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Abstract

Gene set-based analysis of genome-wide association study (GWAS) data has recently emerged as a useful approach to
examine the joint effects of multiple risk loci in complex human diseases or phenotypes. Dental caries is a common, chronic,
and complex disease leading to a decrease in quality of life worldwide. In this study, we applied the approaches of gene set
enrichment analysis to a major dental caries GWAS dataset, which consists of 537 cases and 605 controls. Using four
complementary gene set analysis methods, we analyzed 1331 Gene Ontology (GO) terms collected from the Molecular
Signatures Database (MSigDB). Setting false discovery rate (FDR) threshold as 0.05, we identified 13 significantly associated
GO terms. Additionally, 17 terms were further included as marginally associated because they were top ranked by each
method, although their FDR is higher than 0.05. In total, we identified 30 promising GO terms, including ‘Sphingoid
metabolic process,’ ‘Ubiquitin protein ligase activity,’ ‘Regulation of cytokine secretion,’ and ‘Ceramide metabolic process.’
These GO terms encompass broad functions that potentially interact and contribute to the oral immune response related to
caries development, which have not been reported in the standard single marker based analysis. Collectively, our gene set
enrichment analysis provided complementary insights into the molecular mechanisms and polygenic interactions in dental
caries, revealing promising association signals that could not be detected through single marker analysis of GWAS data.
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Introduction

Dental caries (also known as tooth decay or a cavity) is simply

defined as a procedure that causes destruction and demineraliza-

tion of hard tooth tissues such as enamel, dentin, and cementum. It

is a highly pervasive chronic disease whose etiology is complex and

multifactorial, with contributions from numerous factors, includ-

ing microbial flora, salivary flow and composition, and fluoride

exposure, among others. There has been increasing evidence of

genetic components contributing to caries susceptibility

[1,2,3,4,5]. Benefiting from high-throughput genotyping technol-

ogies (up to a few million single nucleotide polymorphism (SNP)

biomarkers on a single chip), genome-wide association studies

(GWAS) have recently been employed to search for genetic

susceptibility related to dental caries [6,7,8], among hundreds of

other complex diseases and phenotypes [9]. These dental caries

GWA studies identified several loci and genes, such as ACTN2,

LYZL2, and AJAP1 [7,8]. In these GWA studies, the statistical

analyses of association signals are typically conducted for single

markers, limiting the power to identify potential truly associated

genes that may have been missed due to the multiple test

adjustment necessary to control the false discovery rate (FDR).

Recently, interrogating the joint effects of multiple risk loci or

genes through the gene set-based analysis of GWAS data has

become one popular complementary approach to single marker

association tests [10]. Gene set analysis of GWAS data has been

successfully applied to many diseases or traits (see recent reviews

[11,12]), including schizophrenia [13], major depressive disorder

[14], type II diabetes [15,16,17], Crohn’s disease [18], and several

types of cancer [19,20,21,22]. However, to our knowledge, no

such studies have been reported for gene set analysis of association

data for human caries to date. In this work, we performed a

comprehensive gene set analysis of GWAS data for dental caries,
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aiming to broaden our understanding of the role of interactions

between genes for this worldwide disease.

Over the past several years, many gene set analysis methods

have been proposed, which were extensively summarized in a

recent review [12]. These methods address two different null

hypotheses on their tests of disease associations: 1) competitive null

hypothesis (Q1), which tests whether the genes within a gene set

show the same association magnitude compared to the genes

outside the gene set; and 2) self-contained null hypothesis (Q2),

which tests whether the genes within a gene set are associated with

the disease phenotype. When the real causal genes are included in

only a few gene sets, the two tests may have similar results.

Nevertheless, the competitive tests may be less powerful when the

causal genes are shared by multiple gene sets. Apart from the

difference in the null hypotheses tested, each method has its own

strengths and limitations, and no single proposed strategy

outperforms all the others [12].

