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Abstract

Objective: Endocan, a dermatan sulphate proteoglycan produced by endothelial cells, is
considered a biomarker for endothelial cell activation/dysfunction. Preeclampsia is character-
ized by systemic vascular inflammation, and endothelial cell activation/dysfunction. Therefore,
the objectives of this study were to determine whether: (1) plasma endocan concentrations in
preeclampsia differ from those in uncomplicated pregnancies; (2) changes in plasma endocan
concentration relate to the severity of preeclampsia, and whether these changes are specific or
observed in other obstetrical syndromes such as small-for-gestational age (SGA), fetal death
(FD), preterm labor (PTL) or preterm prelabor rupture of membranes (PROM); (3) a correlation
exists between plasma concentration of endocan and angiogenic (placental growth factor or
PlGF)/anti-angiogenic factors (soluble vascular endothelial growth factor receptor or sVEGFR-1,
and soluble endoglin or sEng) among pregnancies complicated by preeclampsia; and (4)
plasma endocan concentrations in patients with preeclampsia and acute pyelonephritis (both
conditions in which there is endothelial cell activation) differ.
Method: This cross-sectional study included the following groups: (1) uncomplicated
pregnancy (n¼ 130); (2) preeclampsia (n¼ 102); (3) pregnant women without preeclampsia
who delivered an SGA neonate (n¼ 51); (4) FD (n¼ 49); (5) acute pyelonephritis (AP; n¼ 35);
(6) spontaneous PTL (n¼ 75); and (7) preterm PROM (n¼ 64). Plasma endocan concentrations
were determined in all groups, and PIGF, sEng and VEGFR-1 plasma concentrations were
measured by ELISA in the preeclampsia group.
Results: (1) Women with preeclampsia had a significantly higher median plasma endocan
concentration than those with uncomplicated pregnancies (p¼ 0.004); (2) among women with
preeclampsia, the median plasma endocan concentration did not differ significantly according
to disease severity (p¼ 0.1), abnormal uterine artery Doppler velocimetry (p¼ 0.7) or whether
diagnosis was made before or after 34 weeks gestational age (p¼ 0.3); (3) plasma endocan
concentration in women with preeclampsia correlated positively with plasma anti-angiogenic
factor concentrations [sVEGFR-1: Spearman rho 0.34, p¼ 0.001 and sEng: Spearman rho 0.30,
p¼ 0.003]; (4) pregnancies complicated by acute pyelonephritis with bacteremia had a lower
median plasma endocan concentration than pregnancies complicated by acute pyelonephritis
without bacteremia (p¼ 0.004), as well as uncomplicated pregnancies (p¼ 0.001); and (5) there
was no significant difference in the median plasma endocan concentration between
uncomplicated pregnancies and those complicated by FD, delivery of an SGA neonate, PTL
or preterm PROM (other members of the ‘‘great obstetrical syndromes’’; each p40.05).
Conclusion: Median maternal plasma endocan concentrations were higher preeclampsia and
lower in acute pyelonephritis with bacteremia than in uncomplicated pregnancy. No significant
difference was observed in the median plasma endocan concentration between other great
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obstetrical syndromes and uncomplicated pregnancies. The difference in the direction of change
of endocan in preeclampsia and acute pyelonephritis with bacteremia may be consistent with the
view that both disease entities differ in pathogenic mechanisms, despite their associations with
systemic vascular inflammation and endothelial cell activation/dysfunction.

Introduction

The traditional view of the pathogenesis of preeclampsia is

that uteroplacental ischemia induces the production of soluble

factors (or toxins) that, when released into the maternal

circulation, are responsible for the clinical manifestations of

the disease [1–9]. These factors are thought to cause

intravascular inflammation [10–16], endothelial cell dysfunc-

tion [17–25], increased thrombin generation [26–35] and

platelet aggregation [3,28,35–39].

Generalized endothelial cell activation/dysfunction is con-

sidered to be central to the pathophysiology of preeclampsia

[9,17]. Considerable effort has been made to identify

circulating markers of endothelial cell activation/dysfunction

in the circulation of normal pregnant women and those with

preeclampsia – this has included coagulation factors produced

by endothelial cells, such as Von Willebrand factor [40–44],

cellular ‘‘cements’’ (e.g. cellular fibronectin, which is also

almost exclusively located in the endothelium) [45–56],

endothelial cell adhesion molecules (e.g. E-selectin and vas-

cular cell adhesion molecule-1) [57–67] and anti-endothelial

cell antibodies [68–70]. However, none of these makers have

been proven to be specific to preeclampsia, and can be elevated

in other conditions [71–80]. Thus, a major challenge has been

the to identify a biomarker specific to endothelial cell

activation/dysfunction and preeclampsia.

