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Abstract

Bevacizumab combined with cytotoxic chemotherapy is the backbone of metastatic colorec-

tal cancer (mCRC) therapy; however, its treatment efficacy is hampered by therapeutic

resistance. Therefore, understanding the mechanisms underlying bevacizumab resistance

is crucial to increasing the therapeutic efficacy of bevacizumab. The Gene Expression

Omnibus (GEO) database (dataset, GSE86525) was used to identify the key genes and

pathways involved in bevacizumab-resistant mCRC. The GEO2R web tool was used to

identify differentially expressed genes (DEGs). Functional and pathway enrichment analy-

ses of the DEGs were performed using the Database for Annotation, Visualization, and Inte-

grated Discovery(DAVID). Protein–protein interaction (PPI) networks were established

using the Search Tool for the Retrieval of Interacting Genes/Proteins database(STRING)

and visualized using Cytoscape software. A total of 124 DEGs were obtained, 57 of which

upregulated and 67 were downregulated. PPI network analysis showed that seven upregu-

lated genes and nine downregulated genes exhibited high PPI degrees. In the functional

enrichment, the DEGs were mainly enriched in negative regulation of phosphate metabolic

process and positive regulation of cell cycle process gene ontologies (GOs); the enriched

pathways were the phosphoinositide 3-kinase-serine/threonine kinase signaling pathway,

bladder cancer, and microRNAs in cancer. Cyclin-dependent kinase inhibitor 1A(CDKN1A),

toll-like receptor 4 (TLR4), CD19 molecule (CD19), breast cancer 1, early onset (BRCA1),

platelet-derived growth factor subunit A (PDGFA), and matrix metallopeptidase 1 (MMP1)

were the DEGs involved in the pathways and the PPIs. The clinical validation of the DEGs in

mCRC (TNM clinical stages 3 and 4) revealed that high PDGFA expression levels were
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associated with poor overall survival, whereas high BRCA1 and MMP1 expression levels

were associated with favorable progress free survival(PFS). The identified genes and path-

ways can be potential targets and predictors of therapeutic resistance and prognosis in bev-

acizumab-treated patients with mCRC.

Introduction

Colorectal cancer (CRC) is the third most frequently diagnosed cancer and the second lead-

ing cause of cancer deaths worldwide, accounting for 10% of the worldwide cancer incidence

and mortality [1]. Surgery is the treatment of choice for nonmetastatic CRC; however,

approximately 20% of cases present with metastatic disease at the time of diagnosis and half

of the patients experience recurrence and metastases even after complete resection of the pri-

mary tumor, leading to a poor prognosis and median overall survival (OS) of approximately

24 months [2, 3]. The inclusion of cytotoxic agents (irinotecan and oxaliplatin) in fluoropyri-

midine (intravenous 5-fluorouracil or oral capecitabine)-based systemic chemotherapy has

been reported to improve the associated response rates (RR) from 15%–20% to 30%–40%,

time to progression from 5–6 to 8 months, and OS from 10–12 to 20–24 months [3–7].

Furthermore, therapeutic benefits have been demonstrated to increase through the use of

targeted drugs, such as angiogenesis inhibitors (bevacizumab, ziv-aflibercept, and ramuciru-

mab) and antiepidermal growth factor receptor antibodies (cetuximab and panitumumab),

as the first and second lines of treatment in patients with with K-RAS-wild-type tumors

tumors [8–12].