In this study, we employed four representative methods to

conduct gene set enrichment analyses for dental caries, among

which two perform competitive tests (Association List Go

AnnoTatOR (ALIGATOR) [23] and GenGen [24]) and the

other two perform self-contained tests (SNP ratio test (SRT) [25]

and the mixed model [10]). The GWAS data was collected from a

recent dental caries association study [7], and the Gene Ontology

(GO) annotation database [26] was the source for candidate gene

sets. Our study integrated the results from different approaches

and reported 13 significantly associated and 17 marginally

associated GO terms. To our knowledge, this is the first

comprehensive gene set analysis for dental caries, or generally

for dental health, to date. Our findings provide biological insights

into the potential molecular mechanisms underlying dental caries,

which helps to improve our understanding of dental caries beyond

the single marker level.

Materials and Methods

Datasets
We retrieved the dental caries GWAS data [7] from dbGaP

(http://www.ncbi.nlm.nih.gov/gap) through approved access

(dbGaP accession number: phs000095.v1.p1). A total of 4,020

individuals in this dataset have both genotype and phenotype data.

We focused on the phenotype of ‘total primary tooth caries.’ In

this dataset, the total primary tooth caries with white spots is

described by the continuous variable ‘Prim_d1ft’ and the

dichotomized variable ‘CAT1_PRIM_D1FT.’ By definition,

individuals with disease are those with Prim_d1ft $ 1 (CAT1_

PRIM_D1FT = 1) and controls are those with Prim_d1ft = 0

(CAT1_PRIM_D1FT = 0). Subjects who were between 3 and 12

years old at the time of dental exam were included. A total of 537

cases and 605 controls, among which there are 588 males and 554

females, formed our working dataset. The samples were genotyped

on the Illumina platform Human610_Quadv1_B (Illumina, Inc.).

Quality checks conducted in the original study as provided by

dbGaP resulted in 589,735 SNPs for the following analyses.

Gene set annotation
The Molecular Signatures Database (MSigDB) [27] collects

annotated gene sets from multiple sources. We downloaded the

GO annotation [26] from MSigDB (version 3.0, C5) for gene set

enrichment analysis. To avoid biological functions that are too

narrowly or too broadly defined, only gene sets containing $ 5

and # 250 genes were included in the following analyses. As a

result, 1,331 GO terms passed the criteria, and the average

number of genes per term was 44.

Statistical analysis
Logistic regression was performed for association test of each of

the 589,735 SNPs with CAT1_PRIM_D1FT using the GWAS

analysis tool PLINK [28]. The variable ‘‘age at time of dental

exam’’ was taken as a covariate in the regression. The overall

genomic inflation factor was 1.031. We denoted the test statistic of

each SNP as ti (i = 1,2,…,L, where L is total number of SNPs) and

the p-value as pi (a higher ti indicates a lower pi). A SNP was

mapped to a gene if it is located in the gene region or within 20 kb

upstream or downstream of the gene. We applied this criterion

based on the previous studies [23,29,30]. The SNP-gene mapping

resulted in 20,756 protein coding genes based on the human

reference assembly hg18.

Gene set enrichment studies for GWAS data have been

proposed for several years. However, no single strategy outper-

forms all the others to date. To alleviate the potential biases in

different statistical algorithms, we chose four representative

methods to perform the gene set enrichment analysis in this

study. These methods are GenGen [24], ALIGATOR [23], SRT

[25], and the mixed model [10]. The first two methods are used to

test competitive null hypothesis (Q1), while the others are used to

test self-contained null hypothesis (Q2) [12]. We briefly describe

the methods below. More details can be found in the original

publications.

GenGen [24] is adapted from the Gene Set Enrichment

Analysis (GSEA) method [27] that was originally designed to

analyze gene expression data. The first step of this approach is to

assign each gene a significance value cj (j = 1,2,…,N, where N is

the total number of genes) with the most significant ti that can be

mapped to this gene. Next, all the genes are ranked in descending

order of cj , denoted by c(1),:::,c(N). Third, for a given gene set S

consisting of Ns genes, an enrichment score (ES) is computed using

a weighted Kolmogorov-Smirnov-like running-sum statistic as

follows:

ES(S)~ max
1ƒjƒN

X
Gj� [S,j�ƒj

jcj� j
Ws

{

8<
:

X
Gj� =[S,j�ƒj

1

N{Ns

9=
;,

where Ws~
X

Gj� [S
jcj� j. Finally the significance of ES(S) is

evaluated using a permutation test by shuffling the labels of cases

and controls so that the linkage disequilibrium (LD) structures

among SNPs are conserved.

