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Abstract: We investigate the structural changes to lipid membrane that ensue from the addition
of aliphatic alcohols with various alkyl tail lengths. Small angle neutron diffraction from flat lipid
bilayers that are hydrated through water vapor has been employed to eliminate possible artefacts
of the membrane curvature and the alcohol’s membrane-water partitioning. We have observed
clear changes to membrane structure in both transversal and lateral directions. Most importantly,
our results suggest the alteration of the membrane-water interface. The water encroachment has
shifted in the way that alcohol loaded bilayers absorbed more water molecules when compared to
the neat lipid bilayers. The experimental results have been corroborated by molecular dynamics
simulations to reveal further details. Namely, the order parameter profiles have been fruitful in
correlating the mechanical model of structural changes to the effect of anesthesia.

Keywords: general anesthetics; alcohols; lipid bilayers; small-angle neutron diffraction; molecular
dynamics simulations; bilayer thickness; area per lipid; order parameter; lateral pressure

1. Introduction

Alcohols and other general anesthetics have been used in surgical operations for over the
century [1]. Nevertheless, the mechanism of anesthesia has not been elucidated fully. Most of the
successful explanations over the years recognized the place of their action being either proteins or lipid
membrane [2-4]. However, the hypothesis based on the unspecific interactions between anesthetics
and membrane lipids may be more plausible due to several facts, one of them being a wide spectrum
of membrane proteins that are affected. In any of the cases, the general anesthetics, including aliphatic
alcohols, offer an exciting example on the structure-function correlation sought that is out in biological
membranes. The interest comes from the fact that membranes represent the interface between the
cell and its environment, and from the possibility for controlling their properties and functionality
through the addition of small molecules. Intriguingly, such an addition can be spontaneous and/or
administered on purpose.

The general anesthetic activity of long-chain normal primary alcohols (abbreviation CnOH where
n is the number of carbons in the alkyl chain) depends on the alkyl chain length [5]. The general
anesthetic potency of CnOH, expressed as the reciprocal value of the effective concentration causing
the 50% inhibition of the righting reflex in tadpoles, increases up to C110H and then decreases;
the homologs with n > 13 are non-anesthetic. This type of chain length dependence was observed also
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in biocidal potencies of CnOHs (reviewed in [6]), where cut off was found in the range of n = 10-13
and is typical for the biological activities of various homologous series of amphiphilic compounds
(reviewed in [7]).

Amphiphilic molecules, like long chain alcohols, partition between lipid bilayers and aqueous
phase, while the partition coefficient increases exponentially with their alkyl chain length n [8].
Alcohol molecules intercalate into membranes and change their structural and/or dynamical
properties. This, in turn, might affect membrane-bound protein conformations and result in protein
functional changes that are involved in general anesthesia. Although it is not known which structural
perturbations are responsible for these effects, it is evident that the exploration of the long chain
alcohol interactions with model membrane can contribute to a better understanding of the cut-off
dependencies in various biological activities of homologous series of amphiphilic compounds [9,10].
This is then why the interactions of long chain alcohols with lipid bilayers are widely studied.

Experimental data describing the influence of long chain alcohols on structural properties,
like bilayer thickness and area per lipid at the bilayer-water interface, are not unequivocal. Small-angle
X-ray diffraction from the fluid multilamellar dimyristoyl-phosphatidylcholine (DMPC) at a relatively
low hydration (H,O:DMPC = 10 mol:mol) showed that the increase of C8OH concentration up to
C8OH:DMPC = 1.5 mol:mol results in the decrease of the lamellar repeat distance; simultaneously;,
the surface area per lipid molecule at the bilayer-water interface increases, while the bilayer thickness
remains approximately constant [11]. Another X-ray diffraction study on dioleoylphosphatidylcholine
(DOPC) and CnOHs (1 = 8-18) showed that bilayer thickness and lateral area per lipid increase with
the alkyl chain length n, where short-chain CnOHs (1 < 12) seem to decrease and long-chain CnOHs
(n > 12) increase the bilayer thickness with respect to that of a neat DOPC bilayer [12]. Small-angle
neutron scattering from unilamellar vesicles of similar systems revealed later that polar region thickness
decreases as a function of alkyl chain length and CnOH:DOPC molar ratio [6]. At a constant lipid
molar ratio, bilayer thickness and the number of water molecules penetrating the polar head group
region increased with the alcohol chain length. Bilayers were made thinner by the shortest alcohol
C80OH and were not changed appreciably by the longest homolog C180H. Lateral area per lipid was
found to increase with n.

