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Abstract 

Background:  Accelerometery is commonly used to estimate physical activity, sleep, and sedentary behavior. In free-
living conditions, periods of device removal (non-wear) can lead to misclassification of behavior with consequences 
for research outcomes and clinical decision making. Common methods for non-wear detection are limited by data 
transformations (e.g., activity counts) or algorithm parameters such as minimum durations or absolute temperature 
thresholds that risk over- or under-estimating non-wear time. This study aimed to advance non-wear detection meth-
ods by integrating a ‘rate-of-change’ criterion for temperature into a combined temperature-acceleration algorithm.

Methods:  Data were from 39 participants with neurodegenerative disease (36% female; age: 45–83 years) who wore 
a tri-axial accelerometer (GENEActiv) on their wrist 24-h per day for 7-days as part of a multi-sensor protocol. The 
reference dataset was derived from visual inspection conducted by two expert analysts. Linear regression was used to 
establish temperature rate-of-change as a criterion for non-wear detection. A classification and regression tree (CART) 
decision tree classifier determined optimal parameters separately for non-wear start and end detection. Classifiers 
were trained using data from 15 participants (38.5%). Outputs from the CART analysis were supplemented based on 
edge cases and published parameters.

Results:  The dataset included 186 non-wear periods (85.5% < 60 min). Temperature rate-of-change over the first five 
minutes of non-wear was − 0.40 ± 0.17 °C/minute and 0.36 ± 0.21 °C/minute for the first five minutes following device 
donning. Performance of the DETACH (DEvice Temperature and Accelerometer CHange) algorithm was improved 
compared to existing algorithms with recall of 0.942 (95% CI 0.883 to 1.0), precision of 0.942 (95% CI 0.844 to 1.0), 
F1-Score of 0.942 (95% CI 0.880 to 1.0) and accuracy of 0.996 (0.994–1.000).

Conclusion:  The DETACH algorithm accurately detected non-wear intervals as short as five minutes; improving 
non-wear classification relative to current interval-based methods. Using temperature rate-of-change combined 
with acceleration results in a robust algorithm appropriate for use across different temperature ranges and settings. 
The ability to detect short non-wear periods is particularly relevant to free-living scenarios where brief but frequent 
removals occur, and for clinical application where misclassification of behavior may have important implications for 
healthcare decision-making.
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Background
There has been tremendous growth in the use of wear-
able sensor technologies as a method to evaluate fitness 
and health [1–4] and in particular, the use of acceler-
ometry to assess physical activity volume and intensity 
[5–12]. In addition to evaluating activity, there is critical 
need to assess other daily behaviors such as sleep [6, 13], 
and sedentary time [5, 6, 9, 12, 13] which are character-
ized by a relative absence of movement. Quantifying and 
characterizing these activities is emerging as critical for 
understanding disease risk and improving health out-
comes [6, 14, 15]. The unique advantage of accelerometry 
is its ability to capture data continuously in unsupervised, 
free-living conditions [16]. During free-living wear how-
ever, there are circumstances that can pose challenges 
to data analysis such as periods of device removal (non-
wear) and the potential problem of misclassifying these 
periods as sleep or sedentary behavior due to the shared 
feature of an absence in movement. Appropriate classi-
fication of non-wear not only ensures that behaviors are 
properly represented but also allows for the use of non-
wear time as a measure of compliance to device wear 
and thus, device useability. For example, non-wear can 
be used to evaluate factors that impact compliance such 
as removal due to interference with daily activities (e.g., 
removing a device to avoid contact with water) [7, 10], 
discomfort [10], or forgetfulness with respect to donning 
the device after a removal [10, 17]. In short, failure to 
accurately identify non-wear periods affects downstream 
measures, including the volume of valid, usable data, and 
amount of sleep, sedentary behavior and activity esti-
mates [5, 7, 17–19]. As such, there is a need for validated, 
low-burden, automated methods to identify periods of 
non-wear time [20] for accelerometer-based devices [21].

Despite the importance of accurate non-wear detec-
tion for remote health monitoring, current device capa-
bilities have noticeable limitations. Wearable devices that 
measure biopotentials, skin conductance and/or light 
refraction (e.g., oximetry) can rely on signal discontinuity 
due to a lack of skin contact to detect non-wear periods. 
However, most low-cost, wearable accelerometers and 
gyroscopes used to assess health behaviors in clinical and 
research settings must rely on a lack of change in the sig-
nal to indicate a period-of non-wear and in devices where 
there is only one signal-type available (e.g., acceleration 
only), non-wear can be difficult to resolve. For example, 
‘activity counts’ are commonly used to classify activ-
ity intensity from accelerometry [13], but the method 

of deriving non-wear time from the sum of consecutive 
‘zero’ activity counts (time intervals during which there is 
little to no acceleration) can lead to misclassifying sleep 
or sedentary time as non-wear [9, 17, 18, 20, 22–24]. Fur-
ther, some activity count algorithms are device-specific 
which limits their utility, and any motion artifacts pre-
sent during non-wear (e.g., external vibrations registered 
by the device when it is resting on a surface) can result in 
mistakenly identifying them as activity [23, 25]. For these 
reasons, an increasing number of algorithms are being 
developed to determine non-wear time from raw accel-
eration data (e.g., [11], [25]).

