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Cognitive reserve (CR) postulates that individual differences in task performance can
be attributed to differences in the brain’s ability to recruit additional networks or adopt
alternative cognitive strategies. Variables that are descriptive of lifetime experience such
as socioeconomic status, educational attainment, and leisure activity are common
proxies of CR. CR is mostly studied using neuroimaging techniques such as functional
MRI (fMRI) in which case individuals with a higher CR were observed to activate a
smaller brain network compared to individuals with a lower CR, when performing a
task equally effectively (higher efficiency), and electroencephalography (EEG) where a
particular EEG component (P300) that reflects the attention and working memory load,
has been targeted. Despite the contribution of multiple factors such as age, education
(formal and informal), working, leisure, and household activities in CR formation, most
neuroimaging studies, and those using EEG in particular, focus on formal education
level only. The aim of the current EEG study is to investigate how the P300 component,
evoked in response to an oddball paradigm, is associated with other components of
CR besides education, such as working and leisure activity in older adults. We have
used hereto a recently introduced CR index questionnaire (CRIq) that quantifies both
professional and leisure activities in terms of their cognitive demand and number of years
practiced, as well as a data-driven approach for EEG analysis. We observed complex
relationships between CRIq subcomponents and P300 characteristics. These results are
especially important given that, unlike previous studies, our measurements (P300 and
CRIq) do not require active use of the same executive function and, thus, render our
results free of a collinearity bias.

Keywords: EEG, cognitive reserve, aging, P300 - event related potential, oddball paradigm

INTRODUCTION

Cognitive reserve (CR) is a concept that was introduced to explain the discrepancy between
an individual’s actual cognitive performance, measured by cognitive tests, and the expected
one based on structural brain changes observed on neuroimaging scans (Stern, 2009). It
was initially suggested that CR acts as a compensatory mechanism enabling the brain to
recruit additional networks to improve task performance. Later, it was shown that CR not only
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compensates for certain degrees of structural brain changes but
also aids in the development of alternative strategies to more
efficiently (e.g., faster and more accurately) complete a cognitive
task. Physiologically, individuals with higher CR, among others,
are demonstrated to have more synaptic connections between
neurons compared to low-CR individuals (Stern, 2002; Esiri and
Chance, 2012). CR accumulates during the course of a lifetime
as a result of formal and informal experiences, including but
not limited to educational attainment, type of employment,
number of languages mastered, and hobbies. Importantly, each
individual, whether old or young, has a certain level of CR.
However, when brain damage exceeds a certain threshold, the
compensatory mechanism provided by CR fails and the clinical
manifestation of brain damage comes into the picture (Stern
et al., 1995; Van Loenhoud et al., 2019).

In older individuals, CR is often evaluated by combining
the outcomes of structural brain imaging and cognitive tests
(Mungas et al., 2010; Reed et al., 2010; Zahodne et al., 2013).
Under the presence of brain changes (i.e., atrophy), a good
score on the cognitive tests is an indication of a compensatory
CR effect. On the other hand, when brain changes are absent
and cognitive test results exhibit a ceiling effect, as for instance
in healthy young individuals, the CR level is difficult to
estimate. For these cases, functional neuroimaging techniques,
such as functional MRI (fMRI), are being adopted to unveil
the brain networks that are involved in the execution of a task
(Anthony and Lin, 2017). The degree of neural activation in
combination with the task performance level provides evidence
of increased efficiency or compensation due to CR (Bozzali
et al., 2015; Anthony and Lin, 2017; Conti et al., 2021). For
instance, good task performance with a relatively low level
of neural recruitment or spatially limited brain activations
suggests high brain efficiency and therefore a high CR level,
as is often observed in healthy young individuals (Conti
et al., 2021). On the other hand, good task performance in
combination with a high level of activation or the inclusion of
additional brain networks indicates a compensatory mechanism
related to the available CR, which is often seen in older
individuals even in the presence of a (mild) brain atrophy
(Colangeli et al., 2016; Anthony and Lin, 2017; Cabeza et al.,
2018).

