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There is a significant conceptual gap between legal and math-
ematical thinking around data privacy. The effect is uncertainty
as to which technical offerings meet legal standards. This uncer-
tainty is exacerbated by a litany of successful privacy attacks
demonstrating that traditional statistical disclosure limitation
techniques often fall short of the privacy envisioned by reg-
ulators. We define “predicate singling out,” a type of privacy
attack intended to capture the concept of singling out appearing
in the General Data Protection Regulation (GDPR). An adver-
sary predicate singles out a dataset x using the output of a
data-release mechanism M(x) if it finds a predicate p matching
exactly one row in x with probability much better than a sta-
tistical baseline. A data-release mechanism that precludes such
attacks is “secure against predicate singling out” (PSO secure).
We argue that PSO security is a mathematical concept with
legal consequences. Any data-release mechanism that purports
to “render anonymous” personal data under the GDPR must pre-
vent singling out and, hence, must be PSO secure. We analyze
the properties of PSO security, showing that it fails to com-
pose. Namely, a combination of more than logarithmically many
exact counts, each individually PSO secure, facilitates predicate
singling out. Finally, we ask whether differential privacy and k-
anonymity are PSO secure. Leveraging a connection to statistical
generalization, we show that differential privacy implies PSO
security. However, and in contrast with current legal guidance, k-
anonymity does not: There exists a simple predicate singling out
attack under mild assumptions on the k-anonymizer and the data
distribution.
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Data-privacy laws—like the Health Insurance Portability and
Accountability Act, the Family Educational Rights and Pri-

vacy Act (FERPA), and Title 13 in the United States; and the
European Union’s (EU’s) General Data Protection Regulation
(GDPR)—govern the use of sensitive personal information.∗
These laws delineate the boundaries of appropriate use of
personal information and impose steep penalties upon rule
breakers. To adhere to these laws, practitioners need to apply
suitable controls and statistical disclosure-limitation techniques.
Many commonly used techniques, including pseudonymization,
k -anonymity, bucketing, rounding, and swapping, offer privacy
protections that are seemingly intuitive, but only poorly under-
stood. And while there is a vast literature of best practices, a
litany of successful privacy attacks demonstrates that these tech-
niques often fall short of the sort of privacy envisioned by legal
standards (e.g., ref. 1).

A more disciplined approach is needed. However, the sig-
nificant conceptual gap between legal and mathematical think-
ing around data privacy poses a challenge. Privacy regulations
are grounded in legal concepts, such as personally identifi-
able information (PII), linkage, distinguishability, anonymiza-
tion, risk, and inference. In contrast, much of the recent
progress in data-privacy technology is rooted in formal math-
ematical privacy models, such as differential privacy (2), that
offer a foundational treatment of privacy, with provable pri-
vacy guarantees, meaningful semantics, and composability. And
while such models are being actively developed and imple-

mented in the academy, industry, and government, there
is a lack of discourse between the legal and mathematical
conceptions. The effect is uncertainty as to which techni-
cal offerings adequately match expectations expressed in legal
standards (3).

Bridging between Legal and Technical Concepts of Privacy
We aim to address this uncertainty by translating between the
legal and the technical. To do so, we begin with a concept appear-
ing in the law, then model some aspect of it mathematically.
With the mathematical formalism in hand, we can better under-
stand the requirements of the law, their implications, and the
techniques that might satisfy them.

In particular, we study the concept of “singling out” from the
GDPR (4). We examine what it means for a data-anonymization
mechanism to ensure “security against singling out” in a data
release. Preventing singling out attacks in a dataset is a necessary
(but maybe not sufficient) precondition for a dataset to be con-
sidered effectively anonymized and thereby free from regulatory
restrictions under the GDPR. Ultimately, our goal is to better
understand a concept foundational to the GDPR, by enabling
a rigorous mathematical examination of whether certain classes
of techniques (i.e., k -anonymity and differential privacy) provide
security against singling out.

We are not the first to study this issue. The Article 29 Data
Protection Working Party, an EU advisory body, provided guid-
ance about the use of various privacy technologies—including
k -anonymity and differential privacy—as anonymization tech-
niques (5). Its analysis is centered on asking whether each tech-
nology effectively mitigates three risks: “singling out, linkability,
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and inference.” For instance, their “Opinion on Anonymisation
Techniques” concludes that with k -anonymity, singling out is no
longer a risk, whereas with differential privacy, it “may not” be
a risk (5). Though similar in purpose to our work, its technical
analyses are informal and coarse. Revisiting these questions with
mathematical rigor, we recommend reconsidering the Working
Party’s conclusions.

This work is part of a larger effort to bridge between legal
and technical conceptions of privacy. An earlier work analyzed
the privacy requirements of FERPA and modeled them in a
game-based definition, as is common in cryptography (6). The
definition was used to argue that the use of differentially private
analyses suffices for satisfying a wide range of interpretations
of FERPA. An important feature of FERPA that enabled that
analysis is that FERPA and its accompanying documents con-
tain a rather detailed description of a privacy attacker and the
attacker’s goals.

1. Singling Out in the GDPR
We begin with the text of the GDPR (4). It consists of articles
detailing the obligations placed on processors of personal data,
as well as recitals containing explanatory remarks. Article 1 of
the regulation delineates its scope:

This regulation lays down rules relating to the protection of natural per-
sons with regard to the processing of personal data and rules relating to
the free movement of personal data.

On the other hand, the GDPR places no restrictions on the
processing of nonpersonal data, which includes personal data
that have been “rendered anonymous.”†

The term “personal data” is defined in Article 4 of the GDPR
to mean “any information relating to an identified or identifi-
able natural person; an identifiable natural person is one who
can be identified, directly or indirectly.” What it means for a per-
son to be “identified, directly or indirectly” is further elaborated
in Recital 26:

To determine whether a natural person is identifiable, account should be
taken of all of the means reasonably likely to be used, such as singling
out, either by the controller or by another person to identify the natural
person directly or indirectly.

Thus, singling out is one way to identify a person in data, and
only data that do not allow singling out may be excepted from
the regulation.

Singling out is the only criterion for identifiability explicitly
mentioned in the GDPR, the only occurrence of the term being
the passage quoted above. For insight as to the meaning of sin-
gling out, we refer to two documents prepared by the Article 29
Data Protection Working Party.‡ “Opinion on the Concept of
Personal Data” (7) elaborates on the meaning of “identifiable,
directly or indirectly.” A person is identified “within a group of
persons [when] he or she is distinguished from all other members
of the group.” One way of distinguishing a person from a group
is by specifying “criteria which allows him to be recognized by
narrowing down the group to which he belongs.” If the group is
narrowed down to an individual, that individual has been singled

†This point is emphasized in Recital 26: “The principles of data protection should there-
fore not apply to anonymous information, namely information which does not relate
to an identified or identifiable natural person or to personal data rendered anonymous
in such a manner that the data subject is not or no longer identifiable.”

