
Frontiers in Endocrinology | www.frontiersi

Edited by:
Claire Perks,

University of Bristol, United Kingdom

Reviewed by:
Paraskevi Xekouki,

University of Crete, Greece
Anne Barlier,

Aix Marseille Université, France
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The von Hippel–Lindau (VHL) disease is an autosomal dominant cancer syndrome caused
by mutations in the VHL tumor suppressor gene. VHL protein (pVHL) forms a complex
(VBC) with Elongins B-C, Cullin2, and Rbx1. Although other functions have been
discovered, the most described function of pVHL is to recognize and target hypoxia-
inducible factor (HIF) for degradation. This work comprises the functional characterization
of two novel variants of the VHL gene (P138R and L163R) that have been described in our
center in patients with VHL disease by in vitro, in vivo, and in silico approaches. In vitro, we
found that these variants have a significantly shorter half-life compared to wild-type VHL
but still form a functional VBC complex. Altered fibronectin deposition was evidenced for
both variants using immunofluorescence. In vivo studies revealed that both variants failed
to suppress tumor growth. By means of molecular dynamics simulations, we inspected in
silico the nature of the changes introduced by each variant in the VBC complex. We have
demonstrated the pathogenicity of P138R and L163R novel variants, involving HIF-
dependent and HIF-independent mechanisms. These results provide the basis for
future studies regarding the impact of structural alterations on posttranslational
modifications that drive pVHL’s fate and functions.

Keywords: VHL, von Hippel–Lindau, novel variants, P138R, L163R, functional characterization, molecular
dynamics, simulations
1 INTRODUCTION

The von Hippel–Lindau (VHL) disease is a hereditary autosomal dominant syndrome (1, 2) that
predisposes to the formation of cysts and benign and malignant tumors in different organs (3).
Clinically, VHL disease can be divided into two subtypes based on the absence (type 1) or presence
(type 2) of pheochromocytoma (4).
n.org March 2022 | Volume 13 | Article 8543651
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VHL disease’s incidence ranges from 1/36,000 to 1/45,000 live
births (3, 5) and is caused by mutations in the VHL tumor
suppressor gene, which is located in the short arm of
chromosome 3 (3p25-26) (3). Its coding sequence spans three
exons and encodes a 213-amino acid protein (pVHL) widely
expressed in human tissues (4, 6).

The correct folding of pVHL is coupled to the formation of the
VBC complex with Elongin B and Elongin C (7, 8). The VBC
complex together with Cullin 2 is part of the substrate-binding
subunit of an E3 ubiquitin ligase that negatively regulates the
expression of the hypoxia-inducible factors (HIFs) (9, 10). At
normal oxygen level, HIF-a is hydroxylated at proline residues, in
this form is recognized by pVHL, leading to rapid ubiquitination
and degradation by the proteasome (11, 12). In hypoxic conditions,
the prolyl-hydroxylases are inactive and HIF-a is stabilized,
dimerizes with HIF-b (constitutively expressed), and translocates
to the nucleus (12, 13). The dimer functions as a transcription
factor, negatively regulating the expression of diverse hypoxia-
inducible genes involved in metabolism, angiogenesis, and
apoptosis (12, 14). In the past years, research has demonstrated
that the SUMOylationofpVHLby theproteinRSUMEprevents the
formation of the VBC complex, thus HIF-a is not degraded even
undernormaloxygenconditions (15, 16).Ontheotherhand,pVHL
has HIF-independent actions, such as microtubule stabilization
(17), primary cilium formation (18), and extracellular matrix
fibronectin assembly (19, 20), which are also important for
tumor development.

To this day, more than 500 VHL mutations have been reported
according to the Human Gene Mutation Database (HGMD®

Professional 2020.3, accessed on November 5, 2020). Interestingly,
most of the families presenting with pheochromocytoma (type 2
VHL disease) harbor missense mutations, while families with type 1
VHL disease usually present with gene deletions or nonsense
mutations (21–24). In the present work, we performed functional
characterizationof twogenetic variants (P138RandL163R) that have
beendescribedatour center inpatientswithVHLdisease (25).P138R
variant was identified in 5 patients of a family with Type 2B VHL.
L163R variant was identified in 2 patients of a family with
pheochromocytoma only (Type 2C VHL). The P138R variant
implies the change of a proline for an arginine in the b domain of
pVHL, involved in the interaction with HIF-a, while the L163R (25)
variant is located in the a domain, involved in the union with
Elongins B and C. Through in vitro, in vivo, and in silico studies,
we demonstrated the pathogenicity of P138R and L136R variants
affecting not only pVHL capacity to formHIF’s recognition complex
and its functioning in pseudo hypoxic conditions but also some of
HIF’s independent actions.
2 MATERIALS AND METHODS

2.1 Site-Directed Mutagenesis
The vector VHL-wild-type (WT)-Venus-Retro (26) and the
Quikchange II XL Site-Directed Mutagenesis Kit were used
following manufacturer’s protocols to perform the specific
mutations P138R (CCA➔CGA) and L163R (CTC➔CGC).
Mutations were verified by DNA sequencing in ABI PRISM
Frontiers in Endocrinology | www.frontiersin.org 2
310 Genetic Analyzer (Applied Biosystems, Foster City,
CA, USA).