Bevacizumab is the first agent to influence OS in patients with metastatic CRC (mCRC);

when combined with irinotecan-based chemotherapy, the median OS improved from 15.6 to

20.3 months, median PFS from 6.2 to 10.6 months and RR from 34.8% to 44.8%[10]. The addi-

tion of bevacizumab to oxaliplatin-based chemotherapy improved median PFS from 8.0 to 9.4

months though there was no significant difference in OS(19.9 to 21.3 months) [13], while in

previously treated mCRC; oxaliplatin based therapy improved both OS and PFS (10.8 to 12.9

months and 4.7 to 7.3 respectively)[14]. When compared for effectiveness, the irinotecan

based chemotherapy has shown to have an edge over oxaliplatin based chemotherapy with the

addition of bevacizumab (OS = 31.4 vs 30.1 months, PFS = 12.1 vs 10.7 months)[15]. These

results have also been echoed in the MAVERICC trial (OS = 27.5 vs 23.9 months, PFS = 12.6

vs 10.1 months)[16]. Bevacizumab is a humanized monoclonal antibody that binds to vascular

endothelial growth factor A (VEGF-A) and thus prevents interaction with its receptors,

VEGFR-1 (Flt-1) and VEGFR-2 (Flk-1/KDR), leading to the regression of existing tumor

blood vessels, normalization of the remaining blood vessels, and consequently tumor inhibi-

tion [17]. However, the therapeutic effects of bevacizumab are strongly affected by the lack of

biomarkers that can facilitate selecting a population that might benefit from this medication

and can predict therapeutic resistance [18–20].

In this study, we investigated the predictive biomarkers and pathways of bevacizumab

resistance in mCRC by using microarray data from the Genetic Expression Omnibus (GEO)

database. The new biomarkers were assessed for their ability to predict OS and PFS. The iden-

tification of predictive and prognostic biomarkers can facilitate improving the therapeutic

index of bevacizumab.
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Materials and methods

Microarray data

The gene expression profile of GSE86525 was obtained from the GEO (http://www.ncbi.nlm.

nih.gov/geo/) database [21], which was sequenced on the GPL16699 platform of Agilent-

039494 SurePrint G3 Human GE v2 8 × 60K Microarray 039381 (Agilent Technologies, Santa

Clara, CA, USA). The GSE86525 dataset includes microarray gene expression data derived

from three bevacizumab-resistant HT29 xenograft tumors and three untreated HT29 xeno-

graft tumors as controls. In brief, HT29 cells (1 × 107) suspended in phosphate-buffered saline

were subcutaneously injected into the flanks of BALB/c nude mice, and the tumor-bearing

mice were treated with bevacizumab (5 mg/kg, twice a week) for 3 weeks to obtain bevacizu-

mab-resistant tumors. MTT colorimetric assays were used to determine the 50% inhibitory

concentration for bevacizumab-resistant and untreated xenograft tumors; the tumor sizes

were compared between the two groups. The sample tissues were immediately frozen under

liquid nitrogen after isolation. Total RNAs were extracted from the samples, evaluated, labeled

and hybridized, using a SurePrint G3 Human GE 8 × 60K microarray (Agilent Technologies).

Array images were captured using a DNA microarray scanner (Agilent Technologies), and the

data were analyzed using Feature Extraction Software (Agilent Technologies) to obtain back-

ground-corrected signal intensities. The expression data were further analyzed using Gene-

Spring GX software (version 11.0, Agilent Technologies), and the differentially expressed

genes (DEGs) between the bevacizumab-resistant HT29 tumors vs untreated control were

compared using the Fisher exact test, followed by multiple corrections using the Benjamini

and Hochberg false discovery rate (FDR) method [22]. Gene sets with an FDR q-value of

<0.05 were considered statistically significant, and all experiments were performed in

triplicate.

Data preprocessing and DEGs screening

The data were recalculated using the GEO2R analytical tool to identify the DEGs associated

with acquired bevacizumab-resistant CRC [23, 24]. The t test and Benjamini and Hochberg

method were used to calculate the P values and FDR, respectively [22]. The genes were consid-

ered to be differentially expressed for an FDR value of<0.05 and fold change (FC) of>2 or

<-2 (log2FC> 1 or< -1). The DEG expression data were extracted, and a bidirectional hierar-

chical clustering plot was constructed using MultiExperiment Viewer (MeV; version 4.8) soft-

ware [25].