‡The Article 29 Data Protection Working Party was established by the EU Data Protec-
tion Directive and issued guidance on the meaning of the Directive. The opinions we
consider in this article have not been officially updated since GDPR’s passing. Moreover,
GDPR tacitly endorses the Working Party’s guidance on singling out: It borrows the lan-
guage of Recital 26 almost verbatim from the Data Protection Directive, but adds the
phrase “such as singling out.”

out.§ Similarly, the Working Party’s “Opinion on Anonymisa-
tion Techniques” describes singling out as “isolat[ing] some or
all records which identify an individual in [a] dataset.” Looking
ahead, we will call this “isolating” an individual in the dataset and
argue that not every instance of isolation should be considered a
singling-out attack.

We highlight three additional insights from ref. 7 that inform
our work. First, identification does not require a name or any
other traditional identifier. For instance, singling out can be done
with a “small or large” collection of seemingly innocuous traits
(e.g., “the man wearing a black suit”) (7). Indeed, this is what
is meant by indirectly identifiable. An example of singling out in
practice cited by the Working Party “Opinion on Anonymisation
Techniques” (5) showed that four locations sufficed to uniquely
identify 95% of people in a pseudonymized dataset of time-
stamped locations. This is considered singling out, even without
a method of linking the location traces to individuals’ names.

Second, identifiable data may come in many forms, includ-
ing microdata, aggregate statistics, news articles, encrypted data,
video footage, and server logs. What’s important is not the form
of the data—it is whether the data permit an individual to be sin-
gled out. We apply this same principle to the manner in which an
individual is singled out within a dataset. Most examples focus
on specifying a collection of attributes (e.g., four time-stamped
locations) that match a single person in the data. A collection
of attributes can be viewed as corresponding to a “predicate”: a
function that assigns to each person in the dataset a value 0 or 1
(interpreted as false or true, respectively). We interpret the regu-
lation as considering data to be personal data if an individual can
be isolated within a dataset using any predicate, not only those
that correspond to collections of attributes.

Third, whether or not a collection of attributes identifies a per-
son is context-dependent. “A very common family name will not
be sufficient to identify someone—i.e., to single someone out—
from the whole of a country’s population, while it is likely to
achieve identification of a pupil in a classroom” (7). Both the
prevalence of the name and the size of the group are important
in the example and will be important in our formalization.

2. Main Findings
A. Defining Security Against Predicate Singling Out. We formalize
and analyze “predicate singling out,” a notion which is intended
to model the GDPR’s notion of singling out. Following the discus-
sion above, we begin with the idea that singling out an individual
from a group involves specifying a predicate that uniquely dis-
tinguishes the individual, which we call “isolation.” Using this
terminology, an intuitive interpretation of the GDPR is that ren-
dering data anonymous requires preventing isolation. Trying to
make this idea formal, we will see that it requires some refinement.

We restrict our attention to datasets x = (x1, . . . , xn) of size n ,
where each row xi is sampled independently from some underly-
ing probability distribution D over a universe X . The dataset x is
assumed to contain personal data corresponding to individuals,
with at most one row per individual. For example, x might consist
of home listings, hospital records, internet browsing history, or
any other personal information. A mechanism M takes x as input
and outputs some data release y =M (x), be it a map of approx-
imate addresses, aggregate statistics about disease, the result of
applying machine learning techniques, or pseudonymized inter-
net histories. We call M an “anonymization mechanism” because
it purportedly anonymizes the personal data x.

§The notion of “singling out” is not defined in the Opinion on the Concept of Personal
Data (7). It is used in ref. 7 four times, each consistent with the above interpretation.
Our interpretation coincides with and was initially inspired by that of ref. 8, defining
“singling out as occurring when an analyst correctly makes a statement of the form
‘There is exactly one user that has these attributes.’”
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An adversary A attempts to output a predicate p :X →{0, 1}
that isolates a row in x, i.e., there exists i ∈ [n] such that p(xi) = 1
and p(xj ) = 0 for all j 6= i . We emphasize that it is rows in the
original dataset x on which the predicate acts, not the output y.
In part, this is a by-product of our desire to make no assumptions
on the form of M ’s output. While it might make sense to apply
a predicate to isolate a row in pseudonymized microdata, it is
far from clear what it would mean for a synthetic dataset or for
aggregate statistics. Observe that this choice also rules out predi-
cates p that “isolate” rows by referring to their position in x (i.e.,
“the seventh row”).

M prevents isolation if there doesn’t exist an adversary A that
isolates a row in x, except with very small probability over the ran-
domness of sampling x←Dn , the randomness of the mechanism
y←M (x), and the randomness of adversary A(y). Unfortunately,
this is impossible to achieve by any mechanism M . To wit, there
are trivial adversaries—those that do not look at the outcome
y—that isolate a row with probability approximately 37%. The
trivial adversaries simply output any predicate p that matches a
1/n fraction of the distribution D . Isolation is, hence, not neces-
sarily indicative of a failure to protect against singling out, as a
trivial adversary would succeed with ≈ 37% probability (for any
n), even if M does not output anything at all.

Example: Consider a dataset of size n = 365, including infor-
mation about random people selected at random from the US
population. To isolate a person, a trivial adversary may output
p = (born on March 15th). This predicate will isolate a row with
probability

(
365

1

)
· 1

365
· (1− 1

365
)364≈ 37%.

Furthermore, a trivial adversary need not know the distribution
D to isolate with probability ≈ 37%, as long as D has sufficient
min-entropy (Fact 3.1).

A trivial adversary can give us a baseline against which to
measure isolation success. But the baseline should not sim-
ply be a 37% chance of success. Consider the earlier example
of a dataset of 365 random Americans. What if an adver-
sary output predicates like p = (born on March 15th∧ vegan∧
speaks Dutch∧ concert pianist), and managed to isolate 10% of
the time? Though 10% is much less than 37%, the predicate is
extremely specific and unlikely to isolate a person by chance.

We formalize this intuition by considering the baseline risk
of isolation as a function of the weight of the predicate p: the
chance that p matches a random row sampled from the distribu-
tion D . The baseline for predicates of weight 1/n is 37%, but the
baseline for an extremely specific predicate may be much lower.
The more specific the predicate, the closer the baseline gets to
zero. Our primary focus in this paper is on the regime of pred-
icate weights where the baseline is negligible, corresponding to
predicates with negligible weight.¶

Definition 4.5 (PSO Security, Informal): An adversary predicate
singles out a row in x if it outputs a predicate that isolates a
row with probability significantly higher than the baseline risk.
A mechanism M is “secure against predicate singling out” (PSO
secure) if no adversary can use its output y =M (x) to predicate
single out.