On the other hand, molecular dynamics simulations predicted an increase in the thickness and
a decrease in the surface area per lipid for CSOH, C100H and C140H homologs incorporated in
fluid DMPC bilayers [13]. Simulations also predicted changes in the intrabilayer lateral pressure
profile [14]. The latter results in particular, support the hypothesis that CnOHs affect the postsynaptic
ligand-gated ion channels that are involved in anesthesia by shifting the distribution of lateral pressure
within the bilayer [15,16]. This can also be supported by the experimentally observed changes in
lateral pressure in DOPC multilamellar liposomes caused by CnOHs (n = 12-18) using the excimer
1,2-dipyrenedecanoyl-sn-glycero-3-phosphatidylcholine fluorescence probe [17]. Lateral pressure on
the level of pyrenyl moieties location was increased by C120H at a fixed CnOH:lipid molar ratio,
it diminished when the alcohol chain was lengthened, and it was irrelevant for C18OH. It appears
from the results discussed above that alcohol and lipid hydrophobic chain length mismatch is a critical
factor for lateral pressure increase and bilayer thickness decrease.

In this paper, we extend the experimental data on the influence of CnOH (n = 10-18) on structural
parameters of DOPC model membranes using small-angle neutron diffraction (SAND). We utilize
aligned DOPC bilayers that are hydrated through water vapor at 97% relative humidity (RH), and at
the full hydration in excess water conditions. The former is important for eliminating the artefact of
the partition coefficient between lipid bilayer and water being dependent on the alkyl tail length of
alcohols. In particular, the shorter alcohols have smaller preference for bilayers than longer ones [8].
It is not excluded that actual concentrations of various CnOHs in lipid bilayers differed from that
evaluated for the entire system in the case of samples dispersed in water. Our system, on the other
hand, does not have excess water that would allow to draw alcohols from the bilayer. The utilization
of vesicular systems may have been affected also by the curved nature of bilayers, in which the



Molecules 2017, 22, 2078 3o0f15

localization of alcohols could have been different in the inner and outer monolayer. This effect is also
not present in our preparation of flat bilayers. Finally, the diffraction data obtained from oriented
samples allows for increasing the resolution of the experiment significantly, and to scrutinize the most
important region of polar headgroups and its interface with water.

We have observed that bilayer thickness increases with the increasing chain length of CnOH,
while the interbilayer water layer thickness is not influenced. Even though the changes in bilayer
thickness are small, we are able to distinguish between changes in the polar and the hydrophobic region
of the bilayer. Further, we note an important role of the presence and location of double bonds in the
lipid bilayers in addition to the model according to which alcohols affect the bilayer thickness through
the mechanism of creating voids under their terminal methyl groups that are in turn filled-in with
neighboring lipid acyl chains. Our results thus broaden the evidence for the mechanistic explanation
of the anesthesia effect based on the structural changes to the membrane underlying lipid bilayer.

2. Results

The most straightforward parameter obtained in SAND measurements corresponds to
D-spacing—the distance between repeating unit cells. While its values are affected strongly by
hydration levels when hydrated from water vapor, it is membrane specific at the full hydration
conditions [18-20]. We have therefore performed one of the measurements utilizing an excess water
sample holder [21], which allows for obtaining the first Bragg diffraction peak at the sample’s full
hydration. Experimental results for oriented lipid multilayers in excess water suggest the increases of
total D-spacing upon the addition of the alcohols studied. The extension of changes is proportional
to the alcohol’s tail length, although the changes are relatively small (Figure 1). It is worth noting a
possible onset of phase separation characteristic by two different D-spacings in the sample containing
the longest tail alcohol. C180H and DOPC may not mix ideally at the molar ratio and level of hydration
examined. Nevertheless, we suppose the results presented are influenced insignificantly by the second
phase whose relative amount has been estimated to less than 5% [22].
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Figure 1. (a) Various bilayer thicknesses and (b) area per lipid results. The total D-spacing of lipid
multilayers in excess water (black points) obtained for neat Dipalmitoyl-phoshatidylcholine (DOPC)
bilayers (dashed line) and those with the addition of 0.3:1 molar ratio of tail-length varied alcohols.
The alcohol tail length is depicted at the horizontal axis. The red and green data show the total bilayer
thickness without interbilayer water layer obtained from small-angle neutron diffraction (SAND) and
small-angle neutron scattering (SANS) [22] experiments, respectively. The blue data represent the
experimentally obtained head-to-head distance. The solid lines are linear approximations of data
shown to emphasize the average changes.