Non-wear algorithms applied to raw acceleration 
data typically consider pre-defined, minimum dura-
tions required for a period to be considered non-wear, 
and specific parameters for determining the start and 
end of a non-wear period [7, 11, 26]. This pre-defined 
duration, called window length, is a key factor affect-
ing downstream measures of total wear time [9, 18, 24], 
number of non-wear periods [9], sedentary time [9, 24], 
and estimates of physical activity levels [22, 27]. The 
most common window length reported in the literature 
is 60 minutes [11, 12, 19]. While 60 minutes ensures that 
large periods of non-wear are not misclassified as wear 
time, work has shown that most non-wear periods are 
shorter than 60 minutes (e.g., removal for a shower) and 
therefore, it is likely that a significant number of non-
wear periods are missed using this 60-minute window 
length [16, 26]. The risk associated with using non-wear 
algorithms that require a longer window length is an 
overestimation of wear time and sedentary time [9, 12]. 
Alternatively, using a shorter window length increases 
the potential for sleep and sedentary behavior to be mis-
classified as non-wear time [24]. To safeguard against 
these possibilities, data from additional sensors embed-
ded in the device (e.g., light, temperature) can be used to 
supplement accelerometry data for non-wear detection. 
For example, devices with temperature sensors can use a 
threshold for non-wear that accounts for the decrease in 
temperature that occurs when the accelerometer is not in 
contact with the body. Zhou et al. [25] developed a non-
wear algorithm with an absolute minimum temperature 
threshold of 26 °C as a criterion for non-wear combined 
with a threshold for standard deviation of acceleration. 
The additional temperature criterion improved sensi-
tivity and specificity compared to an acceleration-only 
algorithm [25]. However, the use of an absolute threshold 
for temperature leads to the possibility that the start of 
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the non-wear period is missed due to the time required 
for temperature to decrease once the device has been 
removed. More recently, Syed et  al. [28] used a deep 
learning approach to detect device removal and subse-
quent donning to identify the start and end of non-wear 
periods from accelerometry, and similar to [25], the 
method does not rely on a threshold for window length. 
Although the study demonstrated improved performance 
compared to existing window-based algorithms, deep 
learning methods may be limited by the need for retrain-
ing to meet different use cases, and challenges to contin-
ued development and implementation among users less 
experienced with machine learning methods.

Recently our group evaluated adherence to daily device-
wearing for remote health monitoring in older adults and 
persons living with neurodegenerative disease (NDD) by 
examining volume and patterns of non-wear [16]. Spe-
cific interest in the clinical application of wearables to 
aging and NDD, is driven by the need to understand daily 
health-related behaviors in the context of advancing age 
or disease to aid in health-care decision making. Accu-
rate non-wear detection is critical for ensuring clinical 
utility of remote health assessment since misclassification 
of behaviors can have significant consequences for activ-
ity prescription and monitoring for treatment adherence 
and effectiveness. For example, recent evidence suggests 
that the pattern of sedentary behavior, in addition to 
volume, is linked to physical function, cardiorespiratory 
fitness [29], and metabolic outcomes [30, 31], emphasiz-
ing the risk of misclassifying non-wear periods as sed-
entary behavior. In older adults and persons with NDD, 
increased sedentary time or motor symptoms such as 
akinesia or rigidity in Parkinson’s disease, or hemiplegia 
following stroke, can complicate accelerometry-derived 
behavior classification (non-wear, sedentary behavior, or 
manifestation of disease-specific symptoms). These con-
cerns are specifically important because small changes 
in behavior can be clinically meaningful with respect to 
disease tracking and evaluation of treatment effectiveness 
[32, 33].

The current work aimed to advance existing interval-
based methods by building on previously published 
non-wear algorithms [11, 25]. Specifically, the study 
implemented a combined temperature and acceleration 
(CTA) algorithm with a rate-of-change criterion for tem-
perature to identify the start and end of non-wear peri-
ods through the detection of device temperature and 
acceleration changes (DETACH) characteristic of these 
events. The first objective was to optimize parameters for 
non-wear start and stop time detection, window length 
and the temperature criterion, to improve the accuracy 
of non-wear classification. The second objective was to 
compare the algorithm performance against the current 

standards for non-wear detection including algorithms 
developed by van Hees et  al. [11] and the CTA devel-
oped by Zhou et al. [25]. All algorithms were compared 
to a manually labelled non-wear reference dataset from a 
cohort of persons diagnosed with a range of NDDs. It was 
hypothesized that the DETACH algorithm would per-
form better at detecting non-wear periods with shorter 
intervals than those reported to date, as reflected by 
standard performance measures of accuracy, precision, 
recall, and harmonic mean (F1). The DETACH algorithm 
has the potential to improve activity estimates and enable 
more accurate measures of compliance during free-living 
wear periods.