The algorithm ALIGATOR [23] executes a SNP-based

resampling procedure, which can effectively reduce the potential

biases from gene size, SNP density, and LD structure. ALIGA-

TOR defines a set of significantly associated SNPs through a

predefined cutoff (e.g., p-value = 0.05). It maps these significant

SNPs to genes, which are in turn denoted as significant genes, and

counts the number of significant genes for each gene set. Then, the

algorithm performs a SNP-based resampling, during which SNPs

are selected and mapped to genes until the number of significant

genes generated by the resampling process is the same as in the

original case. Resample genes are mapped to gene sets in the same

way as in actual cases, and the numbers of significant genes per

gene set are recorded. In our analysis, we performed resampling

10,000 times. Finally, an empirical p-value is computed for each

gene set by summing the number of resampling datasets that have

a higher number of significant genes than the real case.

The SNP ratio test [25] similarly defines a set of SNPs that are

significantly associated with the disease through a predefined p-

value threshold pt. For a gene set S, the proportion of significant

Gene Set Enrichment Analyses of Dental Caries
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SNPs is first computed as Rs~
XM

i~1
I(pivpt)=M, where M is

the total number of SNPs mapped to all the genes in S. Then, the

p-value of Rs is estimated using a permutation by shuffling the

case/control status among samples.

The mixed model [10] employs a hierarchical generalized linear

model for gene set analysis. For each gene set, the mixed model

includes the chi-square statistic (transformed from p-value) for

each SNP as the outcome variable, random gene effects, and an

intercept corresponding to the overall association with disease for

all SNPs in the gene set. The statistical significance of the gene set

is determined based on p-value for the intercept.

Both GenGen and SRT require permutation procedure by

shuffling the case/control labels to determine the significance level.

We generated permutation data with the same parameters and

covariates 1,000 times for the use of these two algorithms. To

correct multiple comparisons, the Benjamini-Hochberg method

[31] was used to control the FDR.

Results

We performed gene set enrichment analyses of dental caries

GWAS data using four statistical methods (GenGen, ALIGA-

TOR, SRT, and the mixed model) and GO annotation terms as

the gene set pool. Setting FDR , 0.05 as the criterion to

determine the statistical significance, the mixed model identified

the largest number of GO terms that are statistically associated

with dental caries, i.e., a total of 9 GO terms. The GenGen

method claimed 4 significant GO terms, whereas no significant

results could be found by either ALIGATOR or SRT (Tables 1

and 2). Interestingly, the GO terms identified by GenGen are all

related to secretion or regulation of secretion: ‘Protein secretion,’

‘Cytokine secretion,’ ‘Regulation of protein secretion,’ and

‘Regulation of cytokine secretion.’ The mixed model identified

several GO terms that are related to neural development

(‘Regulation of axonogenesis,’ ‘Regulation of neurogenesis,’

‘Axonogenesis,’ and ‘Central nervous system development’) and

three GO terms that are related to ligase activities (‘Ligase activity

forming carbon nitrogen bonds,’ ‘Ubiquitin protein ligase activity,’

and ‘Small conjugating protein ligase activity’).

We further examined the genes that contributed to the

association of these GO terms with dental caries. Genes that

contained at least one SNP with its p-value , 0.05 calculated from

the GWAS dataset were defined as ‘‘contributing genes.’’ Table 1

shows the contributing genes for the 13 associated GO terms.

Some gene sets showing similar biological functions share many

contributing genes. For example, ‘Regulation of axonogenesis’ and

‘Regulation of neurogenesis’ shared seven genes, including some

interesting genes such as ROBO2 and SLIT2 (see Discussion

section). Notably, the gene set ‘Cell matrix junction’ that was

identified by the mixed model contains gene ACTN2, which was

reported in the original GWAS dataset with suggestive evidence

for association, but failed to meet the genome-wide significance (p-

value , 1027) [7]. Our finding confirmed this result based on

single SNP analysis of the original GWAS data at the gene set

level. To further examine whether the association of this gene set

with dental caries is driven by gene ACTN2, we excluded this gene

and performed the same gene set analysis using the mixed model

approach. Interestingly, the gene set ‘Cell matrix junction’

remained significant (FDR = 0.007) even without the gene

ACTN2, indicating that there are additional informative genes in

this gene set that contributed to the association.