The total D-spacing consists of components corresponding to the total thickness of lipid bilayer Dg and
the thickness of water layer in-between the bilayers. The water layer is a result of interbilayer interactions
that are characteristic to the given lipid composition and thermodynamic state. One of its particularly
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interesting contributions is determined by the membrane visco-elastic properties and it relates to the
softness of membrane [23]. According to our experimental results, however, the thickness of the water
layer depends marginally on the alcohol tail lengths studied (not shown), and major changes due to the
alcohol’s different tail lengths happen to Dg, as seen in Figure 1. This conclusion is also corroborated by our
recent results of small-angle neutron scattering (SANS) experiment [22]. Bilayer thickness parameter Dg,
obtained from the latter experiment, shows a very similar trend to that of the SAND experiment. The small
shift in the absolute values of the two parameters (i.e., Dg and Dg) comes from their different definitions,
and possibly also from slightly different hydration conditions in the two experiments. Lipid vesicles were
dispersed in excess water during SANS measurements, and oriented stacks of bilayers in the case of SAND
measurements were hydrated from water vapor at ~97% RH. The close agreement of our results then,
in addition, supports the notion that bilayer structural properties at 97% RH hydration conditions are
relevant to those that are obtained at full hydration [24].

Interestingly, while the addition of alcohols increases D-spacing, bilayer thickness (i.e., Dg or Dg)
is decreased when compared to neat DOPC bilayers. This is documented in Figure 1 by a broken line
being below the points in the case of D-spacing data, yet it is above the points in the case of Dg and Dg.
Obviously, the water layer—discussed above not to be affected by the alcohol tail lengths—increases when
its thickness for bilayers loaded with any of the alcohols studied is compared to that of neat DOPC bilayers.

We further scrutinize the bilayer internal structure in the region of polar headgroups. In particular,
we have extracted a head-to-head distance Dyy from neutron scattering length density profiles
hydrated with 8% D,O, which nullifies the scattering signal from water. Dy plotted in Figure 1 shows
a behavior that is very similar to that of total D-spacing.

Finally, we have calculated the area per lipid in the membrane’s lateral direction. Note that the
area per lipid reported here corresponds to the area of unit cell comprising one molecule of lipid and
0.3 portion of given alcohol. Consequently, it is calculated from our experimentally obtained Dg and
volumetric data available for DOPC and alcohols [25,26]. We have observed an area increase from the
case of neat DOPC bilayers to the bilayers with the addition of any alcohols (Figure 1b). Differences
due to the different alcohol tail lengths, however, differ marginally. The addition of different tail length
alcohols results in rather similar values of lateral area per lipid.

The resolution of experimental data is exhausted with the results obtained above. We therefore
resort to the results of molecular dynamics simulations to examine the effect of alcohols on possible
conformational changes to lipid polar headgroups. In particular, we extract the positions of phosphate
and glycerol groups. Black points in Figure 2a show no changes to the relative distances between
the two groups, thus indicating no conformational changes to lipid headgroups. This is true when
comparing the results obtained for neat DOPC bilayers (broken line) and those with the addition of
octanol (C8OH), dodecanol (C120H), or hexadecanol (C160H). The only changes in the hydrophilic
region were detected in the case of relative distances between lipid headgroups and alcohol OH
groups. The alcohols seem to penetrate deeper with the longer tails (see the red and green points in
Figure 2a), although the differences between the three alcohols that are examined are at the level of
0.5 A. These observations suggest marginal conformation changes that most likely do not carry any
contribution forward to the changes in bilayer transversal structure. Additionally, lateral head-to-head
distances do not differ from one alcohol to the other either, as shown by the two-dimensional (2D)
radial distribution function (RDF) in Figure 2b.