A recently introduced approach to evaluate CR is the so-called
CR index questionnaire (CRIq), which takes into account both
formal (education, work) and informal (hobby) activities (Nucci
et al., 2012). Unlike other methods, the questionnaire is freely
available, is easy to use in different settings, and manages to
quantify the obtained results. However, the downside is that
it is rather generic and empirical and does not reflect the
underlying neurophysiological processes. It was introduced in
several languages (Kartschmit et al., 2019) and was implemented
in both young and older healthy adults (Nucci et al., 2012),
as well as patients with cognitive decline (Garba et al., 2020).
Given that there is no ‘‘gold standard’’ for CR assessment,
the authors of CRIq were unable to validate it. They did,
however, check the correlation between the CRI score and the
participants’ intelligence level and observed a rather moderate
correlation (0.45). Note that the latter is often used as a CR

proxy (Caffò et al., 2016; MacPherson et al., 2017), despite
being only partially representative for CR. While several studies
suggest that the CRIq has a good test-retest reliability (Nucci
et al., 2012; Kartschmit et al., 2019; Garba et al., 2020). Garba
et al. (2020) questioned its validity when not observing a
correlation between CRIq score and score on Wechsler Test
of Adult Reading (WTAR) in patients with Alzheimer Disease
(AD). However, it is important to note that in AD patients,
as mentioned before, the reserve capacity is exhausted (Van
Loenhoud et al., 2019) and, therefore, it would not be expected
that the results obtained from CRIq would correlate with a task
performance.

In addition to fMRI, electroencephalography (EEG) has been
shown useful for the evaluation of CR. It can be considered
complementary to the spatially-accurate fMRI as it measures
cumulative post-synaptic activity in large neuronal populations
with millisecond precision (Buzsáki et al., 2012). The most
studied EEG component in the context of CR is the P300 event-
related potential, a positive EEG deflection peaking around
300 ms in response to presenting a stimulus-of-interest (Soltani
and Knight, 2000; Polich, 2012; Šneidere et al., 2020). It has
been associated with both the individual’s mental capacity such
as working memory (Saliasi et al., 2013; Juan et al., 2019)
or verbal fluency (Francisco et al., 2019) and their socio-
demographic background such as formal education level (Begum
et al., 2014; Hasan et al., 2016). For instance, Amin et al.
(2015) showed a positive correlation between the amplitude of
the P300 component and memory recall, which they suggest
to be indicative for CR. Francisco et al. (2019) observed
such correlation between verbal fluency and P300 amplitude.
Furthermore, a number of studies suggest a dependency of
the P300 characteristics on the individual’s educational level,
with most of them observing a lower P300 amplitude and
larger latency for subjects with lower education levels compared
to ones with higher levels (Begum et al., 2014; Hasan et al.,
2016). Even though these results are promising in terms of
promoting EEG for the evaluation of an individual’s CR-level,
the mentioned studies merely focus on one contributor to
the development of CR, being either education level (Begum
et al., 2014; Hasan et al., 2016), verbal fluency (Francisco et al.,
2019) or IQ level (Amin et al., 2015), among others, and fail
to account for the potential complex contribution of multiple
factors to the overall CR. For example, in the case of assessing
CR only based on education level, an individual with a poor
socioeconomic status who was unable to obtain university-level
education, but who has built up a considerable CR due to
a passion for reading, will still be considered to have a low
CR-level. Only a few studies compared EEG-correlates of CR
with a composite CR score (Šneidere et al., 2020). From these
studies, Amodio et al. (2017), for instance, did not observe any
relation between resting-state EEG and CRIq score in patients
with hepatic encephalopathy, while Speer and Soldan (2015)
showed an association between the P300 component in response
to a working memory task and a CR score based on reading
test results, verbal intelligence and years of education in both
young and older participants. Here, the authors observed a
smaller change in P300 amplitude and latency in individuals
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with a higher CR for increasing task difficulty compared to
the ones with a lower CR. Importantly, this study recorded
a P300 component in response to a working memory task.
Since the latter is believed to be highly associated with verbal
intelligence (Cantor et al., 1991), it is not clear whether the
association between the EEG response and CR-score was direct
or mediated via working memory. It has been repeatedly shown
that P300 can reflect the individual’s working memory (Amin
et al., 2015; Juan et al., 2019) and that its amplitude and latency
changes with the working memory load (Saliasi et al., 2013; Juan
et al., 2019; Miranda et al., 2020). Even though CR has a direct
effect on working memory, as shown in both healthy individuals
and patients with subjective cognitive decline and mild cognitive
impairment (MCI; Mitchell et al., 2012; Lojo-Seoane et al., 2014,
2018), workingmemory is not the only cognitive activity strongly
influenced by CR (Giogkaraki et al., 2013; Lojo-Seoane et al.,
2014). However, when considering a working memory task to
evoke the P300 component, the outcome could be confounded
by collinearity. Attention, on the other hand, even though
closely related to working memory (Oberauer, 2019), does not
exert a direct influence on the flexible processes of working
memory. In this vein, we propose an attention task to evoke the
P300 to ensure that the observed relationships between the latter
and CR are not mediated via working memory but are rather
genuine.