Construction of PPI networks

Protein–protein interaction (PPI) networks were plotted using the Search Tool for the

Retrieval of Interacting Genes/Proteins (STRING; version 10.0; http://www.string-db.org/), an

online database comprising comprehensive known and predicted interactions, to determine

the interactive relationships among the DEG-encoded proteins. A combined score of>0.7

(high confidence) was used as the cutoff criterion [26]. PPI pairs were visualized using Cytos-

cape software (version 3.4.0; http://www.cytoscape.org/), and the CytoNCA tool was used

to subcluster the plotted PPI networks [27–30]. Highly connected proteins with important

biological functions were identified by calculating the degree (number of line connections

between proteins) and the betweenness value (fraction of the number of shortest paths that

pass through each node; A measure of how often nodes occur on the shortest paths between

other nodes) of each node with a degree cutoff criterion of�2.
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Enrichment analysis of DEGs

The Database for Annotation, Visualization, and Integrated Discovery (DAVID, http://david.

abcc.ncifcrf.gov/) was used to classify the DEGs involved in the PPI networks according to

their biological processes, molecular functions, or cellular components by using the Gene

Ontology (GO) Consortium Reference (http://www.geneontology.org/) [31, 32]. Gene sets

with a P value of<0.05 and FDR value of<0.05 were considered statistically significant. In

addition, the DAVID tool was used for pathway enrichment analysis, and the reference path-

ways were obtained from the Kyoto Encyclopedia of Genes and Genomes (KEGG; http://

www.genome.jp/kegg/) database website to perform KEGG pathway enrichment analysis for

the DEGs involved in the PPI networks, with a P value of<0.05 and FDR value of<0.05 being

considered statistically significant [33, 34].

Clinical validation of the DEGs

The clinical assessment of DEGs associated with bevacizumab resistance was performed using

the SurvExpress tool [35]. The colon metabase, which includes GSE12945[36], GSE14333[37],

GSE17536[38], GSE17537[38], GSE31595, and GSE41258[39] with a total of 808 cases, was

used in this study. Survival profiles were compared on the basis of a high or low mRNA expres-

sion level of a particular gene, and they were censored independently for OS and PFS in

months and stratified further according to TNM clinical stages 3 and 4. A log-rank P value of

<0.05 was considered statistically significant, and the data were analyzed using SPSS for Mac-

intosh (version 21, IBM Corp Armonk, NY, USA; www-01.ibm.com) for plotting Kaplan–

Meier survival curves.

Gene co-expression in colorectal cancer data

The Cancer Genome Atlas (TCGA; https://cancergenome.nih.gov/) was used to obtain CRC

data containing gene expression profiles. Level 3 RNASeq data containing gene expression

profiles of 635 CRC cases (colon adenocarcinoma, N = 463; and rectal adenocarcinoma,

N = 172) were obtained. The standard Pearson correlation coefficients (-1 to 1) and the coeffi-

cient of variation (the ratio of standard deviation to mean) of the desired gene pairs were cal-

culated using SPSS for Macintosh (version 21, IBM Corp., Armonk, NY, USA; https://www-

01.ibm.com). A P value of<0.05 was considered statistically significant and was used as the

cutoff criterion.

Results

DEGs screening and heat map clustering analysis

The GEO2R tool was used to identify DEGs from the data derived from the GPL16699 oligo-

nucleotide microarray platform, comprising 62,976 probe sets. A total of 124 DEGs were deter-

mined to be associated with bevacizumab resistance, with 57 being upregulated and 67 being

downregulated, as determined according to their log2FC and FDR values (S1 and S2 Tables).

MeV software was used to construct a heat map to obtain the bidirectional hierarchical cluster-

ing of the DEGs and summarize the upregulated and downregulated DEGs (Fig 1).