2.2 Stable Cell Line Development
HEK293T cells were used as a helper cell line in order to obtain
retrovirus with the desired vectors as previously described by
Ding et al. (27). Briefly, HEK293T cells were transfected with 3
different vectors: 1) pcGp, 2) pVSVG, and 3) either one of the
following: GFP-Retro/VHL-WT-Venus-Retro/VHL-P138R-
Venus-Retro/VHL-L163R-Venus-Retro using Lipofectamine
3000 (Invitrogen, Carlsbad, CA, USA). Upon assembly,
supernatant was used to infect RCC 786-0 cells (ATCC® CRL-
1932™, American Type Culture Collection, Manassas, VA,
USA), and after 20h, selection was performed with 1 mg/ml of
G418 antibiotic (Sigma Aldrich, St. Louis, MO, USA). Four
different cell lines were obtained expressing green fluorescent
protein (GFP), VHL-WT-Venus, VHL-P138R-Venus, and VHL-
L163R-Venus. All cell lines were cultured in high-glucose
Dulbecco’s modified Eagle’s medium (DMEM) supplemented
with 10% fetal bovine serum (FBS) and maintained at 37°C in a
humidified 5% CO2 environment.

2.3 Western Blotting
Proteinswere obtained aspreviously described (28) and resolved on
a 12.5% sodium dodecyl-sulfate polyacrylamide gel electrophoresis
(SDS-PAGE). After transferring to polyvinylidene fluoride (PVDF)
membranes, blots were blocked and probed with different primary
antibodies: VHL (BD Biosciences, # 556347, diluted 1/5,000), GFP
(Santa Cruz, sc-8334, diluted 1/1,000), HIF-2a (Novus Biologicals,
NB100-122, diluted 1/1,000),b-actin (Cell Signaling, #4970, diluted
1/1,000), Elongin B (Santa Cruz, sc-133090, diluted 1/500), and
Elongin C (Santa Cruz, sc-1559, diluted 1/500). The following
secondary antibodies were used accordingly: anti-rabbit (Cell
Signaling, #7074, diluted 1/5,000), anti-goat (Santa Cruz, sc 2020,
diluted 1/2,000), and anti-mouse (Cell Signaling, #7076, diluted
1/2,000).

2.4 Cell Treatments
Cell lines were seeded on 6-well plates and incubated with 50 µg/ml
cycloheximide to interfere with protein synthesis, or 5 µg/ml
MG132 to inhibit the proteasome, or 100 µM CoCl2 (29) to
simulate hypoxia. After treatment, proteins or RNA was extracted.

2.5 Immunoprecipitation
The amount of protein coming from GFP, WT VHL-Venus,
P138R VHL-Venus, and L163R VHL-Venus cell lines was
determined by Bradford assay, and 1 mg of protein was
immunoprecipitated using GFP-Trap®_A kit (Chromotek
GmbH, Germany). The immunocomplexes were detected by
Western blot using the antibodies described above. Protein
from WT VHL-Venus cell line was used as positive control
and that from the cell line expressing GFP as a negative one.

2.6 Real-Time PCR
Total RNA from the different cell lines was extracted with Direct-
Zol RNA Kit (Zymo Research, Irvine, CA, USA) following
manufacturer’s protocol. To perform RT-qPCR, 1 µg of RNA
March 2022 | Volume 13 | Article 854365
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from each sample was used together with random hexamers and
Super Script II (Invitrogen, Carlsbad, CA, USA). Resulting cDNA
was diluted by 1:10, and 3 ml from each dilution was subject to
qPCR in triplicate using Kapa Syber Fast qPCR master mix (Kapa
Biosystems, Boston, MA, USA) in Step One Plus Real-Time PCR
System (Life Technologies, Carlsbad, CA, USA). mRNA values
were calculated using relative quantitation method and are
presented as fold change compared to control conditions.
Specific primers were designed to assess fibronectin, vascular
endothelial growth factor A (VEGF-A), and glucose transporter
1 (GLUT1) normalized to TATA box-binding protein (TBP) or
VHL and a subunit a of HIF-2 (HIF-2a) normalized to
glyceraldehyde 3-phosphate dehydrogenase (GAPDH).

2.7 Fibronectin Deposition by
Immunofluorescence
Using anti-fibronectin antibody combined with a secondary
antibody conjugated with Cy5, matrix deposition by all cell lines
was analyzed according to the protocol of Debnath et al. (30).
Briefly, cells were plated on coverslips, fixed, and permeabilized
after 6 days of culture. Nuclei were dyed with Hoechst (5 µg/ml),
and pictures were taken on a Carl-Zeiss AxioScope A1microscope.

2.8 Xenografts
Immunodeficient mice [N:NIH (S)-Fox 1nu] were housed in
standard conditions of 12-h light/12-h dark cycle with water
and food ad libitum, in accordance with National Institutes of
Health guide for the care and use of laboratory animals (31).

A solution of 1 × 107 viable cells was injected subcutaneously on
6–8-week-old male mice and monitored weekly for tumor
development. At 16 weeks post cell injection or when tumor
reached 2-cm diameter, mice were sacrificed, and tumor histology
was evaluated by hematoxylin and eosin (H&E) staining.

All animals were treated and cared for in accordance with
standard international animal care protocols. All procedures
were approved by the Animal Care and Use Committee of the
Hospital de Niños Dr. Ricardo Gutiérrez.

