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ABSTRACT Acetylcholine is a central biological signal molecule present in all
kingdoms of life. In humans, acetylcholine is the primary neurotransmitter of the
peripheral nervous system; it mediates signal transmission at neuromuscular junc-
tions. Here, we show that the opportunistic human pathogen Pseudomonas aerugi-
nosa exhibits chemoattraction toward acetylcholine over a concentration range of
1 mM to 100 mM. The maximal magnitude of the response was superior to that of
many other P. aeruginosa chemoeffectors. We demonstrate that this chemoattrac-
tion is mediated by the PctD (PA4633) chemoreceptor. Using microcalorimetry, we
show that the PctD ligand-binding domain (LBD) binds acetylcholine with a equi-
librium dissociation constant (KD) of 23 mM. It also binds choline and with lower
affinity betaine. Highly sensitive responses to acetylcholine and choline, and less
sensitive responses to betaine and L-carnitine, were observed in Escherichia coli
expressing a chimeric receptor comprising the PctD-LBD fused to the Tar chemore-
ceptor signaling domain. We also identified the PacA (ECA_RS10935) chemorecep-
tor of the phytopathogen Pectobacterium atrosepticum, which binds choline and
betaine but fails to recognize acetylcholine. To identify the molecular determinants
for acetylcholine recognition, we report high-resolution structures of PctD-LBD
(with bound acetylcholine and choline) and PacA-LBD (with bound betaine). We
identified an amino acid motif in PctD-LBD that interacts with the acetylcholine
tail. This motif is absent in PacA-LBD. Significant acetylcholine chemotaxis was also
detected in the plant pathogens Agrobacterium tumefaciens and Dickeya solani. To
the best of our knowledge, this is the first report of acetylcholine chemotaxis and
extends the range of host signals perceived by bacterial chemoreceptors.

IMPORTANCE P. aeruginosa causes a significant number of deaths annually world-
wide. For many pathogens, chemotaxis plays an import role in the initial stages of
infection, and deciphering the key chomoeffectors and their cognate chemorecep-
tors may permit the development of strategies to inhibit this process. Genome
analyses have shown that many bacteria possess a large number of chemorecep-
tors. The chemoeffectors recognized by the large majority of chemoreceptors are
unknown. However, identifying these chemoeffectors is crucial for deciphering the
evolutionary forces that have shaped chemosensory signaling mechanisms in bacteria
with different lifestyles. Our current understanding of the relationship between bacte-
rial lifestyle and chemoreceptor repertoire is limited, and this work contributes to clos-
ing this gap in our knowledge. By expanding the list of known chemoeffectors and
chemoreceptors, progress is made toward identifying functional receptor homologs in
other bacteria.
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Chemotaxis allows bacteria to move in chemical concentration gradients and facilitates
the colonization of more-favorable ecological niches. Genome analyses indicate that

about half of known bacterial species possess genes required for chemotaxis (1). The molec-
ular machinery for chemotaxis is highly complex and is among the best-studied bacterial
signal transduction systems. Chemoeffectors are sensed by chemoreceptors that in turn
stimulate chemosensory pathways that modulate the activity of the flagellar motor (2, 3).

A large number of different chemoeffectors have been identified (4). Whereas some
chemoeffectors serve as nutrients, including organic acids, amino acids, and sugars,
other chemoeffectors provide information about the environment, as exemplified by
chemotaxis to neurotransmitters (5), quorum-sensing signals (6), human hormones (7),
and plant signaling molecules (8). Other chemoeffectors may have multiple functions,
such as gamma-aminobutyrate (GABA) (9) and histamine (10), which are central signal
molecules but also support bacterial growth.

A canonical chemoreceptor is composed of an extracytosolic ligand-binding domain
(LBD) and a cytosolic region that contains the signaling domain that interacts with other sig-
naling proteins. Whereas the signaling domain is highly conserved in sequence, there is an
enormous variety in the LBD type and sequence (11). More than 80 different LBD types
have so far been identified in chemoreceptors (11), and new LBD families continue to be dis-
covered (12). The close correspondence in the affinities of full-length receptors and isolated
LBDs (13–15) indicates that all of the features necessary for chemoeffector recognition are
contained within the LBD.

The chemotactic machinery represents an important metabolic burden to the cell.
For example, the synthesis of the chemotaxis system and assembling and energizing
the flagellar motors in Escherichia coli consumes several percent of the total cellular
protein and energy budget (16–18). Another study has shown that the removal of the
70-kb flagellar operon from Pseudomonas putida resulted in several physiological
advantages and increased fitness (19). This considerable metabolic burden has to be
compensated by major benefits arising from chemotaxis. However, our understanding
of these benefits for bacteria with different lifestyles is currently very limited, largely
because the signals recognized by the majority of chemoreceptors are unknown.