PPI network analysis

The PPI pairs obtained using the STRING database were visualized using Cytoscape software

and analyzed using the CytoNCA plugin. The upregulated network had 88 nodes and 466

edges. Seven genes, namely cyclin-dependent kinase inhibitor 1A (CDKN1A; p21 and Cip1),

matrix metallopeptidase 1 (MMP1; interstitial collagenase), pre-B cell leukemia transcription
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factor 1 (PBX1), platelet-derived growth factor alpha polypeptide (PDGFA), kin of IRRE-like

(Drosophila) (KIRREL), insulin-like growth factor binding protein 7 (IGFBP7), and dual spec-

ificity phosphatase 5 (DUSP5), exhibited higher PPI degrees and betweenness values (Fig 2A

and Table 1). In the downregulated network, containing 88 nodes and 350 edges, nine genes,

namely breast cancer 1, early onset (BRCA1), retinoblastoma-like 1 (p107) (RBL1), toll-like

receptor 4 (TLR4), CD19, HEAT repeat-containing 1 (CD19), Fanconi anemia complementa-

tion group D2 (FANCD2), proteasome subunit beta 11 (PSMB11), biliverdin reductase A

(BLVRA), and GINS complex subunit 4 (GINS4), showed higher PPI degrees and betweenness

values (Fig 2B, Table 2).

Functional enrichment analysis

The DAVID tool was used to classify the DEGs involved in the PPI networks according to

their common biological processes, molecular functions, or cellular components. Of the 1,454

Fig 1. Heat map showing up-regulated and down-regulated differentially expressed genes (DEGs) in

bevacizumab-resistant colon cancer tumors. A bidirectional hierarchical clustering heat map was constructed using

MultiExperimental Viewer(MeV). The expression values are log2 fold changes (>1 or<−1, FDR<0.05)) between

corresponding bevacizumab -resistant HT29 xenograft tumors and non-treated HT29 xenograft tumors. Black

represents no change in expression, green represents down-regulation, and red represents up-regulation.

https://doi.org/10.1371/journal.pone.0189582.g001
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GO gene sets included from the reference database, 111 were significantly enriched (P< 0.05;

FDR< 0.05). Table 3 lists the top five gene sets, with those involved in the negative regulation

of phosphate metabolic process and positive regulation of cell cycle process being the most

significant and they include DUSP5, CDKN1A (p21 and Cip1), KIRREL, PDGFA, TLR4,

PSMB11, BRCA1, and PBX1.

KEGG pathway analysis

The DAVID tool was applied to classify the DEGs involved in the PPI networks by using

the reference pathways from KEGG. KEGG pathway analysis revealed significant results

(P< 0.05; FDR< 0.05) for three pathways: the phosphoinositide 3-kinase-serine/threonine

kinase (PI3K-AKT) signaling pathway (involving CD19, BRCA1, PDGFA, CDKN1A, and

TLR4), bladder cancer (involving CDKN1A and MMP1), and microRNAs in cancer (involving

CDKN1A, PDGFA, and BRCA1; (Fig 3, Table 4)

Fig 2. Protein–protein interaction (PPI) network of differentially expressed genes(A) up-regulated genes and (B)

down-regulated genes. The PPI pairs were imported into Cytoscape software as described in methods and materials. Pink

nodes represent up-regulated genes while green nodes represent down-regulated genes. The lines represent interaction

relationship between nodes. The highlighted DEGs represents degree =>2.

https://doi.org/10.1371/journal.pone.0189582.g002

Table 1. Up-regulated genes which had interactions in the PPIs.

Gene symbol Gene name Degree Betweenness

CDKN1A cyclin-dependent kinase inhibitor 1A (p21, Cip1) 38.0 209.46272

MMP1 matrix metallopeptidase 1 (interstitial collagenase) 10.0 20.48990

PBX1 pre-B-cell leukemia homeobox 1 5.0 192.13673

KIRREL kin of IRRE like (Drosophila) 4.0 46.28517

IGFBP7 insulin-like growth factor binding protein 7 4.0 0.44311

DUSP5 dual specificity phosphatase 5 3.0 0.44311

PDGFA platelet-derived growth factor alpha polypeptide 2.0 2.66667

https://doi.org/10.1371/journal.pone.0189582.t001
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Survival analysis of the enriched DEGs

The SurvExpress tool was used to assess the enriched DEGs for their ability to predict OS and

PFS in mCRC. High PDGFA expression levels were associated with poor OS, whereas high

BRCA1 and MMP1 expression levels were associated with favorable PFS. However, the expres-

sion levels of CD19, CDKN1A, and TLR4 were neither associated with OS nor PFS (Figs 4

and 5).