2.9 Database Search and Online Predictions
We searched for these variants in the Genome Aggregation
Database (gnomAD) (32), dbSNP (33), and ClinVar (34)
databases to look at allele frequency, and if they had been
reported by other groups. We also used online tools that
predict the effect of protein variants: SIFT (35), Polyphen (36),
Mutation Taster (37), and Human Splicing Finder (38). To
classify these variants according to the American College of
Medical Genetics Guidelines (39), we used VarSome (40).

2.10 In Silico Studies: Molecular
Dynamics Simulations
The crystal structure of a humanVBC:HIF-1a complex PDB 4AJY
(X-Ray diffraction, 1.73 Å resolution) was used as starting structure
(41). Missing residues of EloC (amino acids 106–118) were added
using the SWISS-MODEL workspace (42, 43). The following six
macromolecular systems were considered: WT and P138R and
L163R variants of pVHL inserted inVBC:HIF-1a complexes, both
under normoxia or hypoxia (the latter simulated replacingHyp564
Frontiers in Endocrinology | www.frontiersin.org 3
by Pro564 in HIF-1a). Lacking experimental structures of the two
variants considered, in silico mutations were introduced by
replacing the residue of interest at the native structure using the
SWISS-PDB Viewer software (42). Protonation states of titratable
residues were determined with PROPKA 3.0 (44), then all missing
hydrogen atomswere addedwith the ProToss utility of the Proteins
Plus server. All the systems were solvated with a truncated-
octahedral box of TIP3P water 12 Å around the solute and
neutralized with K+ ions using the leap module of AmberTools17
(45). Eachof the systemswasminimized (2,000 steps applying a 500
kcal mol−1 Å−2 harmonic potential over solute atoms, followed by
20,000 steps without restraints), then heated to 310 K [500 ps
molecular dynamics (MD) simulation in NVT ensemble] and
equilibrated at 1 atm (1 ns MD simulation at 310 K in NPT
ensemble), prior to run 400 ns of productive MD simulations
(NPT, 310 K and 1 atm). Minimizations and MD simulations
were carried out with the pmemd.cudamodule of AMBER16 (45).
Protein residues were treated using the AMBER ff14SB force field.
An integration step of 2 fs was used, constraining bonds involving
hydrogen with SHAKE algorithm (46). Temperature and pressure
were controlled applying the Langevin thermostat (47) and the
Monte Carlo barostat (48), respectively. An 8.0-Å cutoff was used
for direct non-bonded interactions, and the Particle Mesh Ewald
(PME) method (49) was applied to long-range electrostatic
interactions. Trajectory processing and analysis were performed
with cpptrajmoduleofAmberTools 17.Trajectory convergencewas
monitored following Ca-RMSDs, and flexibility was examined by
means of per-residue Ca-RMSF. Snapshots of the trajectory were
clustered into5 clusters—eachonewith a representative structure—
using a hierarchical agglomerative algorithm. Binding free energies
of HIF-1a to the VBC complex were calculated using the MM-PB
(GB)SA methods (50). For those calculations, the first 50 ns of the
trajectories were discarded, then 100 snapshots separated by 3.5 ns
were used. Representative structures of clusters with appreciable
population (>10%)were used to calculate the electrostatic potential
of VBC using the APBS software (51) implemented in the APBS/
PDB2PQR web server (52).

2.11 Statistical Analysis
For real-time PCR analysis, one-way ANOVA was used with a
Tukey test post evaluation. The chi-square test was used to
analyze the differences in tumor incidence, and crosstabs were
created. Statistical significance was defined as a p-value <0.05,
and all data were graphed as mean ± standard deviation unless
indicated otherwise.

3 RESULTS

3.1 P138R and L163R pVHL Variants
Exhibit Lower Protein Levels Than
Wild-Type pVHL
We analyzed the effect of P138R and L163R novel variants onVHL
protein stability using Venus-tagged proteins. Human 786–0 RCC
cell line (VHL-deficient) was infected with retroviral vectors to
stably express VHL-P138R-Venus, VHL-L163R-Venus, andVHL-
WT-Venus. Protein levels for both variants were significantly lower
March 2022 | Volume 13 | Article 854365
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than those for VHL-WT-Venus (Figure 1A). Assessed by
RT-qPCR, mRNA levels showed that VHL-P138R-Venus and
VHL-L163R-Venus variants were similar and even higher than
VHL-WT-Venus mRNA levels (Figure 1B), suggesting that
transcription levels are not responsible for the differences in
protein levels evidenced by Western blot.

Cell lines were treated with cycloheximide to inhibit protein
translation and enable the determination of half-lives for both
VHL variants and WT pVHL. After 6 h, results showed that
VHL-P138R-Venus and VHL-L163R-Venus have a significantly
shorter half-life (≈1.2 h and 1 h, respectively) compared to that of
VHL-WT-Venus (≈3.4 h) (Figure 1C).

Inhibiting the proteasome with MG132 (proteasome
inhibitor) significantly increased both variants’ protein levels,
Frontiers in Endocrinology | www.frontiersin.org 4
achieving quantities comparable to WT pVHL levels after
MG132 treatment for the case of P138R and slightly lower for
L163R (Figure 1D).

