forming a weighted sum based on IC spatial probability overlap
with each ROI.

Eye Tracking, Pupillometry, and EEG
A growing number of studies are combining eye tracking with
EEG to enable the exploration for neural activity during visual
search. While the task employed here was not a visual search

FIGURE 8 | Classifier performance. ROI classifier performance (averaged)

compared with the hierarchical approach (combined). Also shown are

channel-based classification techniques HDCA and XD+BLDA. Horizontal

lines indicate median values and box area covers the 25th–75th percentiles.

paradigm, our results demonstrate the ability to acquire and
utilize gaze position to detect saccades and quantify evoked
neural activity. Importantly, our experimental configuration
employed a head-free tracking system (SMI RED 250) without
a requisite chinrest. This configuration facilitates visual search
paradigms or related tasks requiring a large field of view that
may naturally engender small head movements. To improve the
spatial accuracy of such a system, our analysis included a post-
hoc calibration of gaze position. Specifically, we utilized task
information to infer gaze position when adjusting the offline

Frontiers in Human Neuroscience | www.frontiersin.org 9 July 2017 | Volume 11 | Article 357

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Touryan et al. Isolating Discriminant Neural Activity

FIGURE 9 | Hierarchical classifier performance and task difficulty. (A) Classifier performance as a function of auditory task condition. (B) Classifier target scores as a

function of auditory task condition. Horizontal lines indicate median values and box area covers the 25th–75th percentiles.

calibration model. While this type of information may not always
be available, experimenters can and should use an opportunistic
calibration approach during periods where gaze position can
reasonably be inferred (e.g., prior to trial initiation or visual target
detection).

An additional benefit derived from the inclusion of eye
tracking is the coincident measure of pupil size. For example,
the change in pupil diameter shown here suggests that increased
working memory load resulted in an increase in arousal level, an
important modulator of cognitive performance. Since arousal is
largely regulated through the norepinephrine system via the locus
coeruleus (LC), a nucleus within the dorsal pons, it cannot be
measured directly via EEG. However, several studies have shown
that pupil dilation can be used as a proxy for LC activity (Aston-
Jones and Cohen, 2005; Murphy et al., 2011; Hong et al., 2014).
Furthermore, the LC receives input from anterior cingulate and
dorsolateral prefrontal cortex and some studies have suggested
that the LC system underlies the parietal P3 ERP, specifically the
P3b (Nieuwenhuis et al., 2005, 2011).

Overall, our results confirm the localization of the P3

to parietal ROIs and show a significant effect of arousal

on both pupil diameter and P3 amplitude (Murphy et al.,
2011). In addition, target FRPs in the posterior ROIs show
a negative deflection, relative to non-target FRPs, beginning
around 200ms post-fixation. This difference is consistent with
the visual mismatch negativity (vMMN); a negative posterior
deflection elicited by an infrequent (deviant) visual stimulus
presented in a homogenous sequence of frequent (standard)
stimuli (Czigler et al., 2002). In particular, this difference is
consistent with the later components of the vMMN associated
withmemory-comparison-based change detection (Kimura et al.,
2009). However, since the infrequent stimuli (Ts) are also
task-relevant, it is difficult to dissociate this vMMN from the
attentional orienting component of the P3 (Polich, 2007).

Interestingly, the frontal ROI and Fz electrode showed a
small but significant difference between target and non-target
fixations at an early latency (approximately 80ms). Previous
studies have shown activity associated with peripheral detection
in frontal-parietal regions early in and even prior to target

fixations (Dias et al., 2013; Devillez et al., 2015). In this paradigm,
target stimuli were never immediately adjacent to the current
grid location (red annulus), making the peripheral detection of
an upcoming target unlikely. However, it would be reasonable
for participants to anticipate a target fixation after a sequence
of non-target stimuli were encountered. This phenomenon
illustrates the manifold difficulties in the interpretation of eye
movement related activity given the dependencies between
eye movement behavior (e.g., saccade size, fixation duration)
and the elicited response. Similarly, in free-viewing contexts
there remains the additional challenge of separating overlapping
responses from adjacent saccades and fixations. Fortunately,
several techniques have now been proposed to address this
potential confound using regression or GLM-based approaches
(Burns et al., 2013; Smith and Kutas, 2015; Kristensen et al.,
2017).