Endocan, also known as endothelial specific molecule-1

(ESM-1), is a proteoglycan detectable in the circulation

that has been proposed to be a new endothelial cell marker.

This protein is elevated in serum of patients with sepsis who

have endothelial cell activation/dysfunction [81,82].

Similarly, the serum concentrations of endocan are elevated

in lung, breast, hepatocellular [83] and renal cancers [84–86]

as well as acute myeloid leukemia [87], conditions associated

with endothelial activation/dysfunction [72,74,76,88–94].

The objectives of this study were to determine: (1) whether

plasma endocan concentrations in PE differ from those of

uncomplicated pregnancy; (2) whether changes the plasma

endocan concentration relate to the severity of preeclampsia,

and whether these changes are specific or observed in other

obstetrical syndromes such as small-for-gestational age (SGA),

fetal death (FD), preterm labor (PTL) or preterm prelabor

rupture of membranes (PROM); (3) if a correlation exists

between the plasma concentration of endocan and angiogenic/

anti-angiogenic factors among pregnancies complicated by

PE; and (4) whether plasma endocan concentrations in patients

with preeclampsia and acute pyelonephritis (both conditions in

which there is endothelial cell activation) differ.

Materials and methods

Study design

A cross-sectional study was designed to include patients in

the following groups: (1) uncomplicated pregnancy (n¼ 130);

(2) preeclampsia (n¼ 102); (3) pregnant women without

pre-eclampsia or hypertension who delivered a small-

for-gestational age neonate (n¼ 51); (4) fetal death (n¼ 49);

(5) acute pyelonephritis (n¼ 35); (6) preterm labor with intact

membranes (n¼ 75); and (7) preterm PROM (n¼ 64). All

participants provided written informed consent for the

collection and use of samples for research purposes under

the protocols approved by, the Institutional Review Boards of

Wayne State University and the Eunice Kennedy Shriver

National Institute of Child Health and Human Development,

National Institutes of Health, Department of Health and

Human Services (NICHD/NIH/DHHS).

Clinical definitions

Preeclampsia was defined as new onset hypertension (systolic

and/or diastolic blood pressure of �140 and/or �90 mm Hg)

that developed after 20 weeks of gestation, measured on at

least two occasions, 4 h to 1 week apart and protein-

uria (�300 mg in a 24-h urine collection, or two random

urine specimens obtained 4 h to 1 week apart containing

�1 + protein by dipstick) [95]. Severe PE was diagnosed

according to criteria proposed by the American Congress

of Obstetricians and Gynecologists (ACOG) [95,96]. Early

and late-onset preeclampsia was defined as cases diagnosed

before and after 34 weeks of gestation, respectively [97].

The uncomplicated pregnancy group comprised of women

with: (1) no medical, obstetrical or surgical complications;

(2) a singleton gestation; (3) no labor; and (4) a normal term

(�37 weeks) infant delivered at term whose birth weight was

between the 10th and 90th percentile for gestational age [98].

Acute pyelonephritis was diagnosed in the presence of

fever (temperature �38 �C), clinical signs or symptoms of

an upper urinary tract infection (e.g. flank pain, costovertebral

angle tenderness), pyuria and a positive urine culture

[99,100]. An SGA neonate was defined as birth weight

510th percentile for gestational age [98]. Fetal death was

defined as death of the fetus after 20 weeks of gestation,

confirmed by ultrasound. All fetal deaths were unexplained.

Spontaneous PTL was defined by the presence of preterm

labor leading to preterm delivery. Pre-term PPROM was

diagnosed as amniorrhexis in preterm gestations that were

followed by preterm delivery.

Maternal plasma concentrations of endocan, placental
growth factor, sVEGFR-1 and endoglin

Maternal blood was collected into tubes containing ethylene-

diaminetetraacetic acid (EDTA), centrifuged and stored at

�70 �C until assayed. Maternal plasma concentrations of intact

endocan were measured with an immunoassay following the

manufacturers’ instructions (USCN Life Science Inc., Wuhan,

Hubei, PRC or Cloud-Clone Corp., Houston, TX). Maternal

plasma concentrations of placenta growth factor (PIGF),

soluble endoglin (sEng) and soluble vascular endothelial

growth factor receptor (sVEGFR)-1 were determined by

sensitive and specific immunoassays obtained from R&D
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Systems (Minneapolis, MN). The sensitivity and coefficients

of variation for these assays are described in Table 1.