The largest differences amongst the structural effects of the three alcohols studied are apparent in
the localization of alcohol tail centers (blue points in Figure 2a): the longer the alkyl tail, the deeper it
penetrates the lipid bilayer. Such variation in the extension of penetration is, however, commensurate
with the alkyl chain length. The increase in the number of CH, groups has been estimated to result in an
extension of effective acyl chain length in the bilayer by ~0.95 A per each CH, group [27], and the shift
of tail center should correspond to a half of this distance. The close agreement in our observations above
suggests that alkyl tails of alcohol incorporate themselves into lipid bilayers the same way as lipid acyl
chains. The latter is corroborated also by the results of molecular dynamics (MD) simulations showing
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the alkyl tails fully immersed in the hydrophobic region of lipid acyl chains (Figure 3). The calculated
free energy of the transfer of alcohol from water phase to the membrane is —16.8 + 0.3 k] /moL,
—31.1 £ 0.2 kJ/moL, and —46.2 & 0.4 k] /moL for octanol, dodecanol, and hexadecanol, respectively.
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Figure 2. (a) The relative distances between DOPC phosphate and/or glycerol groups and OH
group and/or tails of alcohols with different length as obtained from coarse-grained molecular
dynamics simulations. The black points depict the phosphate-glycerol distance (note the broken line
corresponding to neat DOPC bilayers that overlaps with data for alcohol loaded bilayers), while red
and green points show the OH-phosphate and OH-glycerol distances, respectively. The positions of
alcohol tail centers are shown by blue points. The cyan color depicts phosphate-to-phosphate distance.
The solid lines serve as guides to the eye; and, (b) Two-dimensional radial distribution function (RDF)
for the phosphate groups within one leaflet of bilayers loaded with various alcohols.

octanol dodecanol hexadecanol

Figure 3. The coarse-grained molecular dynamics (MD) simulation snapshots of CnOH:DOPC = 0.3:1
bilayer systems. From left to right, the panels represent systems with octanol (C80OH), dodecanol
(C120H), and hexadecanol (C160H). Alcohols are represented with large spheres colored in red for the
polar OH head and yellow for alkane tails, while stick representation is utilized in the case of lipids
(turquoise for chains, pink for glycerols, blue for choline, and green for phosphate). The blue rectangles
delimit the periodic box, from which water is excluded for the clarity of presentation. The figure was
produced with the Visual Molecular Dynamics (VMD) software [28].

The localization of alcohol tails within the hydrophobic region of lipid bilayers may also affect the
balance of forces within the membrane structure. The most probable mechanism of action comes from
the changes in lateral pressure [15]. The order parameters that are extracted from MD results provide
a direct evidence. The shortest of the simulated alcohols (i.e., C80OH) increases the order of the upper
part of the lipid acyl chains, while it decreases the order in the region of the terminal parts (Figure 4).
Such behavior correlates well with the localization of the alcohol tails discussed above. Their presence
apparently increases the lateral pressure in the upper region, while it introduces the voids close to the
bilayer center. These voids are then filled with the surrounding lipid chains at the account of increasing the
chain disorder at the same time with decreasing its thickness. Changes in the thickness of the two regions
are, however, in opposite directions and may compensate each other. Our experimental results for neat
DOPC bilayers and those with the addition of shortest alcohols corroborate the statement above by no
evidence for large changes in the thickness of total bilayer (see the blue points for n = 10 and 12 in Figure 1).
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Figure 4. The order parameters of lipid tail beads extracted from the MD simulations of
CnOH:DOPC = 0.3:1 bilayers. Panel (a) shows the values for each given system, while panel (b) shows
a difference with the reference without alcohol (same color code in the two panels). The coarse-grained
representation of lipid in panel (c) gives a meaning to the bead names in top panels.

Order parameter changes in the case of dodecanol are nearly completely positive (see Figure 4).
This relates to the fact that alcohol tails are intruding the region where the lipid chain double
bonds reside. Since this moiety gives the higher contribution to chain disorder, its interactions
with the alkane tails result in the overall increase of order, and consequently, the increase of bilayer
thickness. This is documented by the thickness increase that is observed in the experimental results for
n > 12 (blue points in Figure 1). It should be noted here, that due to the mapping limits of Martini
coarse-grained force field groups, the horizontal axes (i.e., the chain lengths) between experiment and
simulation may be shifted by one or two carbons [29].

The same mechanism of action as discussed above is confirmed in the case of the system with
hexadecanol, that—as the longest alkane tail simulated—has the biggest effect. The increase of order
parameter is visible for the beads below the double bond moiety in particular. This is again in a good
agreement with the alkane tails reaching all the way to the region of lipid chains that are disordered
due to double bonds. Their interactions with saturated alkyl tails of alcohol contribute to the increased
order, and consequent thickening of the bilayer (see blue point for n = 16 in Figure 1).