Although ALIGATOR and SRT reported no significant GO

terms under the criterion FDR , 0.05, several gene sets had

reasonably low p-values before multiple testing correction and

underwent further investigation. The high FDR values are likely

due to the inherent characteristics of the algorithms used for these

approaches, which is a phenomenon noticed in previous studies

[29]. To better explore the results of ALIGATOR and SRT, we

adopted the strategy proposed in [29]. Specifically, among the four

methods we applied, the largest number of gene sets at FDR ,

0.05 was 9, as reported by the mixed model approach. Therefore,

we accordingly selected the top 9 gene sets ranked by their raw p-

values and denoted them as candidate gene sets for each of the

corresponding approaches (Table 2). Note that all the gene sets

selected in this way have nominally significant p-values (within a

range of 0 2 0.017). Among them, one gene set was identified by

three methods, and four other gene sets were identified by two

methods. Interestingly, ALIGATOR reported all five of the GO

terms that can be identified by at least two strategies. Of especial

note, the gene set ‘Sphingoid metabolic process’ was ranked as the

most significant by the results from both ALIGATOR and SRT.

The four other gene sets included ‘Ligase activity forming carbon

nitrogen bonds,’ which was discovered by ALIGATOR, GenGen,

and the mixed model, ‘Ubiquitin protein ligase activity’ by

ALIGATOR and the mixed model, ‘Regulation of cytokine

secretion’ by ALIGATOR and GenGen, and ‘Ceramide meta-

bolic process’ by ALIGATOR and SRT. Note that GenGen and

ALIGATOR are methods to investigate the competitive null

hypothesis (Q1), and SRT and the mixed model are used for the

self-contained null hypothesis (Q2). We saw from Table 2 that four

gene sets were identified for both Q1 and Q2: ‘Sphingoid

metabolic process,’ ‘Ligase activity forming carbon nitrogen

bonds,’ ‘Ubiquitin protein ligase activity,’ and ‘Ceramide meta-

bolic process.’ In total, we listed 30 top GO terms in Table 2.

In addition, we examined the set sizes (i.e., the number of genes)

of the gene sets identified by each method. The sizes of the gene

sets identified by the mixed model were greater than that of other

methods. The median value of set sizes for the top 9 GO terms

identified by the mixed model was 43, whereas the corresponding

numbers were 18 for GenGen, 24 for ALIGATOR, and 23 for

SRT, respectively. Meanwhile, the SNP density (represented by

median number of SNPs per gene) in the GO terms discovered by

four approaches are similar, i.e., 13, 12, 13, and 12 for the mixed

model, GenGen, ALIGATOR, and SRT, respectively.

We further examined the association signals of the genes that

resided in the 30 top GO terms reported by four different

methods. A gene was considered nominally significant if it

contained at least one SNP with its p-value , 0.05. Using this

criterion, we found 383 nominally significant genes, among which

36 were involved in at least 4 GO terms (Table 3). The complete

description of all the 383 significant genes was shown in the

supplementary materials (Table S1). We used the Ingenuity

Pathway Analysis (IPA, http://www.ingenuity.com, accessed in

January, 2013) software to further investigate the phenotype

annotations of these nominally significant genes. We searched the

IPA using ‘‘dental’’ as the keyword in the category of ‘Functions

and Diseases’ and obtained 122 related function annotation items.

Eight of the 383 nominally significant genes were found in the

dental related Ingenuity annotations: PBX3, PBX1, BCOR, GLI2,

SHH, DIAPH1, SOX3, and RECQL4. They are mainly related to

the Ingenuity functions ‘dental development’ and ‘dental disorder’

(Table S1).Of special note, association between BCOR and pit-

and-fissure surface caries has been found in a recently published

GWAS in the permanent dentition [6]. However, it failed to be

detected in primary caries through the genome-wide, single-

marker analysis approach [7].