Methods
Study approach
This study used a combination of regression analysis 
and machine learning for DETACH algorithm develop-
ment inclusive of temperature rate-of-change, followed 
by a comparison of the algorithm to published non-wear 
detection methods to evaluate performance. Specifically, 
phase one of the study used linear regression to estab-
lish the viability of, and criteria for, temperature rate-of-
change as a parameter for identifying device removal. 
Phase two used a decision tree classifier to determine the 
optimal series of features, and their respective thresh-
olds, for determining the start and end of a non-wear 
period. Following this phase, edge cases identified from 
the training data were used to establish additional algo-
rithm rules. Finally, outputs from the finalized DETACH 
algorithm and from the van Hees [11] and Zhou [25] 
algorithms were compared using accuracy, precision, 
recall, and F1 score performance metrics.

Data source
Data were collected as part of the Remote Monitoring in 
Neurodegenerative Disease (ReMiNDD) study conducted 
by the Ontario Neurodegenerative Disease Research Ini-
tiative (ONDRI) [34] which included 39 participants 
with a confirmed diagnosis of cerebrovascular disease, 
Alzheimer’s disease/amnestic mild cognitive impair-
ment, frontotemporal dementia, Parkinson’s disease, 
or amyotrophic lateral sclerosis (36% female; age range: 
45–83 years). Detailed descriptions of study participants 
and protocol are provided in [16].

Data collection
Briefly, the study consisted of a baseline clinic visit to 
Sunnybrook Hospital in Toronto, Canada, a 7-day remote 
monitoring period using wearable technology, and an 
in-person discharge visit. Data collection took place 
from May 2019 to March 2020. Participants were instru-
mented with five wearable devices located bilaterally on 
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the wrists and ankles, and on the chest. Participants were 
asked to wear the devices for 24-h per day except during 
bathing and swimming. Limb-worn devices were GENE-
Activ Original [35] which contain tri-axial accelerom-
eters, a near-body temperature sensor, and a light sensor. 
The limb devices were mounted on the wrists using rub-
ber watch straps and on the ankles with custom-made, 
medical-grade wraps [36]. Accelerometer data were col-
lected at a sampling rate of 75 Hz with a dynamic range of 
±8 g (1 g = 9.81 m/s2) and temperature data at a sampling 
rate of 0.25 Hz. The temperature sensor was accurate to 
+/− 1 degree Celsius [37].

GENEActiv data processing
Data from one wrist device was used for each participant 
since the wrist is a common wear location for activity and 
sleep studies e.g. [38, 39] and was used in the compara-
tor studies [11, 25]. Specifically, the left wrist data were 
used which represented the non-dominant limb for 95% 
of participants. Data consisted of six continuous 24-hour 
periods extracted from the 7-day protocol. For two par-
ticipants, data volume was less than the six 24-h periods 
due to early discharge from the study (142/144 hours; 
113/144 hours).

The raw GENEActiv accelerometer data were stored 
in standard gravity units for subsequent analysis. These 
data files were converted from compressed binary files 
into standardized European Data Format (EDF) using 
Python package PyEDFlib [40] and stored by sensor type 
(tri-axial accelerometer, temperature, light) as part of a 
standard data management process. Data files were also 
cropped to the end of data collection (i.e., final device 
removal) as determined by study logs combined with vis-
ual inspection of the data. Due to the low sampling fre-
quency of the temperature signal, temperature data were 
smoothed using a 2nd order, low pass, Butterworth filter 
with a cut-off of 0.005 Hz prior to subsequent analysis, 

except when re-creating the algorithm developed by [25], 
where a moving average model was used to smooth the 
temperature data. No conditioning of accelerometer data 
took place, consistent with the work of both [11] and [25] 
. For the rate-of-change in temperature parameter used 
in the DETACH algorithm, a one-minute rate-of-change 
was used by calculating the difference of smoothed 
temperature values one minute apart. To submit an 
equivalent number of datapoints for accelerometer and 
temperature data to the decision tree classifiers, a one-
minute rolling standard deviation of the accelerometer 
data was determined, and this output was down sampled 
from 75 Hz to 0.25 Hz.