Model Considerations
The ICA-based, hierarchical classification algorithm described
here is not ideally suited for real-time application or meant
as an alternative to other channel-based approaches (e.g.,
HDCA). Rather, the goal of this study was to identify the
discriminant neural response in each ROI and to quantify the
effect of cognitive load on that response. As such, we did not
take additional steps to separate data in our cross-validation
scheme. Due to data limitations, ICA was applied to the entire
EEG record for each participant rather than independently to
each training set. Since ICA is an unsupervised technique,
however, the potential for overfitting is limited. Additionally, we
selected the hyperparameter by balancing the effective degrees of
freedom with the number of data points (fixation epochs) rather
than through a separate cross-validation step. Here, the exact
choice of parameter did not substantially influence the results
(see Supplementary Section 2). The added separation of these
additional cross-validation steps would significantly reduce the
amount of data and the quality of the estimated discriminate
functions without providing any additional insight into the
neural processes.
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Implications for BCI
Importantly, our hierarchical classification scheme was shown
to perform at a level similar to other state-of-the-art machine
learning algorithms such as HDCA and XD-BLDA. This result
suggests that our approach captured the majority of the task-
related variance within the EEG record. While the average
FRPs are useful and exhibit an effect of cognitive load, single-
trial classification techniques can reveal additional discriminative
activity (Brouwer et al., 2012). The forward model of each ROI
(Figure 7) reveal both the time course and spectral characteristics
of the discriminant neural response. Thus, while our approach
imposes an additional computational burden, compared with the
above methods, it adds insight into the source of task-related
neural activity.

Our results can likewise be used to guide BCI development
and future applications. P3-based paradigms remain a key
component of the BCI application space, such as the P300 Speller
(Krusienski et al., 2006). Presently, these reactive BCIs typically
classify the neural response to passively viewed stimuli, such
as in a rapid serial visual presentation (Gerson et al., 2005;
Touryan et al., 2011; Bigdely-Shamlo et al., 2013). In this passive
condition, stimuli are presented to the user who detects the
desired target (e.g., target object within an image). In contrast,
for targets occurring in natural or ordered environments, a
more ecologically valid approach for detection would be through
goal-directed visual search (Jangraw et al., 2014; Ušćumlić and
Blankertz, 2016). In this case, stimulus presentation is controlled
through the user’s search strategy, with fixation onset serving as
a natural time-locking event. Thus, the growing body of work
on single-trial classification of FRPs will support the improved
performance of future FRP BCI technology.

CONCLUSION AND FUTURE WORK

In this study, we provide a principled framework for interpreting
EEG in the presence of eye movements and concurrent
task demands by adapting a recently developed independent
source aggregation technique (Bigdely-Shamlo et al., 2013).
This approach enabled us to both quantify the discriminant
information contained within each cortical region and measure
the effect of cognitive load on the evoked response. While
these phenomena have been previously observed, our results
demonstrate the feasibility and utility of combining synchronous
recordings of EEG and eye-tracking to measure both sensory and
cognitive processes. Our approach can be extended to tasks that
incorporate unconstrained eye movements, however, additional
techniques would be needed to account for the overlapping
activity from adjacent saccades and fixations.

In this experiment we did not explicitly manipulate top-down
(goal-directed) or bottom-up (stimulus driven) components of
the visual task beyond increasing the overall working memory
load. However, our ROI mapping framework would be well
suited for such an assessment. ROI analysis could be applied
across conditions to identify what factors bias top-down vs.

bottom-up neural activity in a visual search paradigm. Eye
movements biased by top-down task influences may have greater
pre- or post-saccadic activity in frontal cortices (Nikolaev et al.,
2013). Likewise, eye movements driven by bottom-up stimulus
influences may have greater post-saccadic activity in occipital
cortex. This distinction may become essential for understanding
free-viewing search in natural scenes where visual information
leading to a detection event can be accumulated across fixations
(Jangraw et al., 2014) rather than isolated to a single gaze
position.
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