Gene Set Enrichment Analyses of Dental Caries
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Discussion

With many GWAS datasets having been released, gene set

enrichment analysis was proposed as an important and comple-

mentary approach to the traditional single marker analysis of

GWAS data. Compared to single marker analysis, gene set

analysis focuses more on biological functions of gene products as

well as their regulation in the cellular systems. Thus, this strategy

has advantages in revealing potential molecular mechanisms

underlying diseases or traits. In addition, both real and simulation

studies indicated that gene set enrichment analysis could increase

the power of detecting association signals [10,19]. In this study, we

conducted a comprehensive gene set analysis for dental caries

GWAS data [7]. Applying four methods (GenGen, ALIGATOR,

SRT, and the mixed model), we identified 30 GO terms that were

significantly or marginally associated with dental caries (Table 2).

Among them, five gene sets were identified by at least two

enrichment methods (i.e. ‘Ligase activity forming carbon nitrogen

bonds,’ ‘Regulation of cytokine secretion,’ ‘Ceramide metabolic

process,’ ‘Sphingoid metabolic process,’ and ‘Ubiquitin protein

ligase activity’). While definitive roles for the gene sets cannot be

identified as sufficient to cause cariogenesis, the five GO terms are

plausible factors for disease. These terms encompass broad

functions that potentially interact and contribute to the oral

immune response to caries-related organisms. The oral environ-

ment contains bacteria that may lead to a host inflammatory

response eliciting cytokines [32,33,34]. This inflammatory re-

sponse involves the sphingolipds, of which sphingoids and

ceramides are constituent components released during the

response [35,36]. Anaerobic organisms present in the oral cavity

thrive under hypoxic conditions, which have been observed to

stimulate cytokine production regulated by ubiquitin protein

ligases [33,37,38,39]. While no direct action from carbon nitrogen

bond ligases is identified within the immune response pathways, it

is possible that they function in a parallel maintenance mechanism

for the immune-related pathways.

Table 1. Gene Ontology (GO) terms significantly associated with dental caries (FDR , 0.05).

GO term
# genes
in term

Ratio of
significant
SNPsa Contributing genesb

Method
(FDRc)

Protein secretion 32 39/739 ARFGAP3, LTBP2, CADM1, ABCA1, APOA1, ANG, INS, CRTAM, CARD8, CIDEA, ARFIP1,
NLRP3, FOXP3, BACE2, NLRP12, GLMN, ARL4D

GenGen
(,0.001)

Cytokine secretion 18 23/468 CARD8, CRTAM, CADM1, CIDEA, ABCA1, NLRP3, FOXP3, APOA1, INS, NLRP12, GLMN GenGen
(,0.001)

Regulation of protein
secretion

22 27/391 CARD8, CRTAM, CADM1, CIDEA, ARFIP1, NLRP3, FOXP3, APOA1, INS, ANG, NLRP12,
GLMN

GenGen
(,0.001)

Regulation of cytokine
secretion

16 21/276 CARD8, CRTAM, CADM1, CIDEA, NLRP3, FOXP3, APOA1, INS, NLRP12, GLMN GenGen
(,0.001)

Regulation of axonogenesis 10 45/575 RTN4, KLK8, ROBO1, MAPT, ROBO2, LRRC4C, SLIT2 Mixed model
(,0.001)

Regulation of neurogenesis 14 45/651 RTN4, KLK8, ROBO1, MAPT, ROBO2, LRRC4C, SLIT2 Mixed model
(0.003)

Central nervous system
development

122 372/6137 GRIK1, SNCA, SHH, WNT1, PDGFC, ROBO2, UNC5C, EIF2B2, EIF2B3, SH3GL3, MDGA1,
MDGA2, SH3GL2, ADORA2A, SOX3, DSCAML1, TAGLN3, SOX8, ATN1, B3GNT5, LHX6,
IL1RAPL2, NKX2-2, DMBX1, JRKL, CELSR1, NEUROG3, SERPINI1, NCKAP1, S100B, MYO16,
POU6F1, POU6F2, GLI2, PTEN, MBP, NDUFS4, PCP4, CNTN6, ALK, SLIT1, SLIT3, BPTF,
CNTN4, SHROOM2, SHROOM4, UBE3A, ZBTB16, ALDH3A2, NPAS2, NPTX1, DNER, DCLK1,
JARID2, PTPRZ1, MAL, AFF2, RCAN1, PARK2, EIF2B1, RPS6KA6, ACCN1, MAP1S, DRP2,
PHGDH, PBX1, PBX3