Reference dataset
The reference dataset used to evaluate the DETACH 
algorithm was based on visual inspection of non-wear 
periods conducted independently by two expert ana-
lysts using raw temperature and accelerometer data, with 
each assigned to reviewing data from half of the partici-
pants. Non-wear detection criteria included the absence 
of acceleration and a sustained, decreasing temperature 
(non-wear start) and the presence of acceleration with an 
accompanying increase in temperature (non-wear end). 
These changes in temperature, both in rate and direc-
tion, were distinguished from temperature changes that 
can be associated with sleep (Fig.  1). Prior to inspect-
ing and annotating the reference dataset, analysts were 
trained on a known dataset by independently identi-
fying probable non-wear periods, then reviewing and 
resolving discrepancies with the assistance of the study 
team. The known dataset was obtained from 2-day col-
lections using GENEActiv accelerometers worn on the 
wrist. Each participant completed a series of structured 
(within any two-hour window) and unstructured (time 
of their choosing) removals, varying in length from one 
to 15 minutes, with instruction to remove as needed 

Fig. 1  Sample temperature profile for sleep versus non-wear



Page 5 of 12Vert et al. BMC Medical Research Methodology          (2022) 22:147 	

outside of these procedures. Non-wear time accounted 
for an average of 6 ± 14% of the collection period with a 
median duration of 5 minutes (range: 1 to 596 minutes). 
Following training, analysts independently annotated 
the reference dataset with any uncertainties resolved 
via consensus using device removal logs as reference. 
Removal logs were completed by study participants or 
their enrolled caregiver study partner who were asked to 
record what sensors were removed, the time of removal 
and re-attachment, and the reason for removal, without 
delay. Non-wear start and stop times were recorded with 
one-minute precision.

Comparison algorithms
For both the van Hees [11, 41] and Zhou [25] algorithms, 
each data point from the raw acceleration signal is clas-
sified as wear or non-wear. Only the Zhou algorithm 
[25] uses temperature in addition to acceleration. The 
van Hees algorithm [41] only examines acceleration 
in 60-minute overlapping windows (15-minute steps, 
45-minute overlap). Each window is classified as non-
wear if the standard deviation of acceleration is less than 
13 mg (1 mg = 0.00981 m/s2) or the acceleration range of 
that window is less than 50 mg in at least two of the three 
accelerometer axes. To remove implausible wear peri-
ods, a secondary condition is applied which classifies a 
detected wear period shorter than six or three hours as 
non-wear if it is less than 30% or 80% (respectively) of the 
combined duration of bordering non-wear periods [11].

The Zhou algorithm [25] examines both temperature 
and acceleration over a one-minute moving window. 
Each window is classified as non-wear if the mean tem-
perature is less than or equal to 26 °C and the standard 
deviation of acceleration for each of the three axes is less 
than 13 mg. A secondary condition is also used to identify 
non-wear when the temperature is below 26 °C but the 
accelerometer standard deviation criterion is not met. In 
this instance, if the temperature in the current window 
is lower than the mean temperature of the previous one-
minute window, the current window is labeled non-wear.

Establishing temperature rate‑of‑change as a non‑wear 
feature
Phase one of algorithm development focused on charac-
terizing the temperature dynamics that were associated 
with periods of sensor removal and subsequent donning. 
The decision to examine temperature rate-of-change as 
a parameter was driven by observation that a) there was 
often a delay between the absence of acceleration mark-
ing the potential start of a non-wear period and the abso-
lute temperature threshold of 26 °C utilized by [25] and 
b) there were cases when the absolute threshold was not 
met despite known periods of sensor removal. There was 

also concern that differences in seasonal weather or cli-
mate would affect the accuracy of an absolute threshold 
for temperature [25]. To explore the association between 
rate of temperature change and known non-wear peri-
ods, regression analyses were conducted using a train-
ing dataset (see below) with starting temperature as the 
independent variable and negative rate-of-change (°C/
minute) at 1, 3, 5, and 10 minutes as the targets, using 
all non-wear periods within the training dataset (Fig. 2). 
At one minute, the mean negative temperature rate-of-
change was indistinguishable from normal tempera-
ture variations (i.e., values near zero). At three, five and 
ten minutes, however, temperature rates of change were 
appreciable. Based on these analyses, as detailed in the 
Results, temperature rate-of-change was deemed a viable 
feature for non-wear detection. Further, the five-minute 
window was selected given that confidence in the classi-
fication increased with longer window lengths but a sig-
nificant proportion (12%) of the non-wear periods were 
less than 10 minutes in duration.

Non‑wear algorithm development
The DETACH algorithm was designed to improve the 
accuracy of non-wear start and end time detection com-
pared to determining individual windows of data with 
predetermined lengths as either wear or non-wear within 
both the van Hees [41] and Zhou [25] algorithms. To 
establish the optimal parameters for detecting non-wear 
start and end periods, an open-source classification and 
regression trees (CART) decision tree classifier [42] with 
a depth of three was used to determine the best series of 
true-false conditions, based on given features, that would 
properly classify the data. Models were created for two 
different decision tree classifiers: one to detect the start 
of a non-wear period and another to detect the end. Both 
classifiers used the same features which included temper-
ature rate-of-change as established in phase one of this 
study, as well as the previously established parameters of 
absolute temperature and one-minute rolling standard 
deviation for each of the three accelerometer axes used 
in one or both comparison algorithms [25, 41]. The depth 
hyperparameter of three was validated for both decision 
trees using cross-validation on the training set (see Sup-
plementary File 1).