Validation of these assays has been previously described [101].

Doppler velocimetry

Color Doppler was used to identify blood vessels, and spectral

Doppler to calculate Doppler indices in the uterine arteries.

The examinations were performed at the time of diagnosis

according to methods previously described [15,102,103].

The uterine artery resistance index (RI) was used as a measure

of vascular impedance in the uterine circulation. A mean RI

(average of left and right) of 5 or �95th percentile for

gestational age was used to determine normal and abnormal

uterine artery Doppler velocimetry, respectively [104].

Statistical analysis

Normality of data was assessed using the Kolmogorov–

Smirnov test and visual plot inspection. The Kruskal–Wallis

test with post-hoc analysis by Mann–Whitney U-tests was

used to compare continuous variables. Comparison of

proportions was performed using �2 or Fisher’s exact tests.

Spearman’s rank correlation coefficient was used to assess the

relationship between plasma endocan, angiogenic (PIGF) and

anti-angiogenic factor [(sEng and sVEGFR)-1] concentrations

as well as maternal age, gestational age at blood draw,

gestational age at delivery and neonatal birth weight. General

linear models were constructed to examine the relevance

of potential confounders including gestational age at veni-

puncture, maternal age, African American race and history

of smoking status. Endocan concentrations were log-

transformed. Multivariable analysis also controlled for the

false discovery rate (FDR) in light of the performance of

multiple tests. A probability value of 50.05 (2-tailed) was

considered significant. Statistical tests were performed with

Statistical Package for the Social Sciences version 19 (SPSS

Inc., Chicago, IL).

Results

The demographic, clinical and obstetric characteristics of the

study population are displayed in Table 2. Endocan was

detected in the maternal plasma of all patients. Among women

with uncomplicated pregnancies, maternal plasma endocan

concentrations did not correlate with maternal age (p¼ 0.5),

gestational age at venipuncture (p¼ 0.2), gestational age at

delivery (p¼ 0.9) or birth weight of the neonate (p¼ 0.8).

Maternal plasma endocan concentrations in
pre-eclampsia

The median plasma endocan concentration (ng/ml) in

patients with preeclampsia was significantly higher than

that of women with uncomplicated pregnancies (22.5, IQR

13.8–44.4 versus 18.2, IQR 10.6–28.0; p¼ 0.004; Figure 1).

Subgroup analysis performed among women with pree-

clampsia revealed that the median plasma endocan concen-

tration (ng/ml) did not significantly differ according to:

disease severity (mild preeclampsia 17.5, IQR 10.5–34.1

versus severe preeclampsia 22.6, IQR 15.3–45.6; p¼ 0.1);

the presence of abnormal uterine artery Doppler velocimetry

(normal: 21.4, IQR 14.2–51.0 versus abnormal: 22.3, IQR

13.3–41.0; p¼ 0.7); or if diagnosis was made before or after

34 weeks gestational age (early onset: 24.0, IQR 17.1–45.0

versus late-onset: 22.0, IQR 12.0–43.0; p¼ 0.3). Maternal

plasma endocan concentration correlated positively with

plasma sVEGFR-1 (Spearman’s rho 0.34; p¼ 0.001) and

sEng (Spearman’s rho 0.30; p¼ 0.003), but not with the

concentration of PlGF (p¼ 0.3).

Table 2. Clinical and obstetric characteristics of normal and complicated pregnancies.

Uncomplicated
pregnancy
(n¼ 130)

Pre-eclampsia
(n¼ 102)

SGA
(n¼ 51)

Fetal death
(n¼ 49)

Acute
pyelonephritis

(n¼ 35) PTL (n¼ 75)
PPROM
(n¼ 64) p value

Age (years) 25 (21–29) 23.5 (19.8–30) 24 (20–29) 26 (20–30) 22 (19–25) 22.5 (19–26) 26 (21–32) 0.002
Nulliparity (%) 35 (26.9%) 63 (61.8%) 26 (50.9%) 19 (38.8%) 12 (34.3%) 39 (40.6%) 17 (26.6%) 50.001
Race