Mixed model
(0.005)

Ligase activity forming
carbon nitrogen bonds

68 111/1485 RNF217, HLCS, MYLIP, WWP2, FBXO22, UBR3, UBE2H, BRAP, UHRF2, UBR5, UBE2M,
DDB2, FBXL6, ZER1, ADSS, SYVN1, GCLC, ANAPC10, CTPS2, ASNS, PFAS, UBE2D2,
FBXO3, FBXO7, CBL, MALT1, PARK2, UBE2L3, CPS1, SMURF1, PAICS, UBE2E1

Mixed model
(0.009)

Ubiquitin protein ligase
activity

49 84/1175 RNF217, MYLIP, WWP2, FBXO22, UBR3, UBE2H, BRAP, UHRF2, UBR5, UBE2M, DDB2,
FBXL6, ZER1, ANAPC10, UBE2D2, FBXO3, FBXO7, CBL, MALT1, PARK2, UBE2L3,
SMURF1, UBE2E1

Mixed model
(0.013)

Small conjugating protein
ligase activity

51 84/1209 RNF217, MYLIP, WWP2, FBXO22, UBR3, UBE2H, BRAP, UHRF2, UBR5, UBE2M, DDB2,
FBXL6, ZER1, ANAPC10, UBE2D2, FBXO3, FBXO7, CBL, MALT1, PARK2, UBE2L3,
SMURF1, UBE2E1

Mixed model
(0.014)

Glycoprotein catabolic
process

12 21/267 ADAMTS9, PSEN2, ABCG1 Mixed model
(0.031)

Axonogenesis 43 171/2782 RTN4, NRP2, PARD3, NRP1, RTN4RL1, LRRC4C, GLI2, PAX2, SHH, ROBO1, MAPT, ROBO2,
UNC5C, SPON2, PARD6B, KLK8, NRXN3, NTNG1, NTNG2, NRXN1, SLIT1, SLIT2, S100B,
CYFIP1, OPHN1, CNTN4, FEZ1

Mixed model
(0.035)

Cell matrix junction 16 45/447 PTPRC, LIMA1, BCAR1, ACTN1, ACTN2, VCL, SORBS1, LAYN, DST Mixed model
(0.035)

aThe numerator is the number of SNPs with a p-value , 0.05 from the dental caries GWAS, and the denominator is the total number of SNPs mapped to the genes in
each GO term.
bGenes containing at least one SNP with a p-value , 0.05 from the dental caries GWAS are regarded as contributing genes.
cFDR adjustment is based on Benjamini-Hochberg method [31].
doi:10.1371/journal.pone.0072653.t001
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We further investigated the 36 identified genes associated with

the 30 top GO terms (Table 3) for their potential overlap with

caries development. For each gene, the GeneCards (http://www.

genecards.org/) entry (summaries and function) and OMIM

(http://omim.org/) entry were queried to summarize gene

functions. GeneCards aliases were also searched for in OMIM.

A query for gene name and each alias cross-listed with ‘‘caries’’,

‘‘tooth’’, and ‘‘dentin’’ was conducted in PubMed to further assess

known genetic roles related to dental caries.

Based on our gene-based literature search, five genes from

either ligase activity (gene: WWP2, RNF217), neuronal develop-

ment (gene: ROBO2, SLIT2), or cytokine/protein secretion (gene:

INS) gene sets listed in Table 2 might be potentially associated with

dental traits. Only the cytokine/protein secretion term was

identified by more than 2 gene set enrichment methods. WWP2

is a member of ligase activity pathways and functions as a ligase for

and mediates degradation of PTEN, whose gene is expressed in

mouse oral development [40,41]. RNF217 is located at 6q22.31, a

genomic region reported to be associated with oral cleft [42].