Fifteen of the 39 participants (38.5%) were used to train 
the classifiers with the remaining 24 participants used for 
testing. Data within the training dataset were first pre-
pared by labelling all points as: wear, non-wear start (first 
10 minutes), non-wear middle (beyond the first 10 min-
utes), or non-wear end (the 10 minutes following the end 
of a non-wear period). Wear and non-wear start data 
subsets were input into the “non-wear start” classifier 
while non-wear middle and non-wear end data subsets 
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were input into the “non-wear end” classifier. The train-
ing dataset (n = 15 participants) contained 75 non-wear 
periods while the testing dataset (n  = 24 participants) 
contained 111 non-wear periods. The results of the deci-
sion tree classifiers were used to create rules for detecting 
non-wear.

Lastly, to establish the final set of rules for the DETACH 
algorithm, results of the decision tree analysis were sup-
plemented based on a) edge cases observed within the 
training data (e.g., low temperatures observed at start of 
some non-wear periods) and b) parameters reported in 
previously published non-wear papers, specifically using 
more than one axis of acceleration in the parameter set 
[26].

Algorithm evaluation
Non-wear detection was compared for the DETACH 
algorithm and both the van Hees [11] and Zhou [25] 
algorithms using data from the 24 test participants. 
All algorithms were implemented using Python with 

one-second classification windows and then compared to 
the manually labelled non-wear periods from the refer-
ence dataset.

Accuracy (the fraction of correct predictions, both wear 
and non-wear, across all data), precision (the fraction of 
predicted non-wear time that was correctly identified), 
recall (the fraction of actual wear time correctly identi-
fied), and the F1 Score (the harmonic mean of the recall 
and precision) were computed for each of the three algo-
rithms based on classification of algorithm predictions as 
true positive (TP), true negative (TN), false positive (FP), 
or false negative (FN) where TPs were correctly identified 
non-wear predictions and TNs were correctly identified 
wear predictions. Performance metrics were calculated for 
each participant using the formulae below:

Accuracy = ((TP+ TN)/(TP+ TN + FP+ FN))

Precision = (TP/(TP+ FP))

Fig. 2  Relationship between starting temperature (°C) and maximum negative rate-of-change (°C/minute) at 1, 3, 5, and 10 minutes (Fig. 2A-D, 
respectively) using data from the training dataset. Dashed line indicates zero slope. Shaded band represents the 95% confidence interval
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Outcomes were presented as an average with 95% con-
fidence intervals. Analysis was conducted using Python 
(custom-coded or [42]).

Results
A total of 186 non-wear periods were contained within 
the reference dataset with a median duration of 23 min-
utes (range: 3–808 minutes). Notably, 85.5% of these 
non-wear periods were less than 60 minutes. The distri-
bution of the non-wear periods with respect to duration 
are presented in Fig.  3. On average, the temperature at 
the start of a non-wear period was 29.0 ± 2.0 °C with a 
range of 23.8–34.0 °C. For 70% of the non-wear periods, 
temperature remained above 26 °C five minutes into a 
non-wear period. For 20.4% of non-wear periods, tem-
perature did not drop below the absolute threshold of 
26 °C used by [25]. These instances occurred in 12 par-
ticipants. The mean duration of these non-wear periods 
was 14.0 ± 9.6 minutes with a range of 1–45 minutes and 
a frequency of occurrence ranging from 10 to 100% of 
non-wear periods across participants.

Rate‑of‑change in temperature as a non‑wear parameter
Overall, 98.4% of non-wear periods included a decrease 
in temperature at the start of the non-wear period with 

Recall = (TP/(TP+ FN))

F1 score = (2× (precision × recall)/(precision + recall))

an average rate-of-change in the following five minutes 
of − 0.40 ± 0.17 °C/minute. Similarly, 93.5% of non-
wear periods included an increase in temperature at 
the end of the non-wear period with an average rate-of-
change of 0.36 ± 0.21 °C/minute in the subsequent five 
minutes. Rates of change were comparable across non-
wear periods of different lengths (Fig. 4).