African American 102 (78.5%) 83 (81.4%) 44 (86.3%) 42 (85.7%) 27 (77.1%) 60 (80%) 57 (89.1%) 0.55
Caucasian 15 (11.5%) 11 (10.8%) 4 (7.8%) 3 (6.1%) 5 (14.3%) 9 (12.3%) 6 (9.4%)
Hispanic 7 (5.4%) 5 (4.9%) 1 (2.0%) 3 (6.1%) 3 (8.6%) 3 (4%) 1 (1.6%)
Others 6 (4.6%) 3 (2.9%) 2 (3.9%) 1 (2%) 0 1 (1.3%) 0

Smoking 22 (16.9%) 14 (13.7%) 15 (29.4%) 16 (32.7%) 5 (14.3%) 27 (28.1%) 34 (53.1%) 50.001
GA at venipuncture

(weeks)
38

(31.4–39.1)
36.1

(31.5–38.6)
36.9

(32.7–38.4)
31

(24.8–36.6)
31.4

(25.3–36.4)
29.9

(25.1–32.3)
30.6

(27.6–32.1)
50.001

GA at delivery
(weeks)

39.3
(38.4–40.3)

36.1
(32.3–38.6)

37.1
(33.6–38.6)

31
(25.9–36.7)

39.4
(38.4–40.7)

30
(25–34)

31.6
(29.3–33.1)

50.001

Birth weight (g) 3352
(3118–3633)

2280
(1455–2835)

2050
(1500–2380)

1380
(535–2263)

3210
(2690–3600)

1785
(865–2623.8)

1580
(1142–2055)

50.001

Data presented as median (interquartile range) or number (percentage). GA, gestational age; SGA, small for gestational age; PTL, spontaneous preterm
labor with intact membranes; PPROM, preterm prelabor rupture of membranes.

Table 1. Sensitivities and coefficients of variation of the assays used in
this study.

Analytes Sensitivity

Inter-assay
coefficient of
variation (%)

Intra-assay
coefficient of
variation (%)

Endocan (ng/ml) 89.5 6.2 10.2
Soluble endoglin (ng/ml) 0.08 2.0 4.0
Soluble vascular endothelial

growth factor receptor
(pg/ml)

16.97 1.4 3.9

Placenta growth factor
(pg/ml)

9.52 6.02 4.8
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Maternal plasma endocan concentration in
pregnancies with acute pyelonephritis

The median plasma endocan concentration (ng/ml) was lower

in pregnancies complicated by acute pyelonephritis than in

uncomplicated pregnancies, but this was not statistically

significant (13.4, IQR 8.3–29.6 versus 18.2, IQR 10.6–28.0;

p¼ 0.2). There was no significant difference observed

between the median plasma endocan concentration (ng/ml)

in pregnancies complicated by acute pyelonephritis with-

out bacteremia and uncomplicated pregnancies (18.1, IQR

9.5–35.2 versus 18.2, IQR 10.6–28.0; p¼ 0.7; Figure 2).

The median plasma concentration of endocan (ng/ml) in

pregnancies complicated by acute pyelonephritis with bacter-

emia was significantly lower than that of those without

bacteremia (8.4, IQR 4.5–13.8 versus 18.1, IQR 9.5–35.2;

p¼ 0.004; Figure 2) and lower than that of women with

uncomplicated pregnancies (8.4, IQR 4.5–13.8 versus 18.2,

IQR 10.6–28.0; p¼ 0.001). The prevalence of acute respira-

tory distress syndrome (ARDS) among pregnancies compli-

cated by acute pyelonephritis in this study was 2.9% (1/35).

The plasma endocan concentration of the patient who

developed ARDS was 13.4 ng/ml.

The median maternal plasma concentration of endocan

(ng/ml) was significantly lower in patients with acute

pyelonephritis in patients with preeclampsia (13.4, IQR 8.3–

29.6 versus 22.5, IQR 13.8–44.4; p¼ 0.005).

Maternal plasma endocan concentration in fetal
death, SGA, preterm labor and preterm PROM

There were no significant differences in the median plasma

endocan concentrations (ng/ml) among women with uncom-

plicated pregnancies (18.2, IQR 10.6–28.0) and those with FD

(19.5, IQR 11.3–39.2; p¼ 0.3), delivery of an SGA neonate

(19.8, IQR 10.8–28.8; p¼ 0.4), spontaneous PTL (17.4,

IQR 11.8–29.7; p¼ 0.7) or preterm PPROM (15.8, IQR

10.0–26.0; p¼ 0.5; Figure 1).