3.2 VBC Complex Formation Is Apparently
Diminished but Still Functional for P138R
and L163R
To date, pVHL’s most described function is its interaction and
consequent downregulation of HIF-a protein subunits (53). To
this end, pVHL needs to form the VBC complex (pVHL-Elongin
B-Elongin C). Immunoprecipitation of GFP Trap showed a
specific band of 25 kD for GFP alone and 50 kD on cells
expressing GFP-pVHL-Venus Tag (Figure 2A). Consistent
with previous results (Figure 1A), pVHL levels are different for
A B

D

C

FIGURE 1 | Reduction in protein levels and half-life for P138R and L163R pVHL variants. (A) Representative Western blot showing the levels of GFP and VHL
protein obtained in each cell line and b-actin as loading control. (B) Expression of VHL measured by qrPCR and graphed as fold change for P138R and L163R
pVHL variants compared to pVHL WT. *p < 0.0001, **p = 0.0424, one-way ANOVA and Tukey’s posttest. (C) Proteins levels obtained by Western blot after
treatment with 50 µg/ml cycloheximide to inhibit protein translation. Quantification was done in order to plot the proportion of protein levels on the different time
points evaluated. The dotted line indicates the 50%. (D) Inhibition of proteasome by 5 µg/ml MG 132 for cell lines expressing WT, and P138R and L163R pVHL
variants. Results are shown by a representative Western blot for VHL and b-actin. Relative quantification of the bands is shown under each line.
March 2022 | Volume 13 | Article 854365
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the WT and P138R and L163R variants, resulting in less
coimmunoprecipitation of Elongin B and C for the variants
compared to WT VHL cell line (Figure 2A). We calculated the
ratio between the bands obtained: Elongin C/pVHL and Elongin
B/pVHL for WT pVHL, P138R and L163R pVHL-expressing cell
lines. Ratios were normalized to WT pVHL’s set as 1, and we
observed that P138R immunoprecipitates less Elongin B and
Elongin C (approximately 0.6) and L163R manages to
immunoprecipitate a similar proportion of Elongin C but a
lower quantity of Elongin B (0.25).

Since VBC complex was evidenced for both variants, we sought
to evaluate its functionality. Firstly, the capacity of pVHL variants
to downregulate HIF-2a was assessed. HIF-2a is overexpressed in
Frontiers in Endocrinology | www.frontiersin.org 5
the parental cell line used (786-0) (54), and its levels decrease
significantly in the derived cell line expressing VHL-WT-Venus
(Figure 2B, lanes 1 and 2). Protein levels for both P138R and
L163R cell lines (Figure 2B, lanes 3 and 4) were intermediate for
HIF-2a assessed by Western blot, although mRNA levels did not
change in the different cell lines (Figure 2B). To evidence the
consequence of these intermediate levels of HIF-2a protein, we
quantified mRNA levels of two of its downstream targets: VEGF-A
and GLUT1 using qRT-PCR in normoxic and pseudohypoxic
conditions (Figure 2C). Despite different HIF-2a protein levels,
mRNA levels in normoxia for VEGF-A and GLUT1 were similar
among cell lines expressing WT and P138R and L163R pVHL
(Figure 2C, upper panel). Under pseudohypoxic conditions, we
A B

C

FIGURE 2 | P138R and L163R pVHL variants form less VBC complexes without losing functionality. (A) Representative Western blot showing immunoprecipitation of GFP-
trap for each cell line expressing GFP, VHL-WT, P138R, or L163R. Membranes were blotted with anti-GFP, anti-VHL, anti-Elongin C, and anti-Elongin B. (B) Representative
Western blot showing the levels of HIF-2a protein and mRNA measured by RT-qPCR and graphed as fold change for 786-O, WT, P138R, and L163R cell lines. (C) VEG-F
andGLUT1mRNA expression was calculated by RT-qPCR under normoxia or 24 h of pseudohypoxia generated with 100 µM CoCl2. Results are presented as fold change
relative to pVHLWT expression. ns, not significant; *p < 0.0001, **p = 0.0401, ***p = 0.0002, one-way ANOVA and Tukey’s posttest.
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found significantly higher levels of VEGF-A and GLUT1 mRNAs
on the variant cell lines compared to the one expressing WT
pVHL (Figure 2C, lower panel).
3.3 Altered Fibronectin Deposition in
P138R pVHL and L163R pVHL With
Different RNA Levels
pVHL is known to regulate fibronectin mRNA levels, although
the underlying molecular mechanism has not been yet described.
We assessed fibronectin mRNA levels in the 786-0 and 786-0-
Frontiers in Endocrinology | www.frontiersin.org 6
derived cell lines expressing VHL-WT-Venus, VHL-P138R-
Venus, and VHL-L163R-Venus by RT-qPCR. Cells expressing
WT-VHL have higher fibronectin mRNA levels than the parental
786-0, which is pVHL null (Figure 3A). Regarding the variants,
P138R expression shows similar fibronectin mRNA levels to that
of WT-VHL-expressing cell line. On the other hand, L163R
expression resulted in diminished fibronectin mRNA levels and
significantly different to the WT-VHL but comparable to the
levels obtained for 786-0 cell line (Figure 3A).