3. Discussion

It is well known that bilayers form spontaneously due to the hydrophobic effect [30], whereby
their structure is dictated by the fine balance of the forces that minimize the system’s total free
energy. This includes both entropic and enthalpic components that are related to the disruption of the
hydrogen bonding network between water molecules, van der Waals attractive forces, trans-gauche
isomerization, and most likely, other interactions [31,32]. Changes to hydrocarbon chains can affect all
of the mentioned intrabilayer interactions, resulting in different equilibrium structures. It is thus not
surprising that lipids with different length hydrocarbon chains and degree of unsaturation were found
to form bilayers with different thicknesses and lateral areas at the bilayer-water interface [27].

Interestingly, previous results suggested differences between chain length dependencies for lipids
with saturated and unsaturated chains in particular. For example, a decrease in lipid area as a function
of increased saturated fatty acid chain length observed in experiments [33,34] and simulations [35]
implied that longer saturated hydrocarbon chains have an increasingly larger chain-chain van der
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Waals attractive energy. This can be related directly to the increases of order parameter that were
observed in our simulation results (see Figure 4). All of the alcohols intercalate the part of bilayers
above the double bond, thus increasing the order parameter in this region by strengthening the van der
Waals interactions between the hydrocarbon chains of both alcohols and lipids. The further increase
in order parameter is observed however for the longer alcohols only, when examining the part of
bilayer below the double bond. This can be again explained by the strengthening of van der Waals
interactions, whereby the shortest alkyl tails do not reach this region.

On the other hand, the presence of a cis-double bond in the acyl chain resulted in an increased
lateral area per lipid when compared to the saturated counterpart, and more importantly, also in the
lateral area increase upon the extension of acyl chain length [34]. This suggests much larger effect of
rotational isomerization on lateral areas of unsaturated chains than that of attractive van der Waals
interactions. In addition, this behavior proved to be modulated by the position of the double bond
along the fatty acid chain, with resulting lateral area per lipid being maximal when in the center
(e.g., DOPC) [36]. These conclusions are again in an agreement with our simulated results of DOPC
order parameter changes due to the incorporation of various tail length alcohols (shown in Figure 4),
that depend on the fact whether the tail reaches or not the position of lipid acyl chain double bond.
Additionally, the lateral area per lipid extracted from simulations increases with an increasing alcohol
tail length (see Figure 1b).

Our experimentally obtained results corroborate the peculiarities of area per unsaturated lipids
further. In an agreement with simulation results, we have observed an increase of area from the
case of neat DOPC bilayers to the bilayers with the addition of any alcohols (see Figure 1b).
Differences due to the different alcohol tail lengths, however, differ between simulation and experiment
results. The changes in order/disorder with increasing tail length appears to be different in the
case of experiment. They do not result in the area increase, rather it shows almost constant
values. Correspondingly, the bilayer thickness that is obtained from experiment has a much stronger
dependence on the alcohol tail length when compared to the simulation results (compare Figure 1a
and cyan data in Figure 2a).

The effect of aliphatic alcohols on fluid DOPC bilayers have been studied previously by SANS
from unilamellar vesicles [6]. The models that were utilized in the analysis of latter data differ from
the model-free results obtained via Fourier Transform of present SAND data, precluding the direct
comparison on an absolute scale. It is nevertheless feasible to compare relative changes. Interestingly,
we note the amplitudes of changes that were observed in the SANS results at an intermediate level
between the present simulation and SAND experiment results (not shown). In addition to different
analyses, the two experimental approaches differ also in the physical form of bilayers. The thickness
and area changes can thus be modulated by the curvature (curved bilayers in SANS vs. flat bilayers
in SAND) and/or hydration level (excess water in SANS vs. 97% RH in SAND). On the other hand,
the previous observations of only minor changes in bilayer thickness and its lateral area due to the
differences discussed above [24,37] may suggest some other structural parameters being more relevant
for signifying the effects under the investigation.