Multivariable adjustment with correction for the FDR did

not alter the unadjusted determinations of statistical signifi-

cance. Log endocan concentrations were significantly higher

among women with preeclampsia than in those with uncom-

plicated pregnancies (p50.01), adjusting for gestational age

at venipuncture, maternal age, nulliparity, race, smoking

status and BMI. Similarly adjusting for potential confounders,

log endocan concentrations were significantly lower among

women with acute pyelonephritis with bacteremia than among

those with acute pyelonephritis without bacteremia (p50.01)

or uncomplicated pregnancies (p50.01).

Discussion

Principal findings of the study

(1) The median plasma endocan concentration was higher in

preeclampsia than in uncomplicated pregnancies; however,

Figure 1. The median plasma endocan concentration in uncomplicated pregnancy, preeclampsia, pregnancies complicated by the delivery of a
small-for-gestational age newborn (SGA), fetal death, acute pyelonephritis, preterm labor and preterm pre-mature rupture of membranes (PPROM).
There were significant differences among groups; p¼ 0.01. The median plasma endocan concentration (ng/ml) between uncomplicated pregnancies;
18.2 (IQR 10.6–28.0) and other groups were as follows: preeclampsia (22.5, IQR 13.8–44.4; p¼ 0.004), SGA (19.8, IQR 10.8–28.8; p¼ 0.4); fetal
death (19.5, IQR 11.3–39.2; p¼ 0.3); acute pyelonephritis (13.4, IQR 8.3–29.6; p¼ 0.2); preterm labor (17.4, IQR 11.8–29.7; p¼ 0.7); and preterm
PROM (15.8, IQR 10.0–26.0; p¼ 0.5).
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there was no relationship between the plasma concentration

of endocan and the severity of preeclampsia; (2) there was a

positive correlation between the plasma concentration of

endocan and sVEGFR-1 and sEng plasma concentrations

among women with preeclampsia; (3) contrary to what was

expected, the median plasma concentration of endocan was

lower in patients with acute pyelonephritis than in those

with preeclampsia; a subgroup analysis demonstrated a

significantly lower median endocan concentration in acute

pyelonephritis with bacteremia than in those without bacter-

emia and in those with uncomplicated pregnancies; and

(4) endocan was not elevated in other obstetrical syndromes,

such as fetal death, SGA, preterm labor and preterm PROM,

suggesting that an elevation of maternal plasma endocan

occurs selectively in patients with preeclampsia.

Endothelial cell activation and dysfunction in health
and disease

The endothelium is a monolayer that lines all blood vessels.

The functions of the endothelium are to maintain vascular tone,

prevent cell adhesion, promote thromboresistance and regulate

smooth muscle vessel wall proliferation [105,106]. Many of

these properties are mediated by nitric oxide (NO), which is

produced by the endothelium [from L-arginine by the action of

endothelial NO synthase (also called eNOS)] [107–116]. This

gas diffuses to the vascular smooth muscle cells and activates

guanylate cyclase, which leads to cGMP-mediated vasodila-

tation [106,107,117]. Physiologic regulators of eNOS expres-

sion include shear stress [118–122], but other factors can

activate this enzyme, including bradykinin, adenosine, vascu-

lar endothelial growth factor and serotonin [112,123–128].

The concept of endothelial cell activation was formulated

by investigators examining the behavior of endothelial cells

in culture, and was coined to describe the increased

adhesive properties of these cells to white blood cells

when endothelial cells are exposed to biomechanical stimuli

[129–131] or cytokines [132–138]. The molecular basis

for the increased adhesiveness was the expression of cell

surface adhesion molecules, such as VCAM-1, ICAM-1 and

endothelial cell adhesion molecule (also known as E-selectin

or ELAM) [139,140]. Nitric oxide generated from endothe-

lium (as a result of the activity of nitric oxide synthase) can

reduce endothelial cell activation through inhibition of NFk-B

[139,141–143].

The term ‘‘endothelial cell dysfunction’’ was introduced

by physiologists and cardiologists who were originally

studying impaired endothelial cell-dependent relaxation, and

demonstrated that this feature was present in patients with

essential hypertension [144]. Endothelial cell dysfunction has

been defined as decreased synthesis, release and/or activity of

endothelium-derived nitric oxide induced by hypercholester-

olemia [140,145], smoking [140,146–148] or oxidative stress

[140,149–152].