Fibronectin expression per se does not ensure its proper
extracellular matrix organization. Using immunofluorescence,
A

B

FIGURE 3 | Differences in mRNA fibronectin expression for P138R and L163R pVHL variants with similar disrupted deposition patterns. (A) Fibronectin mRNA
expression of 786-O, WT, P138R, and L163R cell lines. Results are presented as fold change compared to WT cells. Values are expressed as ± SD of three
independent experiments performed in triplicate. ns, not significant; *p = 0.0011, **p = 0.0030, one-way ANOVA and Tukey’s posttest. (B) Cell lines were cultured
on coverslips to assess fibronectin deposition with anti-fibronectin Cy5 conjugated (in red) by immunofluorescence. Nuclei were dyed with 5 mg/ml Hoechst as
shown in blue. Images were taken at ×40 on a Carl-Zeiss AxioScope A1 microscope.
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we evidenced fibronectin deposition in the 786-0 cell line as a
dotted pattern, while in VHL-WT-Venus resulted in fibrillar
network of fibronectin deposition (Figure 3B). Both variants,
P138R and L163R, failed to generate this fibrillar organization,
demonstrating a pattern similar to that observed in the parental
786-0 cell line where pVHL is absent (Figure 3B).

3.4 Cells Expressing P138R and L163R
pVHL Do Not Suppress Tumor Growth
as Wild-Type pVHL Does
To test the tumor suppressor role of the novel variants, we
injected the cell lines expressing WT-VHL and P138R and L163R
pVHL into male nude mice. Also, 786-0 cell line was injected as
an internal control for the experiments. In our hands, visible
tumors were developed, on average, 9 weeks after injection for all
the tested cell lines (Figure 4A).
Frontiers in Endocrinology | www.frontiersin.org 7
As expected, the ratio between the number of tumors
developed and the number of sites injected was significantly
higher in 786-0 compared to the cells expressing the WT-VHL
protein. Moreover, P138R and L163R pVHL-expressing cells
developed more tumors when compared to WT-VHL cell line
(Figure 4B). Contingency tables were obtained, showing a
significant difference between P138R, L163R, or 786-0 cells
with WT pVHL, where tumors developed in 55% (11/20 for
both variants) or 40% (4/10 for 786-0 cells) of the sites injected
compared to a 10% for WT pVHL (3/30) (Figure 4B). Also, the
variants showed a similar ratio of developed tumors to that of the
parental cell line.

H&E staining confirmed that developed tumors had
histological characteristics that are compatible with clear cell
renal carcinoma (Figure 4C). These solid tumors were composed
of atypical polyhedral cells that have a large, acidophilic, or
A

B D

C

FIGURE 4 | In vivo studies showed tumor development for P138R and L163R pVHL variants. (A) Representative picture of nude mice and the tumors developed.
The arrow points toward a tumor (upper panel). The bottom panel shows the macroscopical aspect of the tumors. (B) Left plots represent the incidence obtained for
each cell line when injected on immunodeficient mice, and percentages are plotted on the right panels. ns, not significant; *p = 0.0306, **p = 0.0005, two-tailed chi-
square test. (C) Histological features of the experimentally obtained tumors and stained with H&E. Panel I, Tumor cells distributed as lobes of polyhedral cells
separated by fine fibers of connective tissue (CT) and striated muscle (SM) ×20 (Panel I). Panel II, a magnification of a sector of panel I shows a connective septum
with central endothelial nuclei corresponding to the capillary vessel (marked with black arrowheads), surrounded by tumor cells with nuclei (red arrows) with
prominent central nucleolus; ×100. Panel III presented tumor infiltrating the neighboring striated muscle, and the asterisks (*) indicate traces of tumor progression
between the muscle bundles. Panel IV shows mitotic figures indicated with black arrows; ×100. (D) Representative Western blot showing the expression of VHL
protein in the tumors developed by 786-O, WT, P138R, and L163R cell lines. b-Actin was blotted as loading control.
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optically empty cytoplasm with large nuclei where its membrane
was observed thickened and a prominent central nucleolus. Cells
are grouped into clusters separated by thin collagen tracts
through which small blood vessels pass (Figures 4C, I, II).
Tumors had infiltrating growth toward neighboring tissues
(Figures 4C, III) and showed histological signs of proliferative
activity, evidenced by the numerous mitotic figures found
(Figures 4C, IV).

pVHL protein expression was verified on tumors developed
by 786-0 cells, WT pVHL, P138R, and L163R cell lines by
Western blot. As shown in Figure 4D, pVHL was not
detectable on 786-0 cells and had higher levels on WT pVHL-
expressing cells compared to both variants (P138R and L163R).
3.5 Database Search and
Online Predictions
The results of our database and online prediction tools are
summarized in Table 1.

Our variants were not found in the Genome Aggregation
Database (gnomAD) that includes thousands of genomes and
exomes; this information allows us to infer that they have a very
low allelic frequency. Most of the effect prediction tools used
suggest that both variants are deleterious. L163R was previously
reported by our group and reported in ClinVar by a genetic
testing laboratory that classifies it as a variant of unknown
significance (VUS). Using VarSome to follow the ACMG
guidelines for classification of new variants, they are classified
as likely pathogenic (P138R) and pathogenic (L163R).
3.6 In Silico Studies of VBC: HIF-1a
Complexes by Molecular Dynamics
Simulations
MD simulations enabled us to inspect at a molecular level the
effects of introducing P138R and L163R pVHL variants in the
VBC: HIF complex structure (Figure 5A) and stability, flexibility
of the protein components, and other features relevant toward
molecular recognition of pVHL by HIF (here represented by a
559-577 peptide fragment from HIF-1a containing either
hydroxyproline Hyp564 or P564 in a carboxyl-terminal
oxygen-dependent CODD motif, as representative of normoxia
and hypoxia, respectively) in the VBC complex and by other
possible interactors (Figure 5A).
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All of the six MD 400-ns simulations promptly converged,
showing formation of structurally stable complexes in all the
cases. Introducing variants P138R and L163R in pVHL
(Figure 5B) appears not to considerably disrupt HIF-1a
binding to VBC under normoxic conditions: as shown in
Table 2, the three complexes display similar binding strength
values. Although VBC: HIF-1a complexes still form as evidenced
in vitro (Figure 2A), binding strength is significantly reduced in
all the cases under hypoxia, particularly for variant
P138R (Table 2).