ROBO2 is a receptor for SLIT2 and possibly SLIT1. SLIT1 and

SLIT2 appear to work cooperatively to establish anatomical

midlines during neuronal development and establishment of

Table 3. Enriched genes in the 30 top Gene Ontology (GO) terms.

Genea # terms involved Ratio of significant SNPsb Most significant SNP p-valuec

PARK2 6 28/512 rs574165 0.001

UBR3 6 2/36 rs16857407 0.020

ANAPC10 5 1/8 rs1455137 0.035

BRAP 5 1/11 rs10744774 0.019

CADM1 5 2/72 rs6589485 0.006

CARD8 5 5/23 rs10416565 0.008

CBL 5 2/13 rs2249466 0.027

CRTAM 5 2/22 rs3107606 0.009

DDB2 5 2/7 rs3781619 0.013

FBXL6 5 3/8 rs3817681 0.016

FBXO22 5 3/5 rs335675 0.011

FBXO3 5 1/28 rs831627 0.004

FBXO7 5 8/29 rs738263 0.007

GLMN 5 1/3 rs3103174 0.017

INS 5 3/9 rs11042978 0.002

MALT1 5 3/22 rs9783885 0.021

MYLIP 5 6/18 rs11969250 0.004

NLRP3 5 3/40 rs9988572 0.001

RNF217 5 2/42 rs552705 0.029

SMURF1 5 2/16 rs12672417 0.020

UBE2D2 5 2/7 rs769052 0.033

UBE2E1 5 4/20 rs12629302 0.008

UBE2H 5 1/24 rs10246707 0.024

UBE2L3 5 1/10 rs13054355 0.006

UBE2M 5 3/8 rs7249714 0.006

UBR5 5 4/27 rs10102559 0.003

UHRF2 5 1/24 rs1547258 0.030

WWP2 5 3/28 rs7200005 0.011

ZER1 5 1/4 rs10988111 0.017

APOA1 4 1/6 rs10047459 0.015

CCKBR 4 2/19 rs2880829 0.004

CIDEA 4 1/16 rs8084404 0.040

FOXP3 4 1/7 rs5906761 0.016

NLRP12 4 2/19 rs7259148 0.005

ROBO2 4 15/171 rs9836971 0.005

SLIT2 4 6/106 rs12503652 0.003

aGenes that have at least one SNP with a p-value , 0.05 and are involved in at least 4 gene sets were listed.
bThe numerator is the number of SNPs with a p-value , 0.05 in a gene and the denominator is the total number of SNPs mapped to the gene.
cThe p-value of the most significant SNP in the gene.
doi:10.1371/journal.pone.0072653.t003
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olfactory organization [43]. Gene SLIT1 is also expressed in the

primary and secondary enamel knots during molar tooth cusp

formation [44]. INS may impact caries through insulin sensitivity

[45] or more controversially through the activation of dentin-

related genes [46,47]. Insulin receptor binding sites are present on

rat incisors [48]. None of these relationships are ‘‘smoking guns’’

for caries development, but the gene sets and the subset of tooth-

related genes raise interesting possible mechanisms for caries.

These contributing genes encompass multiple functions or

biological processes related to tooth development or dental caries,

suggesting that our gene set enrichment analysis was effective and

the findings were insightful to the understanding of molecular

mechanisms of disease at the system level.

Although the genetic research has been applied to dental caries

for a long time (see a recent review [49]), interpretation of the

results remains challenging. In our gene set enrichment analysis,

few GO terms or genes we identified exhibit explicit roles for caries

development. One possible reason is the complex characteristics of

dental caries. While many caries risk factors have been reported,

few of them have been rigorously replicated or confirmed [8].

Thus, the predefined gene sets may be too general to play

definitive functions in cariogenesis.

In this study, four popular gene set analysis methods, i.e.,

GenGen, ALIGATOR, SRT, and the mixed model, were applied

to a real GWAS dataset. Although our primary interest is to unveil

the genetic components of dental caries, these results also provided

a comprehensive benchmark resource to compare these methods.

We only observed limited consistency among the outputs of

different algorithms. The inconsistency is not unexpected, mainly

because different methods employ different intrinsic strategies and

may test different null hypotheses (i.e., competitive vs. self-

contained null hypothesis). In addition, different ways to

preprocess GWAS data might influence the enrichment results.