Endothelial cell activation may lead to endothelial cell

dysfunction [140], and both can induce vasoconstriction,

platelet aggregation, leukocyte adhesion, low-density lipo-

protein oxidation and matrix metalloproteinase protein acti-

vation [140]. Thus, endothelial cell activation/dysfunction can

lead to atherosclerosis/vascular disease [153–156]. Pregnancy

represents a physiological state in which there appears to be

endothelial cell activation as a consequence of physiologic

intravascular inflammation [157]. It is unclear if endothelial

cell activation and dysfunction have different molecular

fingerprints; indeed, they appear to coexist. Preeclampsia is

considered to be characterized by endothelial cell activation/

dysfunction [17–24], and this condition is associated with

a significant increase in the maternal circulating concentra-

tions of sE-selectin [57,58,60,158,159] and sVCAM-1

[57,60,158,160,161], which are markers of endothelial cell

activation/dysfunction [136,162]. However, there is no

increase in the concentration of sICAM-1 and sPECAM-1

[57,60,163,164], indicating that there are some unique

features of endothelial cell activation/dysfunction in pre-

eclampsia. When assessing the profile of adhesion molecules,

we have found that patients with acute pyelonephritis have

Figure 2. The median plasma endocan
concentration of uncomplicated pregnancies,
pregnancies complicated by acute pyelo-
nephritis without bacteremia and pregnancies
complicated by acute pyelonephritis with
bacteremia. There was significant difference
in the median plasma endocan concentration
(ng/ml) among groups (p¼ 0.001).
Pregnancies complicated by acute pyelo-
nephritis with bacteremia (8.4, IQR 4.5–13.8)
had a lower median plasma concentration of
endocan than those without bacteremia (18.1,
IQR 9.5–35.2; p¼ 0.005) and lower than
those with uncomplicated pregnancies (18.2,
IQR 10.6–28.0; p¼ 0.001). There was no
significant different in the median plasma
endocan concentration between pregnancies
complicated by acute pyelonephritis without
bacteremia (18.1, IQR 9.5–35.2) and those
with uncomplicated pregnancy (18.2, IQR
10.6–28.0; p¼ 0.7). Kruskal–Wallis and
Mann–Whitney U-tests were performed for
comparisons.
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an increase in sICAM-1, sE-selectin and sVCAM-1 [60],

suggesting that there are subtle differences in the adhesion

molecule profile in patients with pyelonephritis and pre-

eclampsia, both of which are characterized by intravascular

inflammation [12,157].

What is endocan?

Endocan is a dermatan sulphate proteoglycan first isolated

from the human umbilical vein endothelial cell (HUVEC)

cDNA library by Lassalle et al. [165]. This protein is

found in endothelial cells and in the epithelium the lung

and kidney [166]. Pro-inflammatory cytokines such as

tumor necrosis factor (TNF)-a and interleukin (IL)-1b can

up-regulate mRNA expression of endocan in endothelial

cells [167]. Endocan can inhibit the interaction between

intercellular adhesion molecule-1 (ICAM-1) and the integ-

rin (lymphocyte function-associated antigen-1) LFA-1 on

leukocytes [168,169], then modulate several leukocyte

functions, including adhesion to the endothelium and

transmigration [168,170,171]. In addition, endocan can

stimulate endothelial cell proliferation and migration

induced by epidermal growth factor (EGF), Hepatocyte

growth factor/scatter factor (HGF/SF) and vascular endo-

thelial growth factor (VEGF) A and-C [172–174]. This has

been attributed to the dermatan sulfate moieties of

endocan [172,173,175].

We decided to study the behavior of endocan in normal

pregnancy and pregnancy complications due to the claim

that this was an endothelial cell marker [81]. Previous

reports indicated that serum endocan concentrations were

elevated in patients with sepsis and septic shock [81].

Sepsis is considered to represent a state in which there is

endothelial cell activation/dysfunction. In these conditions,

activated leukocytes roll, adhere and extravasate following

interaction between the integrin leukocyte function-associated

antigen (LFA-1) and intercellular adhesion molecule

(ICAM-1) on surface of these activated leukocytes [176].

Plasma endocan concentration is increased in
pre-eclampsia

‘We found that plasma endocan concentrations was

increased in patients with preeclampsia, and this increase

correlated with the increase in plasma anti-angiogenic

factors concentrations, but not with the severity of disease.