Global structural fluctuations in protein backbones appear to
be smaller under hypoxia (when HIF-1a Hyp564 is replaced by
P564) with respect to normoxia (See Figure S1 in the
Supplementary Material). Differences in dynamic behavior
among WT and P138R and L163R variants of pVHL are more
pronounced under conditions representative of normoxia and
accompanied by side-chain shifts in residues relevant for the
pathophysiological functions of pVHL.
3.6.1 Structure and Dynamics of VBC: HIF Involving
Wild Type and P138R/L163R Variants
No major changes are detected in the tertiary and secondary
structure of the pVHL: HIF complexes after introduction of
variants P138R and L163R. Introducing variants affects specific
interactions at the level of amino acid side chains directly in their
local environment, and for L163R, it is propagated far away into
the pVHL: HIF-1a interface. P138R introduces changes in a loop
composed of residues 136–151.
3.6.2 Flexibility of the Components of the
Multiproteic Complex–Root-Mean-Square
Fluctuation (RMSF)
pVHL backbone flexibility and VCB interunit adaptation in the
VBC complex are essential features toward successfully
recruiting Cullin 2 (Cul2) E3 ubiquitin ligase and HIF-1a (55).
Under high oxygen conditions, P138R variant significantly
increases pVHL backbone flexibility in the region around P138
substitution comprising residues 136–151 (Figure S1, left
bottom). More precisely, while lining the floor of the b-domain
in native pVHL, this flexibilized region constitutes a
hydrophobic patch from where P138 establishes direct
hydrogen-bonding interactions with H115 (one of the residues
clamping Hyp564 from HIF-1a at the B-interface of pVHL) and
TABLE 1 | Databases and online predictions for our pVHL variants.

Variant ACMG Classification using
VarSome

Databases Mutation Effect Predictions

gnomAD
(v3.1.2&2.1.1)

dbSNP ClinVar SIFT Polyphen Mutation
Taster

Human Splicing Finder

P138R Likely pathogenic NA NA NA Affect protein
function

Probably
damaging

Deleterious New donor splice site

L163R Pathogenic NA rs28940297 VUS Affect protein
function

Probably
damaging

Deleterious No significant impact on
splicing signals
March 2022
NA, not available; VUS, Variant of Unknown Significance.
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Y112. In the P138R variant, the more extended and charged
Arg138 lies at the bottom of the b-domain but displaced outward
from the hydrophobic core and oriented toward helix H4. On the
opposite direction, both variants slightly reduce the flexibility of
Frontiers in Endocrinology | www.frontiersin.org 9
the protein in the region 86–96, also in the b-domain of pVHL,
as a part of the HIF-1a binding surface [primary binding site S1,
quite shallow, rigid (13, 56)] including some of the well-
conserved residues lining the Hyp564 binding cavity. No
A

B C

FIGURE 5 | 3D representative structures from MD simulations. (A) VBC complex with pVHL : HIF-1a and pVHL : EloC interfaces where variants are located circled
and evidencing relevant residues. (B, C) Overlapped representative structures for the most populated clusters from 400-ns MD simulation under normoxia. Circled
residues correspond to pVHL variants amino acids P138R and L163R in (B, C), respectively. Color code: green, wild type pVHL; yellow, P138R pVHL variant; red,
L163R pVHL variant.
TABLE 2 | MMPB(GB)SA-binding free-energies (DbG) for VBC: HIF-1a complexes.

System DbG (MMPBSA, kcal mol−1) D(DbG)