B. Analyzing Security Against Predicate Singling Out. Having formu-
lated PSO security, our next goal is to understand the guarantee
it offers, what mechanisms satisfy it, and how this concept relates

¶For completeness, one can also consider predicates of weight ω(log n/n), where the
baseline is also negligible. See Remark 4.2.

to existing privacy concepts, including differential privacy and
k -anonymity.

Two desirable properties of a privacy concept are robustness
to “postprocessing” and to “composition.” The former requires
that if a mechanism M is deemed secure, then anything that can
be computed using the outcome of M should also be deemed
secure. Hence, the outcome may be reused without creating
additional privacy risk. For instance, if a PSO-secure mechanism
M outputs microdata, then any statistics that can be computed
from those microdata should also be PSO secure. PSO security
is robust to postprocessing. The analysis is simple and shown in
ref. 9.
Incomposability of PSO Security. We would like that the privacy
risk of multiple data releases is not significantly greater than the
accumulated risks of the individual releases. In this case, we say
that the privacy concept composes. We prove that PSO security
does not compose and give two examples of this failure. First, we
show that releasing a single aggregate statistic is PSO secure, but
superlogarithmically many statistics may allow an adversary to
predicate single out. Concretely, a mechanism that outputs a sin-
gle count is PSO secure. Yet a mechanism that outputs ω(log(n))
counts may allow an adversary to isolate a row with probabil-
ity arbitrarily close to one by using a predicate with negligible
weight (and negligible baseline). Second, we construct a less nat-
ural pair of mechanisms that individually are PSO secure but
together allow an adversary to recover a row in the dataset. Con-
sequently, the adversary can predicate single out by isolating this
row using a predicate with negligible weight.
Do Differential Privacy and k-Anonymity Guarantee PSO Security?
Differential privacy is a requirement of data analyses mecha-
nisms that limits the dependency of a mechanism’s output distri-
bution on any single individual’s contribution (10). k -anonymity
is a requirement from data releases that the (quasi) identifying
data of every person in the release should be identical to that
of at least k − 1 other individuals in the release (11, 12) (see
Definitions 6.1 and 7.1 for formal definitions).

Differential privacy is not necessary for PSO security, as an
exact count is PSO secure, but is not differentially private. How-
ever, differential privacy does provide PSO security. The proof
relies on the connection between differential privacy and statis-
tical generalization guarantees (13, 14). We show that predicate
singling out implies a form of overfitting to the underlying dataset.
If a mechanism is differentially private, it prevents this form of
overfitting and, hence, protects against predicate singling out.

On the other hand, we show that k -anonymity does not prevent
predicate singling out attacks. Instead, it enables an adversary
to predicate single out with probability approximately 37%, even
using extremely low-weight predicates for which the baseline risk
is negligible. Briefly, the attack begins by observing that typi-
cal k -anonymous algorithms “almost” predicate single out. They
reveal simple predicates—usually, conjunctions of attributes—
that are satisfied by groups of k rows in the dataset. In an
effort to make the k -anonymized data as useful as possible, these
predicates are as descriptive and specific as possible. To predi-
cate single out a row from the k -anonymous dataset, it roughly
suffices to isolate a row from within one of these groups.

C. Implication for the GDPR. Precisely formalizing predicate sin-
gling out attacks allows us to examine with mathematical rigor
the extent to which specific algorithms and paradigms protect
against them. In particular, we show that k-anonymity fails to
prevent predicate singling out, but that differential privacy pre-
vents predicate singling out. Our conclusions contrast with those
of the Article 29 Working Party: They conclude that k -anonymity
eliminates the risk of singling out, while differential privacy “may
not” (5). This disagreement may raise doubts about whether our
modeling indeed matches the regulators’ intent, which we now
address.
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Our goal in interpreting the text of the GDPR and related doc-
uments, and in defining predicate singling out, is to provide a
precise mathematical formalism to capture some aspect of the
concept of personal data (as elucidated in the regulation and in
ref. 7) and the associated concept of anonymization. We want
to render mathematically falsifiable a claim that a given algo-
rithmic technique anonymizes personal data under the GDPR
by providing a necessary condition for such anonymizers.

We argue that predicate singling out succeeds. A number of
modeling choices limit the scope of our definition, but limiting
the scope poses no issue. Specifically, 1) we only consider ran-
domly sampled datasets; 2) we only consider an attacker who
has no additional knowledge of the dataset besides the output
of a mechanism; and 3) we do not require that isolation be
impossible, instead comparing against a baseline risk of isola-
tion. A technique that purports to anonymize all personal data
against all attackers must at least do so against randomly sam-
pled data and against limited attackers. And unless the idea
of anonymization mechanisms is completely vacuous, one must
compare against a baseline risk.

We don’t mean to claim that our modeling is the only one pos-
sible. The starting point for the analysis is a description which
does not use mathematical formalism, but is, rather, a (some-
what incomplete) description using natural language. Alternative
mathematical formalizations of singling out could probably be
extracted from the very same text, and we look forward to seeing
them emerge.
Policy Implications. Assuming our formalization is in agreement
with the GDPR’s notion of singling out, the most significant con-
sequence of our analysis is that k -anonymity does not prevent
singling out (and likewise `-diversity and t-closeness). Thus, it is
insufficient for rendering personal data anonymous and except-
ing them of GDPR regulation. If PSO security is a necessary
condition for GDPR anonymization, then something more is
required. On the other hand, differential privacy might provide
the necessary level of protection. At least it is not ruled out by
our analysis.

More abstractly, we believe that self-composition is an essen-
tial property of any reasonable privacy concept. Our finding
that PSO security does not self-compose is evidence that self-
composition should not be taken for granted, but be a criterion
considered when developing privacy concepts.

One may still claim that the assessments made in ref. 5 should
be taken as ground truth and that the Article 29 Working Party
meant for any interpretation of singling out to be consistent with
these assessments. According to this view, the protection pro-
vided by k -anonymity implicitly defines the meaning of singling
out (partially or in full). Such a position would be hard to jus-
tify. To the best of our knowledge, the assessments made by the
Article 29 WP were not substantiated by a mathematical anal-
ysis. Defining privacy implicitly as the guarantee provided by
particular techniques is an approach proven to fail (1).
Is PSO Security a Good Privacy Concept? A predicate singling out
attack can be a stepping stone toward a greater harm, even in
settings where isolation alone may not. It may enable linking a
person’s record in the dataset to some external source of infor-
mation (15), or targeting individuals for differential treatment.
As such, it is meaningful as a mode of privacy failure, both in the
GDPR context and otherwise.