In addition to understanding the dynamics of the 
temperature response to device removal and don-
ning, we aimed to determine a threshold for rate-of-
change in temperature that was robust enough to be 
associated with non-wear regardless of the starting 
temperature (non-wear start) or the ambient tempera-
ture (non-wear end). While the proposed shift to rela-
tive change in temperature from an absolute threshold 
was intended to limit false outcomes that could be 
related to ambient temperature, there was need to con-
sider whether the rate-of-change was also impacted 
by ambient temperature (e.g., possibility that larger 
rates of change occurred when ambient temperature 
was lower). Regression analysis revealed that starting 
temperature impacted the rate-of-change in tempera-
ture with device removal, with higher starting tem-
peratures leading to greater rates of change (p < .00001, 
R2 = 0.10). Starting temperature also impacted rate-
of-change at the end of a non-wear period, with 
maximum rates of change greater when non-wear tem-
peratures were low.

Fig. 3  Distribution of non-wear periods by duration (minutes) with periods less than 60 minutes (top) and greater than 60 minutes (bottom)
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Algorithm development: decision tree classification
The decision tree classifier determined that rate-of-
change in temperature was an important parameter for 
identifying non-wear start time; specifically, a mini-
mum decrease in temperature of 0.27 °C/minute. This 
condition was followed by the one-minute rolling SD of 
acceleration in the x-axis at ≤7 mg (relative inactivity), 
and then an absolute temperature of ≤29.5 °C. For non-
wear end, the one-minute rolling SD of acceleration in 
two axes was determined to be an important parameter: 
specifically, that SD x-axis be ≥17 mg and SD z-axis be 
≥138 mg for the data subscribed to the classifiers. The 
decision paths used to determine the start and end of a 
non-wear period are illustrated in Supplementary File 
2. The non-wear start detection decision tree yielded an 
accuracy of 99.7% (range: 99.6 to 99.9%) on the test data-
set where 99.4% of datapoints were classified as wear. The 
non-wear end detection decision tree yielded an accuracy 
of 98.8% (range: 96.7 to 100%) where 85.7% of samples 
were classified as non-wear middle.

Final algorithm rules
Based on constraints of the CART approach and obser-
vations made via edge cases, the outputs of the decisions 
tree classifiers were supplemented to produce a more 
intuitive and robust algorithm that was not specific to 
GENEActiv devices [37]. Specifically, conditions of the 
decision tree analysis required that each axis of acceler-
ometry be considered separately within both non-wear 
start and non-wear end. A recent paper by [26] however, 
demonstrated that using two or three axes within the 
parameter set optimizes non-wear detection. As such, the 

DETACH algorithm was refined to include acceleration 
features for multiple, non-specific, axes for both start and 
end of non-wear. Given the number of axes considered 
within the final set of rules, the threshold for SD of accel-
eration was increased slightly from 7 to 8 mg. Specifically, 
for non-wear start, SD of acceleration over the follow-
ing minute for 2 or more axes was set to be < 8 mg. This 
was combined with the need for the SD of acceleration 
of 2 or more axes to be 8 mg for at least 90% of the fol-
lowing 5 minutes. The 90% requirement was intended to 
avoid cases where spurious movement occurring during 
non-wear (e.g., a device being bumped) would be mis-
interpreted as wear. Additionally, the rate-of-change in 
temperature criterion for non-wear start was modified 
slightly from − 0.27 to − 0.2 but the absolute tempera-
ture threshold remained < 30 °C (rounded). To detect a 
non-wear end event, SD of acceleration during the pre-
vious minute was set to be > 8 mg for all axes, combined 
with a SD of acceleration > 8 mg for two or more axes for 
at least 50% of the following 5-minute window. This SD 
condition for non-wear end is followed by the need for 
the 5-minute temperature rate-of-change to be > 0.1 °C/
minute.

Visual inspection of non-wear periods in the test data-
set that were not detected using the above pathways 
revealed cases in which the ambient temperature was 
close to the near-body temperature at the start of a non-
wear period or rate-of-change didn’t meet the threshold 
of a minimum 0.2 °C decrease per minute. To address 
these possibilities, additional non-wear criteria focus-
ing on absolute temperature were created to accompany 
the rate-of-change criteria. While maintaining the rules 

Fig. 4  Average rate-of-change in temperature (°C/minute) by minute into non-wear period for data from the training dataset
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for accelerometry, the additional criteria serve to identify 
periods where temperature is below 26 °C for the start 
of a non-wear period or above 26 °C for non-wear end. 
Table  1 summarizes the non-wear rules based on deci-
sion tree classifiers, published literature, and edge case 
observations (algorithm available, see data availability 
statement).

Model evaluation
For all algorithms, data were examined in one-second 
classification windows for a total of 12,441,600 data 
points, of which 454,772 data points were marked as 
non-wear (contained within the 111 non-wear periods 
of the test dataset). The evaluation measures reported in 
Table  1 show high accuracy for all three methods how-
ever, the DETACH algorithm achieved better precision 
(positive predictive value) than the Zhou algorithm [25] 
and better recall (sensitivity) than the van Hees algorithm 
[11].