There is an important consensus in all three of the results discussed above. Klacsova et al. reported
an increasing number of water molecules that penetrate lipid headgroup region [6]. The present
simulation and experiment results regarding the changes of headgroup-to-headgroup distance relative
to the overall bilayer thickness also suggest the increase of penetrating water amount. This comes
from considering that Dy is derived from the structure of bilayers themselves, while Dg (and Dg)
relates to the water-bilayer interface. The combination of their changes then points to differences in the
encroachment of water molecules upon the addition of alcohols. The distance of both lipid headgroups
and water-bilayer interface from the bilayer center increase accordingly to the length of alcohol tails
intercalating the region of lipid hydrocarbon chains. However, changes in Dg, relative to neat DOPC
bilayers, are shifted towards the center by about 1 A at each side of bilayer, when compared to the
relative changes of Dyy. In addition, the lateral area expands with the addition of alcohols by about
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8 A2 (see Figure 1b), contributing to the significant increase of volume of hydrating water. In other
words, the addition of alcohols results in an extra space in the polar headgroup region that is filled
with additional water molecules (Figure 5).

L 1 L 1 ! i 1 ! W 1
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Figure 5. Illustration of water encroachment shown by blue lines. Fewer water molecules penetrate the
bilayer composed of neat DOPC (solid line) on the left-hand side, compared to the scenario with alcohol
(depicted by black color) intercalating the bilayer on right-hand side (broken line). Water molecules
(blue spheres) fill an additional space (the dark portion of a blue rectangle) resulting from increased
water penetration and enlarged lateral area above the alcohol molecule.

All of the data thus point to an increase of volume in the region of carbonyl-glycerol groups,
agreeing then with an old model of physical mechanism in anesthesia [2]. The free volume created
above alcohol molecules appears to be filled with water molecules according to our observations.
This nevertheless contributes to the decrease of membrane lateral pressure in the region directly above
alcohols, as documented also by the very recent results of MD simulations [38]. The modulation of
membrane mechanical properties therefore appears to be a very likely mechanism of general anesthetics
that alter the conformational space of transmembrane ion channels and lead to an anesthesia effect in
accordance to the Cantor’s model of general anesthesia physical mechanism [15].

4. Materials and Methods

4.1. Small-Angle Neutron Diffraction

Dipalmitoyl-phoshatidylcholine (DOPC) was purchased from Avanti Polar Lipids (Alabaster, AL, USA),
saturated and unbranched alcohols (CnOHs; n = 10, 12, 14, 16, 18) were from Sigma-Aldrich
(St. Louis, MO, USA) and heavy water (99.98% D,0) was from Chemotrade (Leipzig, Germany). Spectrosil
2000 quartz plates (65 mm x 25 mm x 0.3 mm and 65 mm X 15 mm X 0.3 mm) were from Dialab
(Wr. Neustadt, Austria).

Oriented samples were prepared for SAND measurements. Calculated amounts of DOPC and
CnOH were co-dissolved in chloroform-methanol mixture (volume ratio 3:1) in glass vials to achieve
CnOH:DOPC molar ratio of 0.3. Approximately 20 mg of DOPC or DOPC + CnOH in solvent were
spread onto a 65 mm X 25 mm quartz glass and rocked during evaporation of organic solvent [39].
The remaining traces of solvent were evaporated under the vacuum at a reduced temperature (—10 °C)
to avoid the loss of volatile CnOHs. Before each measurement, samples were equilibrated for 24 h at
98% relative humidity (RH) and temperature 25 °C. The samples were hydrated from a vapour phase
over saturated K,SOy solution at three different D,O/H,O contrasts (8%, 20%, and 50% of D,0).

In the case of measurements at excess water condition, samples were prepared on 65 mm x 15 mm
plates. Initially dry samples were placed in a dedicated chamber filled with 100% D,O [21] and the
position of their first Bragg peak was measured repeatedly. This approach allowed us to follow the
kinetics of sample hydration in real time that in the case of most samples spread over a few hours.
The fully hydrated D-spacing was extrapolated from data shown for example in Figure 6.
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Figure 6. The kinetics of sample hydration in excess water condition. The sample’s full hydration was
achieved typically in about 350 min.