While we believe that PSO security is relevant for the GDPR
as a necessary property of techniques that anonymize personal
data, we do not consider it sufficiently protective by itself. First,
singling out is only one mode of privacy failure. Many other
failure modes have been considered, including reconstruction
attacks, membership attacks, inference, and linkage. Second,
our definition considers a setting where the underlying data are
drawn from some (unknown) underlying distribution, an assump-
tion that is not true in many real-life contexts. In such contexts,

PSO security may not prevent singling out under the GDPR.
Lastly, the incomposability of PSO security renders it inadequate
in isolation and suggests that it should be complemented by other
privacy requirements.

3. Notation
A dataset x = (x1, . . . , xn) consists of n elements taken from
the data universe X = {0, 1}d . We consider datasets where each
entry xi is independently sampled from a fixed probability distri-
bution D over X . We denote by Ud a random variable sampled
uniformly at random from {0, 1}d .

A mechanism M is a Turing machine that takes as input a
dataset x∈X n . Mechanisms may be randomized and interactive.

A predicate is a binary-valued function p :X →{0, 1}. We
define the weight of a predicate p to be wtD(p),Prx∼D [p(x ) =

1]. For a dataset x∈X n , let p(x), 1
n

∑n
i=1 p(xi). We occasion-

ally use indicator notation I() to define a predicate; for example,
p(x ) = I(x ∈A) equals 1 if x ∈A and 0 otherwise.

For the purposes of asymptotic analyses, we use the number
of rows n in a dataset as the complexity parameter. We omit
the dependence of d = d(n) on n.‖ A function f (n) is negligi-
ble, denoted f (n) = negl(n), if for all c> 0, there exists nc > 0
such that f (n)≤n−c for all n >nc . Informally, this means that
f (n) approaches 0 faster than any inverse polynomial function
for large enough n .

Many of our results apply to all data distributions with suffi-
cient “min-entropy,” a measure of randomness useful for cryp-
tography. The min-entropy of a probability distribution D over
a universe X is H∞(D) =− log (maxy∈X Prx∼D [x = y ]). The
relevant results apply to all distributions with even a moder-
ate amount of min-entropy: H∞(D)>ω(log(n)) + log(1/α) for
some α= negl(n) (e.g., H∞(D)> log1+c(n) for c> 0). We will
call such distributions “min-entropic.”

Fact 3.1. For any min-entropic D and any weight w ∈ [0, 1], there
exist predicates p−, p+ and a negligible function negl(n) such that
wtD(p−)∈ [w − negl(n),w ] and wtD(p+)∈ [w + negl(n)] [using
the Leftover Hash Lemma (16)].

4. Security Against Predicate Singling Out
Consider a data controller who has in its possession a dataset x =
(x1, . . . , xn) consisting of n rows sampled independently from a
probability distribution D . We think of the dataset as containing
the personal data of n individuals, one per row. The data con-
troller publishes the output of an anonymization mechanism M
applied to the dataset x. A predicate singling out adversary A
is a nonuniform probabilistic Turing machine with access to the
published output M (x) and produces a predicate p :X →{0, 1}.
We abuse notation and write A(M (x)), regardless of whether
M is an interactive or noninteractive mechanism. For now, we
assume that all adversaries have complete knowledge of D and
are computationally unbounded.∗∗

The Article 29 Working Party describes singling out as “iso-
lat[ing] some or all records which identify an individual in [a]
dataset” (5). This is done by “narrowing down [to a singleton] the
group to which [the individual] belongs” by specifying “criteria
which allows him to be recognized” (7). We call this row isolation.

Definition 4.1 (Row Isolation): A predicate p isolates a row in a
dataset x if there exists a unique x ∈ x such that p(x ) = 1. That is,
if p(x) = 1/n . We denote this event iso(p, x).

‖More formally, we can consider an ensemble of data domains X = {Xn =

{0, 1}d(n)}n∈N and an ensemble of distributions D= {Dn}n∈N, where each Dn is a
distribution over Xn.

**As is typical in cryptography, strengthening the adversary to be nonuniform (including
possibly having full knowledge of the distribution D) yields stronger security definition.
See Reflections on Modeling, where we reexamine these choices.
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It is tempting to require that an anonymization mechanism M
only allows an adversary to isolate a row with negligible probabil-
ity, but this intuition is problematic. An adversary that does not
have access to M—a trivial adversary—can output a predicate p
with wtD(p)≈ 1/n (by Fact 3.1) and thereby isolate a row in x
with probability(

n

1

)
·wtD(p) · (1−wtD(p))n−1≈ (1− 1

n
)n−1≈ 1

e
≈ 37%.

In Bounding the Baseline, we will see that, in many cases, the triv-
ial adversary need not know the distribution to produce such a
predicate.

A. Security Against Predicate Singling Out. We first define a mea-
sure of an adversary A’s success probability in isolating a row
given the output of a mechanism M while being restricted to
output a predicate p of at most a given weight w .

Definition 4.2 (Adversarial Success Probability): Let D be a dis-
tribution over X . For mechanism M , an adversary A, a dataset
size n ∈N, and a weight w ≤ 1/n let

SuccA,Mw (n,D), Pr
x←Dn

p←A(M (x))

[iso(p, x)∧wtD(p)≤w ].

Instead of considering the absolute probability that an adversary
isolates a row, we consider the increase in probability rela-
tive to a baseline risk: the probability of isolation by a trivial
adversary, T.

Definition 4.3 (Trivial Adversary): A predicate singling out
adversary T is trivial if the distribution over outputs of T is
independent of M (x). That is, T(M (x)) =T(⊥).

Definition 4.4 (Baseline): For n ∈N and weight w ≤ 1/n ,

baseD(n,w), max
Trivial T

SuccT,⊥w (n,D).

The baseline lets us refine the Working Party’s conception of sin-
gling out as row isolation. We require that no adversary should
have significantly higher probability of isolating a row than a trivial
adversary, when both output predicates of weight less than w .

Definition 4.5 (Security Against Predicate Singling Out): For
ε(n)≥ 0, δ(n)≥ 0, wmax(n)≤ 1/n , we say a mechanism M is
(ε, δ,wmax)-secure against predicate singling out ((ε, δ,wmax)-
PSO secure) if for all A, D , n , and w ≤wmax:

SuccA,Mw (n,D)≤ eε(n) · baseD(n,w) + δ(n).

We often omit explicit reference to the parameter n for ε, δ,
wmax, and to the distribution D when it is clear from context.

The definition is strengthened as ε and δ get smaller. As shown
next, base(n,w) = negl(n) when w = negl(n). This is the most
important regime of Definition 4.5, as such predicates not only
isolate a row in the dataset, but likely also isolate an individual in
the entire population.

We say a mechanism is PSO secure if for all wmax = negl(n)
there exists δ′= negl(n) such that M is (0, δ′,w(n)wmax)-PSO
secure. Observe that for all ε=O(log n), δ= negl(n), and
wmax≤ 1/n , (ε, δ,wmax)-PSO security implies PSO security.††

B. Bounding the Baseline. In this section, we characterize the base-
line over intervals in terms of a simple function B(n,w). For
n ≥ 2 and a predicate p of weight w , the probability over x∼Dn

that p isolates a row in x is

B(n,w),n ·w · (1−w)n−1.

