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Abstract
Sea urchin embryos begin zygotic transcription shortly after the egg is
fertilized.  Throughout the cleavage stages a series of transcription factors are
activated and, along with signaling through a number of pathways, at least 15
different cell types are specified by the beginning of gastrulation. 
Experimentally, perturbation of contributing transcription factors, signals and
receptors and their molecular consequences enabled the assembly of an
extensive gene regulatory network model.  That effort, pioneered and led by
Eric Davidson and his laboratory, with many additional insights provided by
other laboratories, provided the sea urchin community with a valuable
resource.  Here we describe the approaches used to enable the assembly of an
advanced gene regulatory network model describing molecular diversification
during early development.  We then provide examples to show how a relatively
advanced authenticated network can be used as a tool for discovery of how
diverse developmental mechanisms are controlled and work.
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The sea urchin developmental gene regulatory 
networks
Developmental gene regulatory networks (dGRNs) describe the 
sequential regulatory changes that specify and diversify the cells 
of an embryo. The genes included in dGRNs encode transcription 
factors, components of signal transduction pathways, and often 
effector genes as markers of differentiated cell states. Models of 
dGRNs are assembled on the basis of experimental perturbations 
of an embryo’s developmental program and are valuable for 
explaining how spatial and temporal information is encoded in a 
multicellular organism’s genome. dGRNs have the potential of 
providing a causal understanding of how upstream specification 
controls downstream events (i.e. differentiation or cell biological 
functions). As such, a dGRN can serve as a tool for developmen-
tal and cell biologists alike. This article describes how dGRNs are 
assembled using the sea urchin embryo as a model and includes 
recent insights into sea urchin development that have benefitted 
from the assembly exercise.

The early specification events of the sea urchin embryo have been 
extensively documented, resulting in increasingly well-understood 
dGRNs for each cell type. Sea urchin development is relatively 
simple, easy to observe, and experimentally tractable, and experi-
mental outcomes are rapidly obtained. Prior to genome sequencing, 
a provisional sea urchin endomesodermal dGRN was assembled 
starting with a small number of transcription factors and signal-
ing inputs1. In 2006, the sea urchin genome was sequenced2, and 
since that time, labs across the globe have added to and reinforced 
an understanding of the regulatory linkages in the dGRNs through 
gastrulation3–9. In contrast to typical “hairball” or “interactome” 
networks, where hypothetical interactions are based on statistical 
inference, each linkage of the sea urchin dGRN is based on several 
experimental approaches, spatial and temporal validation, and in 
many cases cis-regulatory analyses to confirm a direct regulatory 
connection. This effort has provided many valuable insights into 
network function and has led to novel explorations into mechanisms 
of sea urchin development. We begin by summarizing experiments 
that demonstrated how the sea urchin dGRN was, and continues 
to be, assembled. Then we briefly review how dGRNs have been 
used as tools to understand how embryonic patterning works, how 
morphogenesis is controlled, and how evolutionary processes have 
modified dGRNs.

Developmental gene regulatory network assembly 
process
GRNs reflect the relationship between genes in a system. In a 
graphic depiction of GRNs, the expression of a transcription factor 
or a component of a signal transduction pathway is represented as a 
node. The edges or connections between nodes reflect the regulatory 
relationship between nodes over time. In GRN models, an upstream 
regulator is drawn with an output that either activates or represses 
expression of a downstream gene. At any given time after devel-
opment begins, many transcription factors are expressed and are 
under regulatory control by transcription factors upstream of them. 
Over time, this produces a regulatory network with many proper-
ties. At any given time, a cell in an embryo is controlled by the 
unique regulatory “state” of its GRN. All identical cells will tend to 
be regulated by the same GRN state, and as cells diverge from one 

another, their regulatory states change. Signaling molecules pro-
duced by one cell pass to adjacent or nearby cells where their inputs 
alter GRN states in recipient cells. Within a GRN state, it is possible 
to tease apart relationships of transcription factors and identify sub-
circuits designed to accomplish the tasks of development. Among 
the tasks uncovered in the sea urchin dGRN are a number of proper-
ties that are commonly seen when network systems are studied in 
detail10–12. For example, a “double-negative gate” (repression of a 
repressor) was identified to initiate specification of a specific cell 
type4,13. “Spatial exclusion” sub-circuits were found in cells at the 
time these cells diverged from one another toward differentiation 
into distinct cell types; in each of the two nascent cell types, there 
was a sub-circuit to exclude the other14. “Community effect” sign-
aling was identified such that Nodal reinforced Nodal signaling in 
neighboring ectodermal cells to maintain Nodal signal production 
in that community of ectodermal cells11,15. “Feed-back sub-circuits”, 
in which a downstream transcription factor feeds back to maintain 
activation of an upstream transcription factor, and “feed-forward 
sub-circuits”, in which an upstream transcription factor feeds for-
ward to activate multiple sequential downstream steps, were found. 
Feed-back and feed-forward sub-circuits tended to stabilize regula-
tory states4 and contribute to the unidirectional trajectory of devel-
opment. Sub-circuits just upstream of differentiation were found 
that drive the system forward and contribute to the activation of 
genes necessary for differentiation and cell biological function 
(e.g., 6,16–18). These and other sub-circuits provide dGRNs with 
modular design features that control explicit functions. As details 
of dGRN topology were identified, they were shown to contribute 
impressively to a growing understanding of developmental mecha-
nisms in many systems and are central to research in sea urchin 
development as a consequence.