The high accuracy for all algorithms is largely due to 
success in detecting wear time which represented most of 
the data (non-wear averaged 2.25 ± 5.42% of data collec-
tion period across participants). The lower recall for the 
Van Hees algorithm [11] can be attributed to the longer 
interval length required for non-wear classification while 
the lower precision for the Zhou algorithm [25] can be 
accounted for by differences in criteria for this algorithm 
compared to the DETACH algorithm. Along with accel-
erometer criteria similar to [11], the Zhou algorithm [25] 
looked for absolute temperature values below 26 degrees. 
This absolute temperature criterion led the Zhou algo-
rithm to falsely identify many short duration non-wear 
periods when there was low ambient temperature (e.g., 
if the device was worn outside in cold weather). Con-
versely, the van Hees accelerometer-only algorithm [11] 
with minimum duration non-wear of 60 minutes resulted 
in long periods of sedentary behavior being misidentified.

For the DETACH algorithm, wear time was correctly 
identified 99.8% of the time and misclassified 0.2% of 
the time. Further, the DETACH model correctly clas-
sified 94.2% of non-wear time and misclassified 5.8% of 
non-wear time as wear time. The low-temperature path 
was used for 6.1% of identified non-wear starts while 
the high-temperature path was used to uniquely identify 

7.0% of non-wear ends (i.e., ends that were not identified 
by the rate-of-change in temperature pathway). Confu-
sion matrix values are shown in Table 2.

The precision score was largely influenced by the low 
temperature path falsely detecting a non-wear start. 
Although accounting for a small proportion of total non-
wear start detection (6%), these instances contributed to 
a large proportion of false positive outcomes (30%).

Discussion
This paper presents a novel algorithm for identifying the 
start and end of non-wear periods by detecting tempera-
ture and acceleration changes characteristic of device 
removal and donning. The DETACH algorithm builds 
upon two commonly used non-wear algorithms: the 
accelerometry-only algorithm developed by [11] and the 
combined temperature and acceleration algorithm devel-
oped by [25], by adding a rate-of-change criterion for 
temperature. The DETACH algorithm performed well at 
a resolution of 5 minutes, with precision and recall that 
translated to improved F1-scores compared to these pre-
vious algorithms. As we move toward integrating remote, 
wearables-based monitoring methods into healthcare, 
there is critical need to ensure accurate non-wear detec-
tion. As noted, the consequence of misclassifying non-
wear is an overestimation of sleep or sedentary behavior 
which can impact understanding of the volume and pat-
terns of daily activities. Further, inaccurate information 
regarding compliance to sensor wear could have impli-
cations for the perceived utility of wearables for clini-
cal application. It is worth reinforcing that the approach 
used in this study is specifically applicable to devices that 
include a tri-axial accelerometer and temperature sensor. 

Table 1  Evaluation measures for DETACH, Zhou [25], and van Hees [11] algorithms applied to the reference testing dataset. Data 
represent means (± 95% CI)

Precision Recall F1-Score Accuracy

DETACH 0.942 (0.844 to 1.000) 0.942 (0.883 to 1.000) 0.942 (0.880 to 1.000) 0.996 (0.994 to 1.000)

Zhou 0.538 (0.395 to 0.681) 0.824 (0.742 to 0.906) 0.651 (0.551 to 0.751) 0.971 (0.958 to 0.983)

van Hees 0.710 (0.554 to 0.866) 0.590 (0.451 to 0.728) 0.644 (0.535 to 0.753) 0.978 (0.973 to 0.984)

Table 2  Confusion matrix for DETACH algorithm (values in 
minutes)

True Class (reference 
dataset)

Predicted Class

Negative (Wear) Positive 
(Non-
wear)

Negative 198,157 394

Positive 395 6436



Page 10 of 12Vert et al. BMC Medical Research Methodology          (2022) 22:147 

These features are common to several frequently used 
clinical research devices (e.g., [37], [43]).

Correct detection of short non-wear periods is par-
ticularly important under conditions of extended device 
wear, as occurs during remote health monitoring, where 
occasional removals occur and can vary considerably 
in length. This study showed that 86% of the non-wear 
periods for a wrist-worn accelerometer were less than 
60 minutes in duration, emphasizing the need to improve 
the resolution for non-wear detection afforded by com-
monly used non-wear algorithms (e.g., [11]), as well as 
the length of non-wear periods used for algorithm valida-
tion (e.g., [25]). Regarding the latter, although the Zhou 
algorithm [25] had no minimum length rule embedded 
in their non-wear algorithm, development of the algo-
rithm was based on wear and non-wear reference peri-
ods of a minimum 15-minutes. The authors did note 
the possibility that the algorithm would not work well 
on shorter periods but suggested that such small errors 
would have a relatively small impact on population study 
outcomes [25]. Misclassification of short non-wear peri-
ods, however, may be significant at the individual level 
when considered in the context of clinical application, 
specifically if accumulated over time. This study success-
fully detected short non-wear periods with an algorithm 
that does not rely on minimum window lengths and uses 
improved logic for accurate detection of non-wear start 
and end times.