Mechanism of gene correlation in tumor tissues

To elucidate the mechanism underlying the gene–gene correlation of the DEGs, TCGA RNA-

Seq level 3 CRC data were used. BRCA1 was negatively correlated with PDGFA, CDKNA1,

CD19, and TLR4 and positively correlated with MMP1. Moreover, PDGFA was negatively

correlated with CDKNA1, BRCA1, MMP1, and TLR4. TLR4 was positively correlated with

CDKNA1 and MMP1 and negatively correlated with CD19 and BRCA1. Furthermore, CD19

was positively correlated with CDKNA1 and negatively correlated with BRCA1, MMP1, and

TLR4. However, PDGFA and CD19 were not significantly correlated (Fig 6).

Discussion

The overall mortality of CRC has remained unchanged over the past decades, despite advances

in surgical and medical therapy [40, 41]. This is due to the difficulties associated with early

detection of the disease and the development of acquired therapeutic resistance, leading to

ineffective treatment in patients with metastatic diseases [42–44]. Therefore, the etiological

factors and mechanisms of acquired therapeutic resistance must be explored to improve

Table 2. Down-regulated genes which had interactions in the PPIs.

Gene symbol Gene name Degree Betweenness

BRCA1 breast cancer 1, early onset 35.0 326.96054

FANCD2 fanconi anemia complementation group D2 19.0 33.54729

RBL1 retinoblastoma-like 1 (p107) 13.0 12.75956

TLR4 toll-like receptor 4 8.0 31.75171

GINS4 GINS complex subunit 4 4.0 0.0

CD19 CD19 molecule 2.0 0.0

HEATR1 HEAT repeat containing 1 2.0 0.0

PSMB11 proteasome subunit beta 11 2.0 0.0

BLVRA biliverdin reductase A 2.0 0.0

https://doi.org/10.1371/journal.pone.0189582.t002

Table 3. Enriched Gene-Ontologies (GO’s).

Gene-Ontology Genes p-value FDRa

negative regulation of phosphate metabolic process (GO:0045936) DUSP5, CDKN1A, KIRREL, PDGFA, TLR4 0.00002184 0.004597

positive regulation of cell cycle process (GO:0090068) PSMB11, CDKN1A, BRCA1, PBX1 0.00002337 0.004597

regulation of lipid metabolic process (GO:0019216) RBL1, PDGFA, IGFBP7, BRCA1 0.00003562 0.004597

positive regulation of cell cycle arrest (GO:0071158) PSMB11, CDKN1A, BRCA1 0.00003986 0.004597

DNA damage response, signal transduction by p53 class mediator (GO:0030330) PSMB11, CDKN1A, BRCA1 0.00004889 0.004597

As there were 111 enriched Gene-Ontologies, here we only present top 5 most significant terms according to P-value and
aFDR (False discovery rate).

GO: gene-ontology

https://doi.org/10.1371/journal.pone.0189582.t003
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survival rates and prevent disease recurrence [43]. Microarray technology has been widely

used in the identification of therapeutic targets for diagnosis and prognosis of cancers [45, 46].