††For any w′(n) = negl(n), let δ′(n) = eε(n)base(n, w′(n)) + δ(n) = negl(n).

B(n,w) is maximized at w = 1/n and strictly decreases moving
away from the maximum. (1− 1/n)n−1 approaches e−1 as n→
∞ and does so from above (recall that (1− 1/n)n ≈ e−1 even for
relatively small values of n).

Claim 4.1. For all n , w ≤ 1/n , and D , baseD(n,w)≤B(n,w).
For min-entropic D , baseD(n,w)≥B(n,w)−negl(n).

Proof: Observe that for any randomized trivial adversary
T, there exists a deterministic trivial adversary T′ such that
SuccT

′,⊥
w (n)≥SuccT,⊥w (n). Therefore, without loss of general-

ity, one can assume that the trivial adversary that achieves the
baseline success probability is deterministic.

A deterministic T′ always outputs a predicate p′ of weight
wt(p′) =w ′.

Pr
x∼Dn

[iso(p′, x)] =

(
n

1

)
·w ′ · (1−w ′)n−1.

Therefore,

base(n,w) = sup
w′≤w

w′=wt(p′)

nw ′(1−w ′)n−1≤B(n,w),

where the last inequality follows from the monotonicity of
B(n,w ′) in the range w ′ ∈ [0,w ]. By Fact 3.1, there exists p′ such
that wt(p′)≥w − negl(n). Hence, base(n,w)≥B(n,wt(p′))≥
B(n,w)−negl(n). �

Examples: For a (possibly randomized) function f , consider the
mechanism Mf that on input x = (x1, . . . , xn) outputs Mf (x) =
(f (x1), . . . , f (xn)). Whether Mf is PSO secure depends on the
choice of f :

• Identity function: If f (x ) = x , then Mf (x) = (x1, . . . , xn) and
every distinct xi ∈ x can be isolated by a predicate pi : x 7→ I(x =
xi). If Prx∼D [x = xi ] = negl(n) (e.g., when D is uniform over
{0, 1}ω(log(n)) or D is min-entropic), then wtD(pi) = negl(n).
Hence, Mf is not PSO secure.

• Pseudonymization: If f is one-to-one and public, it offers no
more protection than the identity function. For unique xi ∈ x
and yi = f (xi), the predicate pi : x 7→ I(f (x ) = yi) isolates xi . If
D is min-entropic, wtD(pi) = negl(n). Observe that Mf is not
PSO secure, even if f −1 is not efficiently computable. Further-
more, f being many-to-one does not guarantee PSO security.
For instance, suppose the data are uniform over {0, 1}n and
f : {0, 1}n→{0, 1}n/2 outputs the last n/2 bits of an input
x . Mf is not PSO secure. In fact, it is possible to single
out every row x ∈ x using the same predicates pi as above.
Together, these observations challenge the use of some forms
of pseudonymization.

• Random function: If f (x ) is a secret, random function, then
Mf (x) carries no information about x and provides no benefit
to the adversary over a trivial adversary. For every x, a trivial
adversary T can perfectly simulate any adversary A(Mf (x)) by
executing A on a random input. Hence, Mf is PSO secure.

C. Reflections on Modeling. In many ways, Definition 4.5 demands
the sort of high level of protection typical in the foundations
of cryptography. It requires a mechanism to provide security
for all distributions D and against nonuniform, computationally
unbounded adversaries.‡‡ The main weakness in the required

‡‡It is reasonable to limit the adversary in Definition 4.5 to polynomial time. If we
restricted our attention to distributions with moderate min-entropy, the results in this
paper would remain qualitatively the same: Our trivial adversaries and lower bounds
are all based on efficient and uniform algorithms; our upper bounds are against
unbounded adversaries. Relatedly, restricting to min-entropy distributions would allow
us to switch the order of quantifiers of D and T in the definition of the baseline without
affecting our qualitative results.
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protection is that it considers only data that are independent
and identically distributed (i.i.d.), whereas real-life data cannot
generally be modeled as i.i.d.

Any mechanism that purports to be a universal anonymizer
of data under the GDPR—by transforming personal data into
nonpersonal data—must prevent singling out. Our definition is
intended to capture a necessary condition for a mechanism to be
considered as rendering data sufficiently anonymized under the
GDPR. Any mechanism that prevents singling out in all cases
must prevent it in the special case that the data are i.i.d. from
a distribution D and for wmax = negl(n). We view a failure to
provide security against predicate singling out (Definition 4.5) as
strong evidence that a mechanism does not prevent singling out
as conceived of by the GDPR.

On the other hand, satisfying Definition 4.5 is not sufficient for
arguing that a mechanism renders data anonymized under the
GDPR. Singling out is only one of the many “means reasonably
likely to be used” (4) to identify a person in a data release. Fur-
thermore, the definition considers only i.i.d. data; it may not even
imply that a mechanism prevents singling out in other relevant
circumstances.

It is important that our definitions are parameterized by the
weight w . An unrestricted trivial adversary can isolate a row
with probability of about 1/e ≈ 37% by outputting a predicate
of weight about 1/n . If 37% was used as the general baseline
(without consideration of the weight of the predicate), then the
definition would permit an attacker to learn very specific infor-
mation about individuals in a dataset, as long as it does so with
probability less than 37%. For instance, such a definition would
permit a mechanism that published a row from the dataset with
a one in three chance.

Remark 4.2. The baseline is also negligible when the trivial adver-
sary is required to output predicates with weight at least ω(log n/n).
It is not clear to the authors how beneficial finding a predicate in this
regime may be to an attacker. This high-weight regime is analyzed
analogously in ref. 9.

5. Properties of PSO Security
Two desirable properties of privacy concepts are 1) immunity to
postprocessing (i.e., further processing of the outcome of a mech-
anism, without access to the data, should not increase privacy
risks), and 2) closure under composition (i.e., a combination of
two or more mechanisms which satisfy the requirements of the pri-
vacy concept is a mechanism that also satisfies the requirements,
potentially with worse parameters). It is easy to see that PSO secu-
rity withstands postprocessing. However, it does not withstand
composition, and we give two demonstrations for this fact.

First, we consider mechanisms which count the number of
dataset rows satisfying a property and show that every such
mechanism is PSO secure. However, there exists a collection
of ω(log(n)) counts which allows an adversary to isolate a row
with probability arbitrarily close to one using a predicate with
negligible weight. Second, we construct a (less natural) pair of
mechanisms that are individually PSO secure, but together allow
the recovery of a row in the dataset. This construction borrows
ideas from ref. 17.