In the current study, we compare the characteristics of the
P300 component in response to an attention task with the
CRI-subscores obtained from the CRIq in older adults. This will
provide us with an opportunity to consider the effect of hobby’s
and outwork activities (e.g., volunteering) in the formation of CR,
as well as to avoid a large influence of working memory on the
recorded P300 component.

METHODS AND MATERIALS

Participants
We recruited 20 Flemish-speaking non-demented older adults
(ranging between 52 and 89 years old, all right-handed) from
the community. Any current or previous major neurological
or psychiatric event (e.g., stroke, parkinsonism, brain tumors,
major depression, or hallucinations) was considered as exclusion
criteria. Additional exclusion criteria were impaired vision or
hearing that would preclude the subject from following the
instructions. Inclusion criteria for recruitment were age above
50 years old and absence of dementia assessed based on
independence in daily life by a neurologist (EK) and corroborated
by a close relative. All subjects had a normal or corrected-to-
normal vision. The study was approved by the Ethics Committee
of the Leuven University Hospitals. All participants read and
signed an informed consent form after being informed about the
purpose and setting of the study, as well as how their data was
going to be processed and stored (GDPR).

Experimental Paradigm
All participants were screened using the Dutch version of
the standardized Mini-Mental State Examination (MMSE;
Kok and Verhey, 2002) and Clinical Dementia Rating

(CDR) tests (Morris, 1997). We additionally administered
the Montreal Cognitive Assessment (MoCA) test, as it has
shown to be more sensitive for changes in cognition and
detection of individuals with MCI (Nasreddine et al., 2005).
We estimated the CR of individual participants using the
cognitive reserve index questionnaire (CRIq; Nucci et al.,
2012), which provides sub-scores for education, working
attainment, and leisure activities, as well as a combined total
score. For the education-sub-score, both formal education
and vocational trainings that lasted at least 6 months were
counted, while the working attainment sub-score depended
on the level of mental demand and responsibilities the
employment required, and the leisure activity sub-score
included activities that would be performed weekly (e.g., chores,
gardening, hobbies), monthly (e.g., volunteering, social events,
and gatherings) and yearly (e.g., travel, reading books, and
participation in conferences). Since we could assess these
activities quantitatively, we were able to achieve our goal
of assessing the influence of subjects’ informal activities on
measured P300 characteristics.