Normoxia Hypoxia

Wild type −34 ± 12 −23 ± 12 11
P138R −33 ± 08 −12 ± 10 21
L163R −33 ± 09 −24 ± 10 9
March 2022 | Volume 13 | Article
MMPBSA, Molecular Mechanics Poisson-Boltzmann Surface Area MMPBSA.
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significant alterations are introduced by the L163R variant
located in the a-domain of pVHL at the hydrophobic surface
patch defining the interface with EloC where L163 establishes
hydrophobic interactions with pVHL residues K159, L188, and a
leucine from EloC. No significant alterations in flexibility are
observed under conditions representative of hypoxia (Figure S1,
panel C) other than a small reduction in the native protein
around 86–96. Introducing variants in pVHL does not affect in a
significant way HIF-1a flexibility (Figure S1, left bottom), which
remains bound to VBC in all the cases with similar strengths
under normoxia (Table 2). In the case of P138R, a small increase
in flexibility is noticed under hypoxia in the region after Pro564,
partially comprising the primary (S1) and secondary (S2) HIF-
binding sites to pVHL. Introduction of variants in pVHL also
reduces EloB flexibility in the region comprising residues 77–90.
Frontiers in Endocrinology | www.frontiersin.org 10
Whereas L163R does not alter EloC flexibility with respect to
VBC formed with native pVHL, P138R induces a reduction
mainly in the region defined by residues 83–93.
3.7 Changes Toward Molecular
Interactions After Introducing
Variants in pVHL
3.7.1 Electrostatic Reorganization Influencing
Molecular Recognition Properties
As shown in Figure 6, front-view representations, HIF-1a
binding site in the native VBC complex has two regions of
clearly defined positive and negative electrostatic potential that
may be guiding HIF-1a recognition and proper positioning.
Introduction of both variants in pVHL induces charge
FIGURE 6 | In silico studies showed both reorganization in shape and/or surface electrostatic potential in pVHL variants. Molecular electrostatic potential (MEP) is
mapped on the Connolly surface as calculated for WT and P138R or L163R pVHL variants. Representative structures were extracted from the most populated
cluster from each MD simulation. Units of potential range from -7 to 7 kT/e (red, negative values; blue, positive values). Relevant modifications in shape and/or
surface MEP between WT and mutants are evidenced by placing black asterisks nearby. The interaction domains of pVHL with HIF and EloC/EloB are shown in the
left for each of the three views displayed.
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redistribution reflected in the molecular electrostatic potential
(MEP) and changes in the surface molecular shape, with an
influence in molecular recognition.

3.7.2 Exposition to Solvent (SASA) of Relevant pVHL
Lys Residues: K159, K171, and K196
We calculated the solvent-accessible surface area (SASA) for
lysine residues 159, 171, and 196 (see Figures 5B, C for their
location and orientation in each variant), which are targets for
posttranslational modifications. Figure S2 and Table S1 in the
Supplementary Material show the results for each of these. K159
is the most buried of the three Lys identified as relevant in the
interaction with NEDD8. L163R variant further reduces solvent
exposure of K159 in several frames of simulation, and this
residue is reoriented. K171 is the most exposed of the three
Lys inspected, and none of the variants affected its exposition.
K196 is less exposed to solvent for the case of the L163R variant.
4 DISCUSSION

In this study, we aimed to describe two novel variants of the VHL
protein: P138R and L163R, which have been found in families with
VHL disease and have not been functionally characterized before.

Firstly, by Western blot, we observed lower protein levels of
the variants when compared to WT pVHL and showed that they
have significantly lower half-lives compared to WT pVHL. Other
groups have reported similar results for other pVHL variants
such as S65W (57), N78S (57), Y98H (57, 58), W117A (26),
P138L (59), V155A (60), L158P (57), L158Q (60), Q164R (60),
R167Q (57, 61), R167W (58), L188Q (57), and L188V (60).
There are striking differences among other authors’ results
regarding the absolute value of WT pVHL and variant half-
lives, even if we only consider those that use the same
cycloheximide concentration (50 µg/ml). To compare our
results with previous studies, we calculated the ratio between
WT pVHL and our variants’ half-lives, resulting in 2.8 (P138R)
and 3.4 (L163R) approximately. Lanikova et al. (59) have
described P138L variant, obtaining different absolute values for
the half-lives, but a similar ratio to the one reported here for
P138R. If we compare mutations near L163R, Park et al. (58)
have shown that Q164R’s half-life was reduced ≈3-fold
compared to WT, while V155A and L158Q ≈5.5–6-fold. Ding
et al. (61) showed a ≈3-fold reduction of R167Q’s half-life. When
regarding absolute half-life values, Bangiyeva et al. (57) showed
that after 2 h of cycloheximide treatment, levels of L158P and
R167Q diminished drastically, becoming very low or
undetectable by Western blot, resembling our results.

On the other hand, when cell lines were treated with the
proteasome inhibitor MG132, we observed accumulation of WT
pVHL, P138R, and L163R. Both variants increased their levels in a
higher proportion than WT pVHL. Taken together, the above data
suggest that the lower protein levels observed for VHL-P138R-
Venus and VHL-L163R-Venus are due to proteasomal degradation.

The most studied mechanism for pVHL proteasome-
mediated degradation is UCP-mediated polyubiquitination.
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Other authors have shown that UCP mediates the degradation
of V155A, L158Q, and Q164R variants (60). P138R and L163R
variants do not involve the substitution of lysine residues (subject
to ubiquitination) directly, but they could alter their
surroundings, favoring their exposure and thus their
ubiquitination. Particularly for L163R variant, lysine 196
appears to be less exposed to the solvent, a result that would
not favor polyubiquitination of this residue. Given that the
region of interaction of pVHL with UCP has not been
determined yet, one could speculate that this region might vary
its conformation as a result of changes introduced in the pVHL
protein. Therefore, an increase in the affinity of UCP for pVHL
variants might explain their increased degradation compared to
WT pVHL.

We showed that both pVHL variants maintain their ability to
form a VBC complex, although it is apparently formed at a lower
rate: P138R appears to bind less Elongin B and C, while L163R
appears to bind Elongin C appropriately but less Elongin B.
These results are in agreement with other groups’ findings, since
the majority of inherited VHLmutations are defective in Elongin
B and C binding (62–65). Other groups have shown that variants
close to P138R and L163R such as D121G (66), Q145H (67),
F148A (61), V155A (60), Q164R (60), and R167Q (61, 66, 68)
form less VBC complex compared to WT pVHL, while L158P
(69) and C162F (63, 70) are unable to form this complex and
therefore do not have the capacity to downregulate HIF-a
subunits (69, 71, 72).