Not being closed under composition is a significant weakness
of the notion of PSO security. Our constructions rely on very
simple mechanisms that we expect would be considered as pre-
venting singling-out attacks (as a legal matter), even under other
formulations of the concept. As such, it may well be that nonclo-
sure under composition is an inherent property of the concept of
singling out.

As a policy matter, we believe that closure under composition
(as well as immunity to postprocessing) should be considered
prerequisites for any privacy concept deemed sufficient to pro-
tect individuals’ sensitive data. Pragmatically, the fact that PSO
security is not closed under composition suggests that this con-

cept is best used for disqualifying privacy technology (i.e., if it is
not PSO secure). This concept should not be used alone to certify
or approve the use of any technology.

A. A PSO-Secure Counting Mechanism. For any predicate q :X →
{0, 1}, we define the corresponding Counting Mechanism:

Algorithm 1: Counting Mechanism M#q:

input: x= (x1, . . . , xn)
return |{1≤ i≤n :q(xi)= 1}|

For example, consider the least-significant bit predicate lsb,
that takes as input a string x ∈{0, 1}d and outputs the first bit
x [1]. The corresponding Counting Mechanism M#lsb returns the
sum of the first column of x.

M#q is PSO secure for any predicate q . This is a corollary of
the following proposition.

Proposition 5.1. For all A, n > 0, w ≤ 1/n , and M :X n→Y ,
SuccA,Mw (n)≤ |Y | · base(n,w).

Proof : We define a trivial adversary T such that for all
A, SuccT,⊥w (n)≥ 1

|Y | · Succ
A,M
w (n). The proposition follows by

the definition of base(n,w). T samples a random y ∈R Y and
returns p←A(y). For all datasets x, there exists y∗= y∗(x)∈Y
such that

Pr
p←A(y∗)

[iso(p, x)∧wt(p)≤w ]

≥ Pr
p←A(M (x))

[iso(p, x)∧wt(p)≤w ].

For all x, Pry∈RY [y = y∗] = 1
|Y | . Therefore,

SuccT,⊥w (n) = Pr
x←Dn

y∈RY
p←A(y)

[iso(p, x)∧wt(p)≤w ]≥ SuccA,M
w (n)

|Y | .

�
As exact counts are not differentially private, the PSO security of
M#q demonstrates that differential privacy (Definition 6.1) is not
necessary for PSO security. The security of a single exact count
easily extends to O(1)-many counts (even adaptively chosen), as
the size of the codomain grows polynomially.

B. Failure to Compose. Our next theorem states that a fixed set of
ω(log(n)) counts suffices to predicate single out with probability
close to e−1. For a collection of predicates Q = (q0, . . . , qm), let
M#Q(x), (M#q0(x), . . . ,M#qm (x)). Let D =Ud be the uniform
distribution over X = {0, 1}d for some d =ω(log(n)).

Theorem 5.2. For any m ≤ d , there exists a Q and A such that

Succ
A,M#Q

2−m (n)≥B(n, 1/n)− negl(n).

Choosing m =ω(log(n)) yields 2−m = negl(n).
Proof: Treating x ∈{0, 1}d as a binary number in [0, 2d − 1],

let q0(x ) = I(x < 2d/n). Observe that wt(q0) = 1/n −negl(n).
For i ∈{1, . . . ,m}, define the predicate qi(x ), (q0(x )∧ x [i ]),

and let yi =M#qi (x). Observe that if it happens that q0 isolates
row j ∗ of x, then yi = xj∗ [i ]. Consider the deterministic adversary
A that on input M#Q(x) = (y0, . . . , ym) outputs the predicate

p(x ) = q0(x )∧

(
m∧
i=1

(x [i ] = yi)

)
.

Observe that iso(q0, x) =⇒ iso(p, x) and that by construction
wt(p)≤ 2−m . Thus,
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Succ
A,M#Q

2−m (n) = Pr
x←Un

d
p←A(M#Q (x))

[iso(p, x)]

≥ Pr
x←Un

d
p←A(M#Q (x))

[iso(q0, x)]

≥B(n, 1/n)− negl(n).

�
Remark 5.3. When the attack succeeds, all of the predicates

qi match 0 or 1 rows in x. It may seem that an easy way to
counter the attack is by masking low counts, a common measure
taken, e.g., in contingency tables. However, it is easy to modify
the attack to only use predicates Q matching Θ(n) rows using
one extra query. This means that restricting the mechanism to sup-
press low counts cannot prevent this type of attack. Let q∗ be a
predicate with wtUm (q∗) = 1/2 (e.g., parity of the bits), and let
q∗i = qi ∨ q∗. The attack succeeds whenever q∗(x) = q∗0 (x) + 1. If
q∗(x ) and q0(x ) are independent, then this occurs with probability
at least 1

2
·B(n, 1/n)− negl(n). As before, the probability can be

amplified to 1−negl(n).
While a single count is PSO secure for any data distribu-

tion, the above attack against ω(log(n)) counts applies only to
the uniform distribution Ud . We can extend the attack to gen-
eral min-entropic distributions D at the cost of randomizing the
attacked mechanism M (i.e., the set of predicates Q). Further-
more, for min-entropic D , this probability can be amplified to
1−negl(n) by repetition (9).

C. Failure to Compose Twice. Borrowing ideas from refs. 17 and 18,
we construct two mechanisms Mext and Menc which are individu-
ally PSO secure (for arbitrary distributions), but which together
allow an adversary to single out with high probability when the
data are uniformly distributed over the universe X = {0, 1}d .
With more work, this composition attack can be extended to
more general universes and to min-entropic distributions.

Theorem 5.4. Mext and Menc described below are PSO secure.
For m =ω(log(n)) and m ≤min(d , (n − 1)/4), X = {0, 1}d , and
D =Ud the uniform distribution over X , there exists an adversary
A such that

SuccA,MExtEnc

2−m (n)≥ 1−negl(n),

where MExtEnc = (Mext,Menc).
We divide the input dataset into two parts. We treat xext =

(x1, . . . , xn−1) as a “source of randomness” and xn as a
“messsage.” Mext(x) outputs an encryption secret key s based on
the rows in xext, using the von Neumann extractor as described in
Algorithm 2.

Menc(x) runs s←Mext. If s 6=⊥, it outputs c= s⊕ xn [1 :m]
(using s as a one-time pad to encrypt the first m bits of xn); oth-
erwise, it outputs ⊥. Alone, neither s nor c allows the adversary
to single out, but using both, an adversary can recover xn [1 :m]
and thereby predicate single out the last row.