Measurements were performed using the neutron Membrane Diffractometer V1 equipped with a
3He position-sensitive detector (20 x 20 cm? in area, 1.5 x 1.5 mm? spatial resolution) at the BER II
reactor of the Helmholtz-Zentrum Berlin fiir Materialien und Energie [40]. Neutron wavelength was
selected at A = 4.5707 A and sample to detector distance at 102.39 cm. All data were acquired as rocking
scans that provide the quantitative information on the orientation quality of the aligned multilayers
(see Figure 7a,b). For this, the detector was positioned still to cover one order of Bragg diffraction
angle at the time, and sample angle omega was rocked by £2 degrees. The recorded rocking curves
were then integrated along the omega direction and normalized to monitor counts for the construction
of diffraction curves (Figure 7c).
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Figure 7. Cont.
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Figure 7. Two-dimensional (2D) image of a typical measurement as recorded at one detector position
(a) and reduced to rocking curve (b) subsequently. The narrow central peak width (o = 0.076) resulting
from fitting combination of Gauss and Lorentz function [41] confirms well oriented multilayers.
Measurements at several detector positions were integrated into the full diffraction curve covering
typically 5-6 diffraction orders (c). The relative sizes of various diffraction peaks change with the
contrast variation as seen from the comparison of the diffraction curves (note that curves hve been
shifted vertically for the clarity of presentation).

Using the diffraction experiment methods, the internal structure of lipid bilayers can be studied
by evaluating their scattering length density distributions [42]. An advantage of neutron diffraction
is their sensitivity to D/H substitution that allows to increase the quantity and quality of obtained
structural information. D,O/H;0O contrast varied neutron scattering length density (NSLD) profiles
(Figure 8) are thus reconstructed from diffraction intensities I;, via Fourier transform [43] as:

Fgbs 1 2 hmax 27thz
=0 4 -2 V'F
p(z) D +th§l hcos( ) )

where /1 is a peak order, D is lattice spacing calculated from Bragg equation, F§%* is forward scattering
factor, and k is absolute scaling factor. F, is the structure factor that is calculated from integral intensity

1/2
of diffraction peak Ij as £|F;| = &+ (Ih /LfAy Fc) with the signs determined utilizing the contrast
variation approach [44]. Structure factors are corrected with Lorentz factor Ly, absorption coefficient Ac
and flux correction F., which for monochromatic beam are [45]

Ly =1/sin26,
G e
F. = erf(ls\i/%(efh).

In the latter, y is a linear absorption coefficient, t is a thickness of sample, [ is length of the sample,
and 2¢ is beam width. The absorption coefficient depends on the kind of lipid, thickness of the sample,
and a ratio of D;O/H,0 in interbilayer space [43]. Forward scattering ngs is related to the offset of
NSLD as calculated from area per lipid A, neutron scattering length of lipid b;, volume of lipid V;,
and water density p,, [46] as:

AF(® = b = po V)

For more details regarding the evaluation procedure of neutron diffraction data see also the
description elsewhere [24]. The integrated intensities and positions of peaks were determined
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by Gaussian fits with subtracted background using software IGOR Pro 6.34A (WaveMetrics Inc.,
Lake Oswego, OR, USA).

0.8

right axis
8% D,0 |= =Water distribution <average>
20% D,0 Error function fit

——50% D,0

-
=
3

Jos

NSLD [x10°A?]
Water distribution [probability]

-30

Z[A

Figure 8. Neutron scattering length density (NSLD) profiles corresponding to the measurements at
three different contrast conditions (left-hand axis). The high percentage of D,O in hydrating water
provides the high contrast between hydrogen-rich bilayers and water. On the other hand, 8% D,0O
suppresses the contribution from water phase providing thus a direct characteristic of lipid bilayer
in the head-to-head distance Dyyy. The contrast variation approach allows additionally, to calculate
the water distribution (right-hand axis) by subtracting NSLD profiles obtained at multiple contrasts.
The mean position of their averaged distribution or that obtained from Error function fitting determines
the water/bilayer interface and thus the bilayer thickness Dg [47].

4.2. Molecular Dynamics Simulations

MD simulations provide structural and dynamic information on molecular systems on a
sub-nanometer length scale with femtosecond time resolution. We carried out coarse-grained (CG)
simulations of a DOPC bilayer in water with and without various alcohols (n = 8, 12, and 16)
incorporated at a molar ratio of 0.3. The system of neat DOPC bilayer contained 252 lipids, out of which,
59 were replaced by alcohol molecules in the case of alcohol loaded bilayers. The simulations used the
Martini force field [48], in which each bead represents on average four non-hydrogen atoms. Each water
bead in the model represents four atomistic water molecules. Octanol, dodecanol, and hexadecanol
are represented by one polar bead (P1 Martini bead), and 1, 2, or 3 apolar beads (C1 Martini bead),
respectively. In an alcohol molecule, consecutive beads are connected by a harmonic bond with a length
of 47 A and a force constant of 1250 kJ-mol~!-nm~2; consecutive triplet of beads are connected by a
GROMOS-96 harmonic angle of 180°, with a force constant of 25 kJ-mol~!. We used the lipid model
updated by Wassenaar et al. [29] that counts four beads to represent each lipid tail, the unsaturation
being carried on the second bead (see Figure 4c). This tail representation means that DOPC tails
have the same size as hexadecanol. The Martini force field has been used successfully in previous
simulations studies of the effect of alcohols on lipid bilayers [6,49,50].