On the other hand, VBC complex formation itself does not
ensure its functionality, as it must recognize HIF-a subunits in
order to target them for proteasomal degradation. Ding et al. (61)
have shown that W117A and F148A mutations form less VBC
complex and also lose their ability to interact with HIF-2a. We
interrogated the capacity of the P138R and L163R pVHL variants
to form a functional VBC complex and therefore accomplish the
interaction and proteasome-mediated degradation of HIF-2a. By
Western blot, intermediate levels of HIF-2a were observed by the
cell lines expressing P138R and L163R; therefore, we decided to
evaluate the consequence of these intermediate levels by
evaluating the expression (mRNA) of two target genes: VEGF-
A and GLUT1. We showed that under normoxic conditions,
these genes exhibit the same regulation in cell lines expressing
either the variants or WT pVHL. Nevertheless, after 24 h of
pseudohypoxia, significant, though subtle, differences were
observed between the cell lines expressing the variants
compared to WT pVHL. As a consequence, variants’ VBC
complexes could not appropriately regulate HIF-2a levels
under these experimental conditions. This result suggests that
the novel pVHL variants might have a different behavior
compared to WT pVHL under more physiologically
challenging conditions. The results obtained in silico suggest
that VBC-HIF-1a complexes formed by the variants are
thermodynamically favorable because of their negative DG.

In summary, our results indicate that although the protein levels
for P138R and L163R pVHL variants are lower compared to WT
pVHL, these interact forming a functional VBC complex capable of
targeting HIF-2a for proteasome-mediated degradation.
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As mentioned before, numerous pVHL HIF-independent
mechanisms account for pVHL as a tumor suppressor (18, 19,
73). We decided to explore the relationship of these variants with
fibronectin regulation, since it has been explored since 1998 and
is the most described HIF-independent function to date (19).
Other authors have shown that cell lines with pVHL mutant
expression result in a defective fibronectin matrix deposition (19,
71, 74).

Our results indicate that although the novel variants exhibit a
different regulation of fibronectin mRNA levels, they both fail in
assembling a proper extracellular fibronectin matrix. For the
L163R variant, less exposure to solvent of lysine 196 could
explain a lower NEDDylation level and therefore the defective
interaction with fibronectin, since NEDDylation has been
described as a necessary switch for fibronectin interaction (75).
These findings are speculative at this point and need to be tested
in vitro in future studies.

The 786-0 cell line develops tumors when injected into nude
mice, while clones of this cell line expressing WT-pVHL do not,
or in some cases, they do but in a much smaller proportion of the
injected mice compared to 786-0. Our xenograft experiments
revealed that P138R-pVHL and L163R-pVHL failed to suppress
tumor growth, obtaining 11 tumors out of 20 sites injected with
each variant (55% incidence), a similar proportion to the one
obtained by parental 786-0 cell line that does not express pVHL
(40% incidence). These results confirm the pathogenic role for
P138R and L163R pVHL variants, since they are unable to
suppress tumor growth such as WT pVHL does. A study
conducted by Ding et al. (61) revealed that the amount of a
missense-mutated VHL protein (R167Q) could impact its
function suppressing tumorigenesis when proteasome is
inhibited, and this protein is therefore accumulated. Using the
same approach and experimental tools, our pVHL variants were
not able to compensate their functional deficiencies and
demonstrated tumorigenic capacity, suggesting that there are a
variety of mechanisms driving tumor formation. Our work
reinforces the importance of studying specific variants to
identify their biological impact. This work sets the stage for
mechanistic studies exploring the altered mechanisms that
explain pathogenesis and could lead to more targeted therapies
for specific mutations.

Overall, our results show that P138R and L163R pVHL
variants can be classified as pathogenic, since they failed to
suppress tumor development in nude mice. Future studies are
suggested for the elucidation of the mechanisms underlying their
pathogenicity. In the current omics era, our study sets the basis
for future proteomic and genomic approaches to compare cell
lines expressing these variants with the WT protein to fully
understand this missense variants’ global effects.
Frontiers in Endocrinology | www.frontiersin.org 12
DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors without undue reservation.

ETHICS STATEMENT

The animal study was reviewed and approved by Comité de Etica,
Hospital de Niños Dr. R. Gutiérrez, Buenos Aires, Argentina.

AUTHOR CONTRIBUTIONS

PP conceived, designed, and directed the experimental research.
CM, XL, and EJ designed the experiments. CM and MCF
planned and carried out the experiments. AM collected data.
AV, GS, and MB performed genetic and clinical characterization
of VHL patients. ELC designed and directed the computational
component of this work, and JB carried out all the molecular
dynamics simulations. CM andMCF took the lead on writing the
article under the supervision of PP and ELC (who wrote the in
silico sections; contact laurac@fcien.edu.uy for direct inquiries).
All authors provided critical feedback and helped shape the
research, analysis, and article. All authors contributed to the
article and approved the submitted version.

FUNDING

This work was supported by Instituto Nacional del Cáncer,
Ministerio de Salud, Argentina (Grant 2014-2016, awarded to PP)
and Consejo Nacional de Investigaciones Cientıfícas y Técnicas,
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