Proof Outline: We must prove that Mext and Menc are PSO
secure and that MExtEnc is not. Note that the security of Mext and

Menc do not follow merely from the fact that their outputs are
nearly uniform.§§

Mext is (ln(2), 0, 1/n)-PSO secure. Consider the mechanism
M σ

ext(x) that samples a random permutation σ : [n]→ [n] and out-
puts Mext(σ(x)). For any x, M σ

ext(x) is uniform conditioned on
not outputting ⊥. Its security is equivalent to a mechanism out-
putting a single bit of information, which itself is (ln(2), 0, 1/n)-
PSO secure by Proposition 5.1 (and therefore also PSO-secure by
the observation at the end of Security Against PSO). To complete
the proof, one can show that SuccA,Mext

w (n) = Succ
A,Mσ

ext
w (n). �

Menc is PSO-secure. We separately consider the two possible
values of p(xn), where p is the predicate returned by A. Let
SuccA,Menc

w (n) = γ0 + γ1, where

γb ,Pr [iso(p, x)∧wtD(p)≤w ∧ p(xn) = b].

The output of Menc(x) is deterministic and information-
theoretically independent of xn . Thus, for any w = negl(n),

γ1≤Pr
x,A

[p(xn) = 1 |wtD(p)≤w ]≤w = negl(n).

If A singles out and p(xn) = 0, then it is effectively singling out
against the subdataset x−n = (x1, . . . , xn−1). That is,

γ0 = Pr
x,A

[iso(p, x−n)∧wtD(p)≤w ∧ p(xn) = 0].

We construct B that tries to single out against mechanism Mext

using A. On input s, B samples x ′n ∼D and runs p←A(s⊕ x ′n [1 :
m]).

SuccB,Mext
w (n)≥Pr

[
iso(p, x−n)∧wtD(p)≤w ∧ p(x ′n) = 0

]
·Pr[p(xn) = 0 |wtD(p)≤w ]

≥ γ0 · (1−negl(n)).

By the PSO security of Mext, γ0 is negligible. �
Insecurity of MExtEnc for D = Ud . The output of MExtEnc(x) is a pair
(s, c). If (s, c) = (⊥,⊥), A aborts. By a Chernoff Bound, for m ≤
(n − 1)/4, Prx[s=⊥]≤ e−(n−1)/16 = negl(n). If (s, c) 6= (⊥,⊥),
A recovers xn = c⊕ s and outputs the predicate

p(x ) = (x [1 :m] = xn [1 :m]).

By the choice of m =ω(log(n)), wtUd (p) = 2−m <negl(n).
Pr[iso(p, x) | s 6=⊥] = 1−Pr[∃j 6=n : xj [1 :m] = xn [1 :m]] = 1−
n · 2−m > 1− negl(n). The bound on SuccA,MExtEnc

2−m follows,
completing the proof of the claim and the theorem. �

D. Singling Out and Failure to Compose. The failure to compose
demonstrated in Theorem 5.2 capitalizes on the use of multiple
counting queries. Such queries underlie a large variety of statis-
tical analyses and machine learning algorithms. We expect that
other attempts to formalize security against singling out would
also allow counting queries. If so, our negative composition
results may extend to other formalizations.

The failure to compose demonstrated in Theorem 5.4 is more
contrived. We expect that other attempts to formalize security
against singling out would allow mechanisms like Mext—ones
where for every input x randomly permuting the input and
applying the mechanism results in the uniform distribution over
outputs (as in the proof of Theorem 5.4). It is less clear to us
whether other possible formalizations of security against singling
out would allow a mechanism like Menc. If it is to compose, it
likely must not.

§§For example, the mechanism that outputs x1 may be uniform, but it trivially allows
singling out. Security would follow if the output was nearly uniform conditioned on x,
but Mext does not satisfy this extra property.
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6. Differential Privacy Provides PSO Security
In this section, we demonstrate that differential privacy implies
PSO security. Because exact counts are not differentially private
but are PSO secure (Proposition 5.1), we have already shown that
PSO security does not imply differential privacy.

Recall that we model x∈X n as containing personal data of
n distinct individuals. For x, x′ ∈X n , we write x∼ x′ if x and x′

differ on the data of exactly one individual xi .
Definition 6.1 [Differential Privacy (10, 19)] A randomized

mechanism M :X n→T is (ε, δ)-differentially private if for all
x, x′ ∈X n , x∼ x′ and for all events S ⊆T ,

Pr[M (x)∈S ]≤ eε Pr[M (x′)∈S ] + δ,

where the probability is taken over the randomness of the
mechanism M .

Our analysis relating PSO security to differential privacy is
through a connection of both concepts to statistical generaliza-
tion. For differential privacy, this connection was established in
refs. 13 and 14. We use a variant of the latter from ref. 20:

Lemma 6.1 (Generalization Lemma). For all distributions
D and for all (ε, δ)-differentially private algorithms A : x 7→ p
operating on a dataset x and outputting a predicate p :X →{0, 1}

E
x∼Dn

[
E

p←A(x)
[p(x)]

]
≤ eε · E

x∼Dn

[
E

p←A(x)
[wtD(p)]

]
+ δ.

Theorem 6.2. For all ε=O(1), δ= negl(n), and wmax≤ 1/n ,
if M is (ε, δ)-differentially private, then M is (ε′, δ′,wmax)-PSO
secure for

ε′= ε+ (n − 1) ln

(
1

1−wmax

)
≤ ε+ 1 and δ′=nδ+ negl(n).

In particular, for wmax = o(1/n), ε′= ε+ o(1).
Proof: For simplicity of exposition, we present the proof for

min-entropic distributions D . The proof for general distributions
follows from a similar argument.

Given p←A(M (x)), w ≤wmax, and D , define the
predicate p∗:

p∗(x )≡

{
p(x ) if wtD(p)≤w

0 if wtD(p)>w
.

Observe that wtD(p∗)≤w . The predicate p∗ can be com-
puted from p, D , and w without further access to x. Because
differential privacy is closed under postprocessing, if M is
(ε, δ)-differentially private, then the computation that produces
p∗ is (ε, δ)-differentially private as well. Recall iso(p, x) ⇐⇒
p(x) = 1/n .

SuccA,Mw (n) = Pr
x,p

[p(x) = 1/n ∧wtD(p)≤w ]

≤Pr
x,p

[p(x)≥ 1/n ∧wtD(p)≤w ]

= Pr
x,p

[p∗(x)≥ 1/n]

≤n · E
x,p

[p∗(x)]

≤n · (eεw + δ) (Lemma 6.1)

= eε
B(n,w)

(1−w)n−1
+nδ

≤ eε
base(n,w)

(1−w)n−1
+nδ+ negl(n) (Claim 4.1)

≤ eε
′
base(n,w) + δ′.

�

7. Does k-Anonymity Provide PSO Security?
k -anonymity (11, 12) is a strategy intended to help a data holder
“release a version of its private data with scientific guarantees
that the individuals who are the subjects of the data cannot be
re-identified while the data remain practically useful” (12). It is
achieved by making each individual in a data release indistin-
guishable from at least k − 1 individuals along certain attributes.
Typically, a k -anonymized dataset is produced by subjecting it to
a sequence of generalization and suppression operations.