For example, one important step in performing gene set analysis of

GWAS data is to map SNPs to genes and compute a gene-based

statistical value. Typically, only a subset of SNPs within a gene

plays roles in the disease, yet taking all the SNPs into account will

likely reduce the test power. However, in practical applications, it

is difficult to find the most relevant SNPs for gene set analysis.

Many approaches, like GenGen, denote the most significant SNP

as gene’s representative, which may exclude important additional

SNPs if a gene has more than one association signal. Using

ALIGATOR, all SNPs mapped to a gene are consulted, and a

gene is defined as significant if it harbors at least one nominally

significant SNP, requiring a predefined threshold that may be

chosen arbitrarily. Therefore, the analysis results from ALIGA-

TOR could be sensitive to the choice of threshold in different data

sets [23]. Similarly, in the SRT method, all SNPs mapped to a

gene are considered, and this approach also requires a preselected

threshold to define the associated SNPs. One advantage in SRT is

its incorporated permutation test by randomly swapping case/

control labels among samples to reduce the sensitivity driven by

the choice of threshold. In contrast, the mixed model approach

accounts for the p-values of all the SNPs mapped to a gene without

requiring predefined thresholds. Thus, this method avoids

potential arbitrary definitions and quantitatively leverages the

information of all SNPs.

One limitation in this study is the FDR values attained using the

four methods are quite different from each other. The top 9 GO

terms identified by ALIGATOR had an FDR value of 1. The

situation is better in SRT, but the top GO terms also hardly reach

a noteworthy FDR significance level. The high FDR could be the

result of several factors. One is the inherent drawbacks of the tools

used. For example, two GO terms, ‘Ligase activity forming carbon

nitrogen bonds’ and ‘Ubiquitin protein ligase activity,’ were

ranked as the fourth and the fifth most significant gene sets,

respectively, in both results by ALIGATOR and the mixed model.

However, their FDR values differed substantially in the two

results. Another possible reason for this high FDR might be

attributed to the incomplete information in the current annotation

databases, especially for some phenotypes without much molecular

biology knowledge. In contrast to most common diseases such as

cancer, the functional annotation for dental caries has been very

limited so far. In fact, we also performed a gene set enrichment

analysis using the canonical pathways from KEGG [50], a widely

used pathway database. There were only a small number of

KEGG pathways eligible for our analysis (181 pathways with $ 5

and # 250 genes), and none were significant KEGG pathways at

FDR , 0.05. The failed detection of promising pathways for

dental caries reflected that most, if not all, genes in the current

version of the KEGG database are not thoroughly annotated.

Another limitation in pathway annotations is that we used an old

version of the GO term set (MSigDB, version 3.0, C5). New

versions of GO data were released during our data analysis, which

now included more than 10,000 GO terms (06/26/2013 release).

However, major efforts are needed to process the redundancy of

genes in GO terms, as processed in version 3.0, C5, to avoid an

over-adjustment through multiple testing correction. This work, as

well as more robust pathway enrichment analysis in future, may

help better define dental caries pathways.

In summary, we applied four representative gene set enrichment

analysis methods to currently available dental caries GWAS data.

Our work, to date, is the first gene set enrichment study for this

worldwide disease. We reported 13 significantly associated and 17

marginally associated GO terms as likely involved in dental caries

via their gene functions. The findings provided insights and

interpretations into the underlying biological process for dental

caries. Our study mainly focused on genetic signals in GWAS

data. In future work, an integration of other genetic and genomic

information (such as gene expression, linkage scan and protein-

protein interaction network [51,52], evidence from multiple

species [53], and multi-dimensional functional module analysis

[54]) may open new avenues to understand the etiology of dental

caries.

Supporting Information

Table S1 List of genes that are nominally significant
with dental caries in the 30 top GO terms. This table

includes 383 nominally significant genes that appeared in the top

30 GO terms shown in Table 2. Genes that have at least one SNP

with a p-value , 0.05 are regarded as nominally significant genes

(without multiple testing correction).

(XLSX)
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