When an early draft of the Strongylocentrotus purpuratus genome 
became available, it provided an opportunity to identify hundreds 
of transcription factor genes and molecules of signal transduction 
pathways (Figure 1). Each candidate development regulatory gene 
(transcription factors and signal transduction pathway gene) was 
assayed by quantitative polymerase chain reaction (qPCR) and 
whole-mount in situ hybridization (WMISH) to establish spatial 
and temporal expression patterns throughout early development19–25. 
Of the large number of transcription factors identified, those that 
were spatially or temporally distinct (or both) in expression in the 
early embryo were chosen for detailed efforts to define the distinct 
regulatory states of the embryo at a number of time points, begin-
ning with fertilization and continuing through gastrulation. Ubiqui-
tously expressed genes initially were excluded from the study with 
the notion that they were less likely to be involved in developmental 
regulatory decisions. Perturbation analyses of each identified sign-
aling molecule and transcription factor then established linkages 
between nodes. Morpholino antisense oligonucleotides knocked 
down one transcription factor or signal, and analyses by qPCR, 
WMISH, or nanostring (or a combination of these) assayed the 
effect on other genes expressed at the same time, or in the same cell 
type, or both. This established a hierarchical relationship between 
the transcription factors, signals, and the genes encoding them in 
each cell type over time. The regulatory interactions were assem-
bled into a network model by using BioTapestry as a platform for 
visualizing network topologies26,27. Many of the interactions were 
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validated by using cis-regulatory analysis to determine direct bind-
ing of the transcription factor to specific sequences in the regulatory 
DNA of downstream genes. With this logical approach, hundreds 
of experiments were performed to establish sea urchin dGRN states 
in each emerging cell type up to gastrulation, and current efforts 
continue to extend the analysis to later time periods in development 
(e.g., 18,28–30).

Patterning
The term “patterning” describes processes that establish the body 
plan of an organism. Patterning processes provide “positional infor-
mation” enabling cells to know their location in an embryo. These 
processes direct morphogenesis, and they provide short-range and 
long-range signaling inputs to accomplish construction of a three-
dimensional plant or animal (Figure 2). Each of these processes is 
driven by dGRNs. The sea urchin embryo begins patterning almost 
immediately after fertilization. By the 16-cell stage, zygotic tran-
scription plus maternal inputs defines at least three distinct dGRN 
states (Figure 2). At this time, the future mesoderm and endoderm 
are combined as an endomesoderm network state. A Delta-Notch 
signal separates progeny of these cells into mesoderm (cells that 
receive the Delta signal) and endoderm (endomesoderm progeny 
that do not receive the Delta signal)31–33, and further specification 
plus signaling subdivides the initial endomesoderm GRN state and 
ectoderm GRN state until there are at least 15 different cell types 
recognizable by early gastrulation (Figure 2)7,34.

Signaling is integral for the patterning mechanisms that organize 
multicellular cell and tissue types. As specification progresses, 
signaling establishes the three axes of the embryo. Early pattern-
ing signals divide the embryo into regions along the animal-vegetal 
axis, established by asymmetrically localized maternal informa-
tion, followed by a series of Wnt signaling events that progres-
sively diversify cell identities along the anterior-posterior axis35–41. 
The anterior-posterior axis of the larva is approximately identical 
to the animal-vegetal axis of the egg. At about mid-cleavage, the 
dorsal-ventral (D-V) axis is specified through Nodal and bone mor-
phogenetic protein (BMP) signaling15,42,43, and toward the end of 
gastrulation, the right-left axis is established, again using Nodal and 
BMP and adding Hedgehog as a contributing signal16,44–47. Thus, 
by the end of gastrulation, signaling inputs plus a progression of 
transcription factor activations establish dGRN states for each cell 
type in the embryo, and even within the same germ layer, patterning 
inputs provide localized cell identities.