In addition to the neuropsychological tests described above,
all participants performed a computer task with a simultaneous
EEG recording during which they were sitting in a comfortable
chair at a distance of approximately 70 cm from a 24-inch
LCDmonitor (ViewPixx EEG Canada, resolution 1,920× 1,080)
with a true refresh rate of 120 Hz. The stimulation paradigm
consisted of three types of stimuli, namely a target, deviant,
and standard stimulus (Figure 1), displayed in pseudorandom
order for 200 ms with a jittered (±100 ms) inter-stimulus
interval of 500 ms. The target stimulus consisted of a central red
circle with two solid white horizontal blocks shown peripherally,
on both sides. For the standard stimulus, the red circle was
replaced by a blue circle, and the deviant stimulus consisted
of a central blue circle and black line splitting the previously
mentioned white blocks horizontally. In all three cases, the
visual angle between the center of the attended central circle
and the closest edge of the white horizontal blocks which are
unattended (Figure 1) was 5o. The central circle spans a visual
angle of 3.2o. The duty cycle of the target, deviant and standard
stimuli was 1:1:3. Subjects were instructed to mentally count the
occurrence of the targets (red circles). All subjects completed
four rounds, in each of which between 20 and 25 target stimuli
were presented. The total number of target stimuli across the
four rounds was always 100. The stimulation was presented
using the Matlab-based (version R2018a.) Psychophysics toolbox
(Brainard, 1997) for precise timing. The entire experiment,
including screening, EEG set-up, and breaks, lasted not longer
than 1 h.

EEG Acquisition
EEG data were acquired continuously using 62 active Ag/AgCl
electrodes evenly distributed across the scalp at locations
following the international 10/20 system. The ground and
reference electrodes were placed at AFz and FCz, respectively.
In order to ensure optimal contact between the subject’s skin
and the electrodes, a drop of conductive gel was applied to each
electrode. The impedance was kept below 5 kOhm throughout
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FIGURE 1 | Schematic rendition of experimental paradigm. Timing is in seconds. ISI = interstimulus interval.

the recording. The EEG data were acquired at a sampling rate of
1 kHz using a Synamps RT device (Compumedics, Australia) and
stored on a laptop for further analysis.

EEG Data Processing
The obtained EEG data was offline re-referenced to the average
of the mastoid electrodes (TP9 and TP10) and filtered between
0.2 and 15 Hz using a 4th order zero-phase Butterworth filter.
Afterward, the EEG recording was cut into epochs starting
from 100 ms before until 1,000 ms after the onset of each
stimulus. Only epochs in response to the target and standard
stimuli were used in the current study. The responses to deviant
stimuli will be analyzed and processed in the scope of another
study. The epochs were baselined to the average of the 100 ms
pre-onset signal. The epochs for which the maximal amplitude
exceeded ± 75 µV were rejected and the electrodes that had less
than 50 remaining epochs per condition were also rejected. On
average 1.05 (standard deviation = 1.23) channels were rejected
per subject, ranging between 0 and 4 channels.

For the first step in the analysis, we performed a cluster-
based permutation test (Maris and Oostenveld, 2007) using the
Matlab-based Fieldtrip toolbox (Oostenveld et al., 2011) to find
spatiotemporal clusters that exhibit a significant difference in
response to the target and standard stimuli. We used a Monte-
Carlo method to perform a significance probability mapping
using the two-tailed independent t-test and max-sum as cluster
statistics. At least two neighboring electrodes had to pass the
significance threshold of 0.05 for it to be considered a cluster.
The cluster-based procedure was repeated 2,000 times. The
Supplementary Figure 1 shows the largest positive cluster
and its spatio-temporal distribution for an individual subject.
After the permutation test, the electrodes that were part of the
largest positive cluster were isolated and an average ERP per
condition was obtained by averaging the epochs in response to
the target (or standard) stimulus, first across electrodes then
across trials for each individual subject. The P300 effect was
calculated by subtracting the per-subject average of standard
epochs from the average of target epochs. Afterward, the peak
amplitude and peak latency of the P300 effect were estimated
as the maximal positive value and its corresponding latency
between 250 and 850 ms post-onset. Note that this data-driven
approach allows us to isolate the P300 component and to
account for the spatial variability across subjects, which is
especially important when investigating older participants as

the P300 exhibits a frontal shift with age (van Dinteren et al.,
2014).