Our study performed a systematic bioinformatic analysis of the microarray data of HT29 xeno-

graft tumor models with acquired bevacizumab resistance and identified 124 DEGs, 57 of

which were upregulated and 67 were downregulated. CD19, BRCA1, PDGFA, CDKNA1,

MMP1, and TLR4 exhibited high PPI degrees and were enriched in the PI3K-AKT signaling

Fig 3. Significant KEGG pathways and the genes involved. Gene enrichment analysis showing KEGG pathways

significantly enriched in bevacizumab resistant HT29 xenograft tumors and the genes involved in the pathways (the

pathways are in order of their enrichment from left to right) (FDR<0.05, p-value<0.05).

https://doi.org/10.1371/journal.pone.0189582.g003

Table 4. Enriched KEGG pathways.

KEGGa pathway Genes p-value FDRb

PI3K-Akt signaling pathway

(hsa04151)

CDKN1A, CD19, PDGFA, BRCA1, TLR4 0.000005237 0.0003037

Bladder cancer

(hsa05219)

CDKN1A, MMP1 0.000483151 0.009340926

MicroRNAs in cancer

(hsa05206)

CDKN1A, PDGFA, BRCA1 0.001572901 0.01303

aKEGG: Kyoto Encyclopedia of Genes and Genome
bFDR:False discovery rate

https://doi.org/10.1371/journal.pone.0189582.t004
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pathway, bladder cancer, and microRNAs in cancer; however, only high PDGFA expression

levels were associated with poor OS, whereas high BRCA1 and MMP1 expression levels were

associated with favorable PFS. These discrepancies may be because the study cohort was not

specifically on bevacizumab treatment, thus suggesting that biomarkers that predict OS do not

Fig 4. Kaplan-Meier survival curves presenting the prognostic relationship between high and low expression of

specific genes involved in bevacizumab resistance to overall survival (OS) in TNM clinical stage 3 and 4(A)

PDGFA, (B) BRCA1, (C) TLR4, (D) MMP1 (E) CD19 and (F) CDKN1A expression. The survival curves were

plotted using the survExpress online tool. The specific DEGs expression levels were dichotomized by median value and

stratified for TNM clinical stage. The results presented visually by Kaplan-Meier survival plots. p-values were

calculated using log-rank statistics. Patient number(N) = 270, p = Logrank p-value.

https://doi.org/10.1371/journal.pone.0189582.g004
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Fig 5. Kaplan-Meier survival curves presenting the relationship between high and low expression of specific genes

involved in bevacizumab resistance to Progress Free survival in TNM clinical stage 3 and 4 (A) PDGFA, (B)

BRCA1, (C) TLR4, (D) MMP1 (E) CDKN1A and (F) CD19 expression. The survival curves were plotted using the

survExpress online tool. The specific DEGs expression levels were dichotomized by median value and stratified for

TNM clinical stage. The results presented visually by Kaplan-Meier survival plots. P-values were calculated using log-

rank statistics. Patient number(N) = 242, p = Logrank p-value.

https://doi.org/10.1371/journal.pone.0189582.g005
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specifically predict PFS. Therefore, to confidently interpret the study results, these biomarkers

require further assessment in patients specifically treated with bevacizumab.

The results of this study reveal PDGFA overexpression to be associated with bevacizumab

resistance and the prognosis of patients with mCRC. These results are consistent with those of

a previous study, which identified PDGFA as a potential predictor of therapeutic resistance

and an individual prognostic marker for bevacizumab treatment, because PDGFA expression

was observed to be decreased after single-dose bevacizumab treatment in responders but

remained unchanged in nonresponders [47]. PDGFA targeting with the PDGF receptor has

been reported to increase chemotherapeutic sensitivity in different cancers [47–50]. Therefore,

our study supports the current understanding that PDGFA acts not only as a predictor of treat-

ment response but also as a prognostic factor, because PDGFA upregulation not only limited

the response to bevacizumab but also affected the prognosis of patients with mCRC in this

study. Notably, PDGF overexpression has been implicated in bevacizumab resistance and poor

prognosis in bevacizumab-treated patients because the PDGF pathway is considered an alter-

native pathway in the development of bevacizumab resistance [51, 52].