Patterning continues to play a key role in organizing structures in 
the larva. As an example, a biomineralized skeleton provides the 
shape to the pluteus larva. To pattern that skeleton, signals from 
the ectoderm are received by the mesodermal skeletogenic cells, 
enabling them to position themselves correctly and to synthesize 
the calcium carbonate biomineral in the correct pattern48–51. Ecto-
dermal signals are supplied from specific locations requiring 
the ectoderm to be patterned in advance. Ectodermal positional 

Figure 1. Steps in construction and validation of developmental gene regulatory networks (dGRNs). The process begins with identification 
of candidate molecules. Candidates for the sea urchin dGRN were defined as transcription factors or signal transduction pathway members 
that were expressed in spatiotemporally specific patterns in the embryo. The regulatory linkages were established by conducting perturbation 
analyses in which one candidate was perturbed and asking how its loss affected expression of other candidates. These established a 
preliminary dGRN model. That model was challenged in many ways, including testing predictions that gene A activated gene B and gene C 
through cis-regulatory analysis.
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information leads to specification of two lateral patches of 
ectodermal cells specialized in secretion of vascular endothelial 
growth factor (VEGF) and fibroblast growth factor (FGF)5,6,8,49,50. To 
provide that positional information, orthogonal bands of ectoderm 
are specified by even earlier signals. One of the ectodermal bands, 
the ciliary band, is specified at the boundary between the dorsal 
and ventral ectoderm as a consequence of Nodal (ventral) and 
BMP (dorsal) signaling15,42,52,53. BMP is synthesized in the ventral 
ectoderm and is transported, probably using Chordin as a chaper-
one, to induce dorsal ectoderm specification29,53,54. The ciliary band 
then forms between the dorsal and ventral ectodermal territories and 
is further subdivided29. The other ectodermal band, referred to as 
the border ectoderm, is specified in posterior ectoderm, just above 
the endoderm and orthogonal to the ciliary band separating the 
D-V ectoderm compartments. Wnt5 signaling from the endoderm 
is reported to induce the border ectoderm band in Lytechinus55,56, 
although a different Wnt is thought to be responsible in 
S. purpuratus56, and that band also receives input from the Nodal-
BMP signaling as seen in both Lytechinus and Paracentrotus30,55. 
The site where the ciliary band and the border ectoderm band 
intersect becomes the signaling center that produces VEGF and 
FGF, both of which are necessary for initiation and growth of 
the skeleton49–51. Other signals also provide patterning inputs into 
skeletogenesis58. These data demonstrate that, in an organism, cells 
can be specified independently for long periods of time to seem-
ingly establish independent dGRNs but that, at a later time, through 
signaling their dGRNs functionally intertwine once again. A good 
example is skeletal patterning, where signals from specific loca-
tions in the ectoderm provide patterning information and growth 
factors that direct the behavior of the mesoderm.

Morphogenetic sub-circuits
Morphogenetic control circuitry is another area where the dGRN 
is valuable (Figure 3). Each morphogenetic change incorporates 
multiple cell biological functions: changes in adhesion, motil-
ity, directionality, polarity, and so on. Perturbations that assess 
which transcription factors control individual cell’s biologi-
cal properties have been valuable in dissecting details of those 

Figure 2. The patterning sequence of development results in cell diversification. Over the 24 hours from fertilization to the pluteus larval 
stage of Lytechinus variagatus, the number of developmental gene regulatory network (dGRN) states increases until there are more than 
15 cell types in the early larva.

Figure 3. Process diagram of early development. Maternal inputs 
initiate specification. As cells divide, signaling becomes increasingly 
used to shape the specification sequence of each cell type. Toward 
the end of that process and proximal to differentiation, transcription 
factor sub-circuits drive expression of genes involved in differentiation 
and in morphogenesis.
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processes17,18,51,56,59–62. In an epithelial-mesenchymal transition 
(EMT), for example, five different dGRN sub-circuits control 
de-adhesion, motility, cell polarity, cell shape change, and invasion 
components of the EMT process61.

Later in development, a specific feed-forward sub-circuit controls 
the directed migration of the presumptive primordial germ cells18. 
Identification of such sub-circuits can then be used to penetrate 
the cell biology of each component process for each of the cell 
types (or organs) that have been defined in the larva. Along these 
lines, the circuits controlling ciliary band specification were iden-
tified, allowing for further analysis of the substrate for neural 
differentiation29. Yet, other circuits that control myogenesis of the 
larva were recently identified28. In each of these cases, the dGRN 
was valuable in gaining access to differentiation genes and effector 
genes ultimately controlled by that developmental GRN (Figure 3).