Statistical Analysis
A stepwise linear regression (Matlab function stepwiselm) model
with only first level interactions was fitted with the aim to
model the relationship between the questionnaire’s sub-scores
(i.e., CRIq-subcomponents and MoCA) and the peak amplitude
and latency of the P300-effect. As predictors, the following
subject parameters and their first-level interactions were chosen:
the sub-component scores for CRI-working, CRI-leisure, CRI-
education, and the MoCA score. Since the total score of
CRIq (CRI-total) is composed of its subcomponents and, our
aim was to investigate the effect of each subcomponent on
P300 characteristics, we did not include the total score in the
model. The stepwiselm function uses forward and backward
stepwise regression to determine the final model. We started
with a model containing all predictors and iteratively updated
the model by removing and/or adding individual predictors
based on the F-statistics criterion (statistical significance). For
removing the predictors, we used a default p-value of 0.1 and for
adding them—a default p-value of 0.05. Note that the regression
function operates in a way such that it does not observe all
predictor combinations, thereby reducing the probability of
overfitting. The significance level of the final regression model
was set to 0.05.

RESULTS

All participants achieved scores that corresponded to the
non-demented age-matched values of both MMSE and CDR
tests: MMSE ≥27 (with the exclusion of one 89-year-old
participant who scored 24 on MMSE) and CDR ≤0.5. Table 1
presents the results for demographics characteristics, MMSE,
CDR, MoCA, and CRI-subcomponents in the studied group.

The cluster-based permutation test reveals on average
2.7 (ranging between 1 and 5) positive clusters per subject
(i.e., clusters in which the amplitude in response to the target
stimulus was larger than in response to the standard stimulus)
within the first second after stimulus onset. The average peak
amplitude and peak latency of the P300-effect is 7.8µV (standard
deviation (std) is 3.2 µV) and 503.15 ms (std is 153 ms),
respectively. Supplementary Figure 2 illustrates the P300 effect

Frontiers in Human Neuroscience | www.frontiersin.org 4 July 2021 | Volume 15 | Article 690856

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Khachatryan et al. EEG Proxy of Cognitive Reserve

TABLE 1 | Demographic and cognitive characteristics of the studied group.

Mean (standard deviation) Range

Age 68.6 (9.7) 52–89
Male/female 13/7
Years of education 15.7 (3) 12–24
MMSE score 28.6 (1.6) 24–30
CDR 0.15 (0.2) 0–0.5
MoCA 26.6 (3.36) 18–30
CRI-total 129.6 (17.4) 93–167
CRI-education (CRI-e) 130.6 (20.6) 98–178
CRI-work (CRI-w) 120.3 (18.2) 88–161
CRI-leisure (CRI_l) 116.2 (16.6) 92–142

for each electrode from subject S1 and Supplementary Figure 3
shows the average ERP-trace for electrodes Pz, Cz, and Fz.

For the peak amplitude (Figure 2), the stepwise regression
results in the following model:

P300_amplitude ∼ intercept + MoCA × CRI_e
+ MoCA × CRI_w (1)

The adjusted-R2 is equal to 0.5 (F = 4.81, p = 0.009).
The obtained model suggests a mostly non-linear relationship
between P300 amplitude, MoCA and subcomponents of CRI:
an ANOVA test on the obtained model shows a threshold
significance for the linear model (F(3,14) = 3.4, p = 0.047) and
a strong significance for the non-linear model (F(2,14) = 6.9,
p = 0.0082). The component ANOVA test (considering all
other predictors in the model constant except the one under
consideration) on the obtained regression model shows a
statistical significance for CRI-w subcomponent (F(1,14) = 8.15,
p = 0.013), as well as MoCA × CRI_e (F(1,14) = 13.48,
p = 0.0025) and MoCA × CRI_w (F(1,14) = 11.89, p = 0.0039)
interactions. Neither MoCA (p = 0.14), nor CRI_e (p = 0.67)
alone shows statistical significance.

For the peak latency of P300-effect (Figure 3), the stepwise
regression with the same predictors reveals the following
dependency:

P300_latency ∼ intercept + CRI_e + CRI_l (2)

The adjusted-R2 is equal to 0.38 (F = 6.82, p = 0.0067). Equation
2 suggests linear relationships between the peak latency of the
P300-effect and CRI-subcomponents for education and leisure
activities. The conducted ANOVA on the obtained model shows
statistical significance for CRI_e (F(1, 17) = 12.3, p = 0.0027) but
not for CRI_l (F(1, 17) = 3.73, p = 0.07) subcomponents when
considering the other predictor in the model constant.