Preeclampsia is characterized by excessive maternal sys-

temic vascular inflammation, as demonstrated by the

phenotypic and metabolic characteristics of neutrophils

and monocytes [10,12,177,178], as well as the increased

concentration of cytokines [63,65,179–197], chemo-

kines [63,65,198–203], other inflammatory mediators

[63,185,189,190,192,204–213], as well as acute phase

protein reactants [193,204,214–225] and the decreased

concentration of negative acute phase protein reactants

[225,226]. The increased cytokine concentration in pre-

eclampsia may be responsible for the elevation in endocan.

The relationship between the increased concentrations of

maternal plasma endocan and that of anti-angiogenic factors

(sVEGFR-1 and endoglin) in preeclampsia suggests that there

may be convergence of the inflammatory process, and the

abnormal anti-angiogenic profile observed in the dis-

ease [227]. The lack of correlation between the concentra-

tions of PlGF and endocan is unexpected, given that VEGF

(another angiogenic factor in the same family as PIGF) can

stimulate endocan mRNA expression and release from

endothelial cells [228].

Plasma endocan concentration is lower in pregnant
women with acute pyelonephritis

Scherpereel et al. [81] demonstrated that the serum endocan

concentrations in patients with sepsis and a systemic inflam-

matory response were significantly higher than that of non-

pregnant patients. Our findings herein are different, as we

observed that the median plasma endocan concentration was

lower in pregnancies complicated by acute pyelonephritis

than in non-pregnant patients. This is a puzzling observation,

given that our systematic studies of the behavior of cytokines

[229], chemokines [230], complement [231,232] in acute

pyelonephritis and preeclampsia suggest that both condi-

tions are associated with a pro-inflammatory state. However,

studies of the transcriptome of peripheral blood in patients

with preeclampsia [233] and pyelonephritis [234] suggest that

the molecular details of the inflammatory response

differ. Further work is required to understand the similarities

and differences in the systemic and local inflammatory

response in these two conditions. Interestingly, systemic

infection in non-pregnant subjects is associated with an

increase in the concentration of sVEGFR-1 in non-pregnant

animals [235] and humans [236]. However, in pregnant

subjects with acute pyelonephritis, the median plasma con-

centrations of anti-angiogenic factors (VEGFR-1 and sEng),

similar to endocan, are not significantly higher than that

of uncomplicated pregnancy [229]. In addition, endocan

behaves in a different direction of change in preeclampsia

compared to the changes observed in acute pyeloneph-

ritis with bacteremia. This is consistent with the view

that there may be a fundamental difference in the nature of

the inflammatory response in microbial- and ‘‘danger

signal’’-induced inflammation [237].

TNF-a, which stimulates the production of endocan [167],

is increased in the peripheral blood of patients with sepsis

[238–241]. In addition to demonstrating a high concentration

of TNF-a in plasma during maternal sepsis [242], our group

also showed a higher concentration of this cytokine in

pregnancies complicated by acute pyelonephritis than uncom-

plicated pregnancies [229]. Therefore, a lower plasma

endocan concentration in pregnancies complicated by acute

pyelonephritis as a whole, and especially those complicated

by bacteremia, was unexpected.

One study reported that, among patients with major

trauma, those with lower circulating concentrations of

endocan are at increased risk for acute lung injury supporting

a protective effect of this protein [243]. The presence of

endocan may inhibit leukocyte recruitment, and this pro-

tects against lung injury [168]. There was no evidence in our

study that patients with pyelonephritis had a higher rate of

acute lung injury, although it is well-known that pregnant

women with pyelonephritis are at an increased risk for

ARDS [244–249].
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Strengths and limitations

This is the first study to focus on the changes in plasma

concentrations of endocan in preeclampsia, acute pyelo-

nephritis and other ‘‘great obstetrical syndromes’’. The

cross-sectional nature of this study does not enable us to

make inferences about temporal changes before diagnosis of

the diseases.

Conclusion

Maternal plasma endocan concentrations were higher in

pregnancies complicated by preeclampsia and lower in

pregnancies complicated by acute pyelonephritis with bacter-

emia when compared to uncomplicated pregnancies.

Patients with SGA, fetal death, preterm labor or preterm

PROM did not have demonstrable changes in maternal plasma

concentrations of endocan when compared to uncomplicated

pregnancies.
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