Fig 6. Gene expression correlation of the DEGs involved in the pathways in the colorectal carcinoma tumor

samples from TCGA data base. TCGA RNASeq Level 3 data was used and Pearsons correlation coefficients (-1 to 1)

were calculated. Number of patients = 653. The percentage presents the coefficient of variation of the genes, the lines

presents negative correlation and the arrow presents positive correlation (p-value<0.05).

https://doi.org/10.1371/journal.pone.0189582.g006
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The expression levels of MMP1 and BRCA1 were associated with PFS in patients with

mCRC. Although this study is the first to demonstrate the aforementioned relationship in

mCRC, MMPs have received attention in terms of their role in the mechanism underlying

resistance to antiangiogenic therapy, because increased MMP2 and MMP9 expression levels

have been associated with resistance to the anti-VEGF and antiplacental growth factor drug

aflibercept and with poor OS [53, 54]. Furthermore, MMP1 expression has been strongly asso-

ciated with tumor metastasis and adverse outcomes in mCRC and has been suggested as a

potential prognostic and therapeutic target [55–59]. A previous study reported that BRCA1 is

associated with early onset CRC and functions as a DNA repair gene to cytotoxic drugs [60].

BRCA1 has been considered as a predictor of treatment response and prognosis in breast,

ovarian, and lung cancers [61–66]; however, its role in mCRC and bevacizumab resistance is

yet to be explored. The present results suggest that BRCA1 may exert protective effects in

mCRC; therefore, BRCA1 should be thoroughly studied because BRCA1 targeting might not

only increase the prognostic and therapeutic effects of bevacizumab but also affect the expres-

sion levels of its associated genes, namely PDGFA, CDKN1A, TLR4, and MMP1.

CD19, CDKN1A, and TLR4 have also been reported to influence therapeutic resistance or

overall prognosis in cancer. CD19 has been associated with chemotherapy and multidrug resis-

tance in many hematological tumors, and plays a central role in targeted therapeutics against

B-cell malignancies (because of its expression patterns throughout the B-cell lineage), and

against most B-cell malignancies with successful preclinical experiments and first-generation

clinical trials [67–72]. CDKN1A has been implicated in cell cycle regulation, cell death, DNA

repair, and cell motility [73]. Studies have demonstrated CDKN1A overexpression to be asso-

ciated with poor prognosis in gastric and esophageal carcinomas [74, 75]. Furthermore, studies

have reported that TLR4 plays a role in CRC; polymorphisms increasing TLR4 signaling led to

a highly aggressive CRC, whereas those reducing TLR4 signaling exerted protective effects [76,

77]. In addition, high TLR4 expression levels have been associated with highly advanced grades

of colonic neoplasia and with lower OS, a high probability of CRC relapse, and the presence of

liver metastases in humans [78–81]. Studies have also suggested TLR4 to promote angiogenesis

in different cancers by activating the PI3K-AKT signaling pathway to induce VEGF expres-

sion. In addition, TLR4 inhibition is associated with VEGF inhibition [82–84]. This finding

can explain TLR4 downregulation in the bevacizumab-resistant tumors in this study; however,

in vitro validation of this finding is required.

Notably, five of the six genes that were commonly enriched as well as associated with beva-

cizumab resistance belonged to the PI3K-AKT signaling pathway. Therefore, we suggest that

the PI3K-AKT signaling pathway is responsible for restraining the therapeutic efficacy of beva-

cizumab in mCRC. This observation is in accordance with the results of previous studies,

which have suggested that modifications in the PI3K-AKT signaling pathway increase bevaci-

zumab resistance as an alternative pathway to VEGF inhibition [85–87]. Moreover, the occur-

rence of mutations in the PI3K-AKT signaling pathway remains the main challenge for mCRC

treatment with new biological agents [86, 88, 89].

The present findings provide novel data that could predict bevacizumab treatment response

and the emergence of resistance. Furthermore, this approach can predict patient prognosis;

however, additional studies are required to validate the study findings and determine their

clinical applicability.
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