DISCUSSION

Obtaining an unbiased estimate of an individual’s CR level can
help us to integrate an extra proxy in the workout of patients
withmemory complaints that wouldmake their assessment more
objective. In the current study, we showed that certain EEG
characteristics can provide an objective CR measure. While this
is in line with previous suggestions, unlike other studies (Speer
and Soldan, 2015; Šneidere et al., 2020), the advantage of our

FIGURE 2 | The fit of the whole model on P300-amplitude (Panel A) and the
effect of individual predictors (Panel B) given that the other predictors are
constant. Panel (A) shows the dependency of the amplitude of the
P300-effect on the adjusted whole model (see equation 1) obtained from
stepwise regression with MoCA, CRI_e, CRI_w, and CRI_l, and their first level
interactions as predictors. The final model contains the MoCA*CRI_e and
MoCA*CRI_w as predictors. The solid line represents the fit of the obtained
model and the dotted lines reflect the 95% confidence intervals. Panel (B)
reflects the effect of individual predictors included in the final obtained model
on the peak amplitude of P300-effect given that the other predictors are
constant. When all other predictors are kept constant, the only significant one
is the CRI_w. This is because the predictors of the obtained model are
interactions of the initial factors and the p-value for removal of predictors
during the stepwise regression was set by default to 0.1 (see the section on
statistics), which is higher than the p-value we set for statistical significance
(0.05). CRI_e—the education score for CRI, CRI_w—the working attainment
score for CRI, *indicating a significant relationship if the other predictors are
kept constant.

approach is that we adopted an EEG task that employs minimal
memory resources and therefore does not rely on the use of active
working memory as this can introduce confounds. Furthermore,
the assessment of CR was done using a questionnaire that
encompasses the individual’s life experience rather than depend
on a single proxy of CR such as working memory or fluid
intelligence. Finally, by using different methods for EEG and
CR assessments, we ensured the absence of indirect correlations
where both EEG and CR-assessment would simply represent two
aspects of the same (working memory) task and therefore would
correlate with each other.

Even though several studies have reported relationships
between the P300 component and CR (Šneidere et al., 2020),
the involvement of the CR subcomponents in these relationships
was not always unambiguous (Pavarini et al., 2018). For instance,
while Amin et al. (2015) observed a positive correlation between
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FIGURE 3 | The fit of the whole model on P300-latency (Panel A) and the
effect of individual predictors (Panel B) given that the other predictors are
constant. Panel (A) represents the dependency of the peak latency of the
P300-effect on the adjusted whole model [see equation (2)] obtained from a
stepwise regression with MoCA, CRI_e, CRI_w, and CRI_l, and their first level
interactions as predictors. The final model contains the CRI_e and CRI_l as
predictors. The solid line represents the fit of the obtained model and the
dotted lines reflect the 95% confidence intervals. Panel (B) reflects the effect
of individual predictors included in the model on peak latency of P300-effect
given that the other predictors are kept constant. When other predictors are
kept constant, CRI_e is the only significant predictor in the model, which can
be explained by noting that the p-value for removal of predictors during
stepwise regression was set by default to 0.1 (see the section on statistics),
which is higher than the p-value we set for statistical significance (0.05).
Same conventions as in Figure 2.

the P300 amplitude (and a negative correlation between the
P300-latency) and a memory recall task that was supposed to
reflect CR, several other studies (de Miranda et al., 2012; Raggi
et al., 2013; Alperin et al., 2014) did not observe a significant
relationship between the P300 characteristics in response to
an oddball paradigm and the individual’s demographic (e.g.,
education) or cognitive variables.