In this section, we analyze the extent to which k -anonymity
provides PSO security. We show that a k -anonymized dataset
typically provides an attacker information sufficient to PSO with
constant probability. This result challenges the determination of
the Article 29 Working Party.¶¶

A. Preliminaries. Let (A1, . . . ,Am) be attribute domains. A
dataset x = (x1, . . . , xn) is a collection of rows xi = (ai,1, . . . ,
ai,m), where ai,j ∈Aj . For subsets âi,j ⊆Aj , we view yi =
(âi,1, . . . , âi,m) as a set in the natural way, writing xi ∈ yi if
∀j ∈ [m], ai,j ∈ âi,j . We say that a dataset y = (y1, . . . , yn) is
derived from x by generalization and suppression if ∀i ∈ [n],
xi ∈ yi . For example, if (A1,A2,A3) correspond to “5-Digit ZIP
Code,” “Gender,” and “Year of Birth,” then it may be that xi =
(91015,F , 1972) and yi = (91010–91019, ?, 1970–1975), where ?
denotes a suppressed value.

k -anonymity aims to capture a sort of anonymity in a (very
small) crowd: A data release y is k -anonymous if any individual
row in the release is indistinguishable from k − 1 other individual
rows. Let count(y, y), |{i ∈ [n] : yi = y}| be the number of rows
in y which agree with y .∗∗∗

Definition 7.1 (k-Anonymity [Rephrased from Ref. 12]): For k ≥
2, a dataset y is k -anonymous if count(y, yi)≥ k for all i ∈ [n]. An
algorithm is called a k -anonymizer if on an input dataset x its out-
put is a k -anonymous y which is derived from x by generalization
and suppression.

For k -anonymous dataset y = (y1, . . . , yn), let φ1(x ) = I(x ∈
y1) be the predicate that returns 1 if y1 could have been derived
from x by generalization and suppression. Let xφ1 = {x ∈ x :
φ1(x ) = 1}. We assume for simplicity that k -anonymizers always
output y such that |xφ1 |= k , but the theorem generalizes to
other settings.

B. k -Anonymity Enables Predicate Singling Out. Before presenting
the main theorem of this section, we provide an example of a
very simple k -anonymizer that fails to provide security against
predicate singling out. Let D =Un be the uniform distribution
over U = {0, 1}n .

Consider the k -anonymizer that processes groups of k rows
in index order and suppresses all bit locations where any of the
k rows disagree. Namely, for each group g = 1, . . . ,n/k of k
rows (xgk+1, . . . , xgk+k)), it outputs k copies of the string yg ∈
{0, 1, ?}n , where yg [j ] = b ∈{0, 1} if xgk+1[j ] = · · ·= xgk+k [j ] =
b (i.e., all of the k rows in the group have b as their j th bit) and
yg [j ] = ? otherwise.

The predicate φ1(x ) evaluates to 1 if y1[j ]∈{x [j ], ?} for all j ∈
[n] and evaluates to 0 otherwise. Namely, φ1(x ) checks whether
x agrees with y1 (and, hence, with all of x1, . . . , xk)) on all
nonsuppressed bits.

In expectation, n/2k−1 positions of y1 are not suppressed. For
large enough n , with high probability over the choice of x, at least

¶¶Our results hold equally for `-diversity (21) and t-closeness (22), which the Article 29
Working Party also concludes prevent singling out.

***Often count is paramaterized by a subset Q of the attribute domains called a quasi-
identifier. This parameterization does not affect our analysis, and we omit it for
simplicity.
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n
2·2k−1 positions in y1 are not suppressed. In this case, wtD(φ1)≤
2
− n

2k which is negl(n) for any constant k .
We now show how φ1 can be used adversarially. In expecta-

tion, n(1− 2−(k−1))≥n/2 positions of y1 are suppressed. For
large enough n , with high probability over the choice of x at
least n/4 of the positions in y1 are suppressed. Denote these
positions i1, . . . , in/4. Define the predicate pk (x ) that evalu-
ates to 1 if the binary number resulting from concatenating
x [i1], x [i2], . . . , x [in/4] is greater than 2n/4/k and 0 otherwise.
Note that wtD(pk )≈ 1/k and, hence, pk isolates within group
1 with probability ≈ 1/e ≈ 0.37, as was the case with the trivial
adversary described after Definition 4.1.

An attacker observing φ1 can now define a predicate p(x ) =
φ1(x )∧ pk (x ). By the analysis above, wt(p) is negligible (as
it is bounded by wt(φ1)) and p(x ) isolates a row in x with
probability≈ 0.37. Hence, the k -anonymizer of this example fails
to protect against singling out.

Theorem 7.1 captures the intuition from this example and gen-
eralizes it, demonstrating that k -anonymity does not typically
protect against predicate singling out.

Theorem 7.1. For any k ≥ 2, there exists an algorithm A such that
for all min-entropic D , all k -anonymizers Anon, and all w ≤ 1/n:

SuccA,Anonw (n)≥ η ·B(k , 1/k)− negl(n)≈ η

e
,

where η, Pr
x←Dn

y←Anon(x)

[wtD(φ1)≤w ].

To predicate single out, the A must output a predicate that
both isolates x and has low weight. The theorem states that these
two requirements essentially decompose: η is the probability that
the predicate k -anonymizer induces a low-weight predicate φ1,
and B(k , 1/k) is the probability that a trivial adversary pred-

icate singles out the subdataset xφ1 of size k . Algorithms for
k -anonymity generally try to preserve as much information in the
dataset as possible. Thus, we expect such algorithms to typically
yield low-weight predicates φ1 and correspondingly high values
of η.

Proof Outline: A will construct some predicate q and output the
conjunction p ,φ1 ∧ q . Noting that wtD(p)≤wtD(φ1), and that
iso(q , xφ1) =⇒ iso(p, x),

SuccA,Anonw (n)≥Pr [iso(q , xφ1)∧wtD(φ1)≤w ]

= η ·Pr
[
iso(q , xφ1)

∣∣wtD(φ1)≤w
]
. [1]

It remains only to show that for min-entropic distributions D ,
Pr
[
iso(q , xφ1)

∣∣wtD(φ1)≤w
]
≥B(k , 1/k)−negl(n). This claim

is reminiscent of Fact 3.1, but with an additional challenge. The
rows in xφ1 are not distributed according to D ; instead, they are a
function of Anon and the whole dataset x. They are not indepen-
dently distributed, and even their marginal distributions may be
different from D . Nevertheless, for the purposes of the baseline,
the rows in xφ1 have enough conditional min-entropy to behave
like random rows. �
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