While the DETACH algorithm had excellent accuracy 
and precision, there were some situations in which tem-
perature features did, or could, impact performance. Spe-
cifically, although the total number of false positives was 
minimal (6%), a proportion of these (30%) occurred when 
the low, absolute temperature pathway was used for non-
wear start. Since only 6.1% of instances used this path-
way, the false positive rate proved greater for it versus 
the temperature rate-of-change pathway. The decision 
to include the absolute temperature criterion for non-
wear starts was based on a desire to address edge case 
instances where rate-of-change in temperature did not 
capture non-wear start. These tended to occur when the 
starting temperature was near 26 °C. Here, an assump-
tion was made that wear temperature below 26 °C would 
be relatively uncommon, so that any sedentary time that 
occurred while the temperature was below this thresh-
old would be considered non-wear. Notably, some par-
ticipants exhibited a lower than typical wear temperature 
leading to false non-wear predictions within their data 
via the low-temperature pathway. Although this is a lim-
itation of the current algorithm, it is important to note 
that overall, 93% of non-wear starts were detected using 
the rate-of-change in temperature pathway, avoiding this 
error.

Using rate-of-change in temperature takes advantage 
of the edge of each non-wear period; better defining the 
beginning of a non-wear period compared to Zhou’s 
algorithm [25], for example, which considers each data-
point as wear or non-wear based on an absolute tempera-
ture threshold of 26 °C. In the current study, the average 
non-wear start temperature was 29.0 °C (range of 23.8–
34.0 degrees) and for 70% of non-wear periods, tempera-
ture remained above 26 °C five minutes into a non-wear 
period. In these cases, non-wear start classification 
using the absolute temperature threshold would lead to 
a delayed non-wear start classification or a missed non-
wear period if the duration was short (i.e., 5 minutes). It 
is worth noting here that the accuracy and precision of 
non-wear detection using rate-of-change in temperature 
is impacted by instances when there is a rapid change in 
temperature accompanied by sedentary behavior such as 
when participants remove their wrist from under bed-
sheets during sleep. Since this scenario is most likely 
to occur overnight, consideration could be given to 
including specific time-of-day criteria (e.g., minimum 
60-minute duration overnight) or using the non-wear 
detection algorithm in conjunction with a sleep detection 
algorithm.

The data used to develop and test the DETACH algo-
rithm were captured from older adults living with NDD 
in a Canadian climate, over the course of several sea-
sons, providing a broad range of ambient temperatures. 
The characteristics of the participants were distinct from 
the young children [22, 27] and healthy, young adults [6] 
who have typically been included in non-wear algorithm 
development studies. By contrast, the participants in this 
study engaged in relatively longer sedentary periods that 
have the potential to be misclassified as non-wear and 
who are likely to experience health benefits with even 
small increases in physical activity volume [32]. From 
a clinical perspective, these small changes may also be 
important for understanding disease trajectory and 
response to intervention.

Future work aims to investigate whether different wear 
locations and ambient temperatures impact the algo-
rithm’s performance. Across studies, accelerometers are 
worn on body locations other than the wrist. As exam-
ples, in [25], children were instructed to wear watch-
style accelerometers on their ankles, and in our own 
work, participants wore accelerometers in custom-made 
sleeves constructed from tensor wrap (i.e., no direct 
skin contact), as well as a chest worn device (see [16]). 
The current study showed some impact of starting tem-
perature on rate-of-change in temperature, with a higher 
starting temperature linked to a more rapid decrease. 
This difference in starting temperature is attribut-
able, in part, to the ambient temperature. Incorporating 



Page 11 of 12Vert et al. BMC Medical Research Methodology          (2022) 22:147 	

additional parameters, such as average daily temperature 
or current absolute temperature, into the rate-of-change 
threshold values has the potential to make the algorithm 
more robust. It is also worth exploring time varying 
changes in temperature within a person over extended 
periods of time so that person-specific adjustments can 
be made either to rate-of-change or absolute temperature 
threshold values. Accounting for the potential impact of 
these factors on performance of the DETACH algorithm 
will be important for optimizing its use across a range of 
scenarios.

Conclusion
In summary, the DETACH algorithm presented in this 
study has several advantages over existing non-wear 
algorithms. Most importantly, the algorithm uses rate-
of-change in temperature which makes it more broadly 
applicable to different settings and climates. Second, the 
algorithm can detect shorter non-wear periods which 
may be relevant in free-living scenarios when the data 
includes short removals (e.g., during bathing) as was 
observed in the study sample. Finally, the algorithm pro-
vides a simple and efficient model that does not require 
machine learning expertise. These features make the 
DETACH algorithm particularly relevant for clinical 
application.
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