The current study suggests that both the peak amplitude
and -latency of the P300 effect are proxies of CRI with
amplitude non-linearly modulated by education level and
working attainment, and latency linearly dependent on
education level and leisure activities. This indicates an elaborate
relationship with P300 and CR as a combination of several
CRI-subcomponents was needed to reflect the P300 features.
Positive relationships between the P300 amplitude and cognitive
activity, albeit linear (Amin et al., 2015) or dichotomic (Hasan
et al., 2016; Gutiérrez-Zamora Velasco et al., 2021), were

previously reported. Such examples are the work of Hasan
et al. (2016) where they observed a larger amplitude of P300 in
response to a color recognition task in young adults with higher
education levels compared to the ones with lower education.
Furthermore, Gutiérrez-Zamora Velasco et al. (2021) observed
a larger P300 amplitude in response to working memory (a
modified Sternberg) task in young adults with higher CR for
both low and high load conditions compared to the ones with
lower CR.

Our latency results suggest a dependency on the individual’s
education level and leisure activities throughout a lifetime.
The analysis of the model subcomponents suggests a positive
relationship between P300 latency and educational level (given
a constant leisure activity), which is less conventional and seems
to go against previous results where a higher cognitive activity
implied shorter P300-latency (Amin et al., 2015; Miranda et al.,
2020), albeit not all reported observations reached significance
(de Miranda et al., 2012; Begum et al., 2014; Hasan et al., 2016).
A possible explanation for this can be that our older participants
were in a compensatory stage and were calling upon their CR
to perform the task at a high level. This means that even if
the longer P300-latency assumes a longer processing time, it
would be a sign of a compensatory mechanism enabling efficient
processing of information. This goes along with some previous
studies on CR that suggest that individuals in the compensation
stage would sacrifice the speed of performance for an increased
accuracy in cognitive task performance (Christensen et al., 1997;
Hultsch et al., 1999). Another potential explanation for the
observed P300-latencies can be attributed to the adopted analysis
technique (i.e., the cluster-based permutation). As this is a
data-driven approach that considers the ‘‘best’’ data from the
individual subjects and works around the problem of multiple
comparisons, it does not reflect the spatial difference between
the subjects since the algorithm identifies clusters based on
significant differences in neural responses to target and standard
stimuli independently of their spatial distribution. Note that this
is particularly important for the P300 component as it is expected
to experience a frontal shift with age (Soltani and Knight, 2000).

As the only consistently reported relationship between
demographic variables and P300 latency is a positive correlation
between P300 latency and age, we fitted a linear regression
model on P300 latency with participant age as predicting factor
(Supplementary Figure 4) and observed, as one could expect
(Pavarini et al., 2018), a positive regression (adjusted R2 = 0.477,
F(2, 18) = 18.3, p = 0.00045).

The main limitation of the current study is the relatively small
number of tested subjects. However, the size of our population
is not much smaller compared to some other studies that
evaluated CRwith electrophysiological methods such as EEG and
magnetoencephalography (López et al., 2014; Speer and Soldan,
2015; Moussard et al., 2016; Martínez et al., 2018) Furthermore,
the main goal of our study was to show that the P300 amplitude
and latency relate to the individual’s CRI subscores, obtained
with an easy to use questionnaire, and does not have to be
mediated via an explicit working memory task. In future studies,
our models can be further developed using data from larger
cohorts preferably with an additional focus on age and gender.
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The current study also has clinical implications as the risk
of AD-development for individuals experiencing subjective
complaints on memory impairment (subjective cognitive
decline—SCD) depends, among others, on their CR level (Yue
et al., 2021). In these individuals, the neuropsychological tests
typically show results that are still within the norm, rendering
them difficult to diagnose. The presented relationships of EEG
measurements with the CR level is a promising avenue but still
requires further studies to validate it for the assessment of the
risk of AD-conversion in individuals with SCD.

CONCLUSION

The current study probed the relationships between the
characteristics of the P300 event-related potential and the
subcomponents of the CR index questionnaire (CRIq). We
showed that even when using a non-memory task, the
peak amplitude and latency of the P300 effect reflect the
individual’s CR. While the relationship between the P300 latency
and CRI-subcomponents on educational level and leisure
activities is linear and additive, the association between the
P300 amplitude and CRI-subcomponents (educational level and
working attainment) is non-linear.

To the best of our knowledge, this is the first study that
tackles the relationships between electrophysiological activity of
the brain and an individual’s leisure activities and does so by
using an unbiased data-driven approach.
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