Evolution
A third valuable reason for studying dGRNs is to learn how evo-
lutionary processes have changed dGRNs during species diversi-
fication. The sea urchin dGRNs are modeled primarily from data 
generated from three species of euechinoid sea urchins that are 
separated from one another by about 50 million years or less63. 
Examination of more distantly related species reveals how rewiring 
of dGRNs correlates with evolutionary changes in morphology and 
cell behavior. For example, an examination of a cidaroid sea urchin, 
separated from the euechinoids by more than 255 million years, 
revealed significant rewiring of the dGRN that specifies the larval 
skeletogenic lineage64,65. In euechinoids such as S. purpuratus or 
Lytechinus variagatus, the skeletogenic lineage is specified early 
during cleavage stages, and after a species-specific number of cell 
divisions, all of the skeletogenic cells undergo EMT before gas-
trulation of the other mesodermal and endodermal lineages. In the 
cidaroid, Eucidaris, the number of skeletogenic cells varies from 
embryo to embryo, and the EMT of these skeletogenic cells does 
not occur until much later in development relative to Lytechinus66. 
In Strongylocentrotus and Lytechinus, the skeletogenic lineage is 
specified by a core set of genes, including Alx1, Tbr, and Ets1, 
which are transcriptionally activated specifically in this lineage by 
unlocking a double-negative derepression sub-circuit controlled by 
Pmar1 and HesC4. In the cidaroid, Eucidaris, this double-negative 
derepression sub-circuit appears to be completely missing, and the 
spatiotemporal expression patterns of Alx1, Tbr, and Ets1 are dif-
ferent as well64. Thus, extensive rewiring of the dGRN occurs in 
sketogenic cell lineage, and morphogenesis of the skeletogenic cells 
differs, yet both modern sea urchins and the pencil urchins produce 
similar larval skeletons.

Comparative dGRN analysis can also reveal what aspects of specifi-
cation are highly conserved during evolution. For example, experi-
ments perturbing the function of Alx1 in euechinoids, cideroids, and 
sea cucumber have shown that Alx1 has a conserved role in promot-
ing larval skeletogenesis64,67. At even larger evolutionary distance 
within echinoderms, valuable insights have been obtained through 
comparisons of skeletal, gut, and neural specification in sea stars 
compared with sea urchins. In each case, aspects of central dGRN 
circuitry were very similar despite about 500 million years of 

separation from the common ancestor68–70. dGRNs can also be 
used as a tool for understanding how circuitry has been co-opted 
during evolution. In a recent study, for example, it was learned that 
a conserved feed-forward sub-circuit involving Pax6, Six3, Six1/2, 
Eya, and Dach1 controls expression of the signal necessary for 
homing of primordial germ cells to the future gonad18. That circuit 
is very similar to the feed-forward circuit that controls specification 
of the Drosophila eye and vertebrate muscle, suggesting that such 
circuits may in some cases evolve as units of function, in this case 
by providing a feed-forward device for directed cell migration.

Conclusions
Sea urchin dGRNs describe the sequence of specification of all cells 
in the embryo up to the end of gastrulation. dGRN topology models 
produced in BioTapestry (http://sugp.caltech.edu/endomes/) record 
the current status of the network in S. purpuratus. Much more than a 
graphic description, it reflects a large number of experiments, where 
each connection is supported by multiple tests of the hypothesis that 
the expression of gene A activates or represses gene B. In its current 
form, the sea urchin dGRN includes more than 100 transcription 
factors and a number of signaling pathways, and in most cases mul-
tiple laboratories have validated each connection in S. purpuratus, 
and most are the same in Lytechinus and Paracentrotus.

With a high level of confidence in the structure of the sea urchin 
dGRNs, they became useful as a tool for exploring many other 
developmental questions. Here, we describe how the dGRNs have 
been used to inform patterning mechanisms, especially those neces-
sary to produce the larval skeleton. We show how they have been 
useful in gaining a greater understanding of an EMT and a directed 
cell movement mechanism, both components of morphogenesis. 
We also describe how dGRNs are used as tools for discovery of 
evolutionary relationships.

The growth in our understanding of dGRNs has provided ways 
to address many unanswered questions. The ability to trace the 
entire specification trajectory of a cell type until it terminally dif-
ferentiates is now a realistic goal. That ability has enormous power 
because it allows one to interrogate, dissect, and understand how 
that cell type arises and how it works in detail. This will be valuable 
in understanding the entire history of neurogenesis, for example, 
and in determining the mechanisms by which neurons diversify 
toward different neurotransmitter cell types. Other cell types can be 
followed with the same goal. dGRNs will also help us to understand 
how the upstream circuitry controls other morphogenetic move-
ments in the early embryo. Thus, the information in the dGRN is 
useful both for gaining an intrinsic understanding of how devel-
opmental control circuitry works and as a tool for understanding 
patterning, morphogenesis, and evolutionary change.
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