We built the simulation systems with the Insane software [29], and carried out the simulations
using the Gromacs simulation engine [51,52] (version 2016.1). After an equilibration phase,
the simulations were carried out for 2 ps with a time step of 20 fs using the simulation parameters
recommended by de Jong et al. [53]. The temperature was coupled at 295 K, and the pressure was
coupled at 1 bar with a semi-isotropic barostat.

The simulations started with the alcohol embedded in the bilayers. Throughout the 2 ps of each
simulation, the bilayers were in fluid phase and the alcohols stayed in the bilayers with the alcohol
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group at the level of the lipid glycerols (Figure 9). The alcohol alkane tails sit within the lipid chains,
whose 90% of double bonds sit between 3 and 12 A, and the lipid glycerols sit between 10 and 19 A
from the membrane center. The 90% of alkane tails then sit between 6 and 16 A, 3 and 15 A, and 1 and
14 A from the membrane center in the case of octanol, dodecanol, and hexadecanol, respectively.

DOPC octanol dodecanol hexadecanol
0.010} I ' l ' (Ijholinle IGlycelrol I Url'lsaturlationI lAIco;'noI OII-I ' ' ' I ]
’ . Phosphate DOPC chains Water Alcohol tails
»0.008}F + 1 i ]
2 ]
20,006} 4 4 1 1
[0)
o
80.004} /\ ! 1 1
1S
= -
£0.002 )Q ! >Q 1 1
\ | \ \ \ / \
0.000 2 AN \ : \ \ A\ N
0 16 20 25 5 10 15 20 25 5 10 15 20 25 5 10 156 20 25

5 1
Distance from membrane center z [A]

Figure 9. Number density distributions for different groups of DOPC (phosphates, glycerols, double

bonds, acyl chains) and octanol, dodecanol, and hexadecanol (OH, alkyl tails), respectively from left to

right. The determination of bilayer thickness as the phosphate-to-phosphate distance Dpp is illustrated

in the left-hand panel.

We analyzed the simulations using the MD Analysis library [54,55], except for the order parameter
that was computed using gordercg [56]. The second order parameter P2 of a bond was computed as:

P2 = %(3<C0$2 9> - 1)

were 6 is the angle between the bond vector and the unit axis normal to the membrane, and the
brackets represent the ensemble average. The bilayer thickness Dpp was calculated as the distance
between the average central position of the DOPC phosphate groups of both monolayers along
the unit axis normal to the bilayer, and the distance between the alcohol OH groups and DOPC
phosphate and glycerol groups was measured from the central positions of given groups (Figure 9).
Finally, the two-dimensional radial distribution function (RDF) was calculated between the phosphate
groups in one monolayer, laterally.

5. Conclusions

The incorporation of various tail length alcohols into lipid bilayers made of DOPC has been
observed clearly in our results obtained from SAND experiments and MD simulations. Both of
the results suggest alcohols located parallel to lipid acyl chains, with the penetration depth being
dependent on their alkyl tail length. The OH groups of alcohols, on the other hand, seem to follow
this trend to a much lesser extent while located in a close vicinity of lipid carbonyl-glycerol groups.
Neither the experiments nor simulations confirmed significant conformational changes within the
polar headgroup region. Nevertheless, the changes in the water encroachment have been detected
upon the addition of alcohols. Any of the alcohols studied enhances the number of water molecules
penetrating into bilayer polar region, and this change does not seem to depend on the alcohol tail
length. On the other hand, the different tail length alcohols affected the order parameter of lipid chains
differently. The longest tails suggested the highest increase of order, which most likely resulted from
direct interactions between saturated alcohol tails and lipid double bonds. Although all of the changes
observed can contribute to the final general anesthetic effect, the change of water encroachment
at the membrane-water interface is likely the most efficient mechanical alterations leading to the
conformational restriction of membrane embedded ion channels.
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