The chemoeffector repertoire of a bacterium is a reflection of its lifestyle (20, 21).
Species that inhabit a specific ecological niche contain a reduced number of chemo-
receptors. For example, Helicobacter pylori infects the gastric epithelium and is adapted
to a highly specific niche. This species has 4 chemoreceptors, which is a number signifi-
cantly below the bacterial average of 14 (1). Analysis of H. pylori chemoreceptor function
has revealed a specialized spectrum of chemoeffectors that is closely linked to establishing
an infection in the stomach. Furthermore, all four chemoreceptors were found to play a
role in the infection process (11, 22–24).

In contrast, bacteria with a versatile lifestyle that are able to survive in different ecological
niches have a much higher number of chemoreceptors (21). The opportunistic pathogen
Pseudomonas aeruginosa serves as a model organism to study this category of bacterium. P.
aeruginosa is omnipresent in the environment and has been detected in soil, water, human-
and animal-derived samples, and different foods, including vegetables andmilk, and in plumb-
ing systems and hospitals (25–27). P. aeruginosa is also a highly versatile pathogen, able to
infect almost all human tissues, including the respiratory tract, ear, eye, brain, heart, and uri-
nary tract, and it can cause general bacteremia (28). P. aeruginosa is of great clinical relevance:
(i) infections are associated with significant mortality, (ii) it is among the most frequent causes
of nosocomial infections, and (iii) multidrug-resistant strains are rapidly emerging (29–32). The
ubiquity of this pathogen is also reflected in its capacity to infect different animals and plants
(33, 34). Considering its omnipresence in the environment and the versatility of its lifestyle, it is
of high importance to identify the environmental signals that are sensed by the P. aeruginosa
chemoreceptors.
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P. aeruginosa has 26 chemoreceptors that stimulate four different chemosensory
pathways (35). Whereas 23 chemoreceptors were predicted to stimulate the chemotaxis
pathway (36), a single receptor communicates with each of the remaining three pathways
that carry out functions unrelated to chemotaxis (35). A significant number of P. aeruginosa
chemoreceptors have been functionally annotated. Among these are PctA, PctB, and PctC,
which are involved in chemotaxis to different proteinogenic amino acids and GABA (37–39);
CtpL and CtpH, which sense inorganic phosphate (40, 41); TlpQ, which senses histamine and
polyamines (10); McpK, which senses a-ketoglutarate (42); McpN, which senses nitrate (43);
CtpM, which senses malate and other C4 dicarboxylic acids (44, 45); CttP, which senses
chloroethylenes (46); and Aer, which is involved in aerotaxis (47). Furthermore, PctA and
TlpQ were found to bind and mediate chemoattraction to the autoinducer-2 quorum sens-
ing signal (48). The dCache domain is the predominant extracellular LBD in bacterial signal
transduction systems, and it is present in about 15% of all chemoreceptors (1, 49). P. aerugi-
nosa has five chemoreceptors that contain dCache LBDs, four of which—PctA, PctB, PctC,
and TlpQ—have been functionally annotated (35).

Here, we show that the fifth dCache domain-containing chemoreceptor, PA4633, binds
the human neurotransmitter acetylcholine and induces a very strong attractant response to
this chemoeffector. High-resolution three-dimensional (3D) structures of its LBD and of a ho-
mologous domain that does not bind acetylcholine reveal the determinants for acetylcho-
line recognition. Acetylcholine chemotaxis has been observed in other bacteria, and its func-
tional relevance is discussed.

RESULTS
Chemotaxis response of P. aeruginosa PAO1 to acetylcholine. The attraction to

growth substrates is a major biological function of bacterial chemotaxis (20). To identify the
compounds that support the growth of P. aeruginosa, we conducted 96-well plate assays in
which we screened P. aeruginosa growth in minimal medium supplemented with the com-
pounds from different Biolog arrays. As shown in Fig. S1A, significant growth was observed
for L-carnitine. To assess whether P. aeruginosa performs chemotaxis to L-carnitine, we con-
ducted quantitative capillary chemotaxis assays that revealed chemoattraction (Fig. 1).

Responses were characterized by a rather high threshold of the response at 100 mM
and a maximal response at 10 mM. We subsequently conducted experiments to find out
whether structurally related compounds, such as other quaternary amines, also induced che-
motaxis. We observed chemoattraction to betaine that was comparable to that of L-carnitine

FIG 1 Chemotaxis of P. aeruginosa PAO1 toward acetylcholine and related compounds. (A) Quantitative
capillary chemotaxis assays. Data have been corrected for the number of bacteria (7,825 6 623) that swam into
buffer-containing capillaries. Data are the means and standard deviations from three independent experiments
conducted in triplicate. (B) The structures of the chemoeffectors.
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(Fig. 1). Importantly, choline and acetylcholine also induced chemotaxis (Fig. 1). In contrast
to L-carnitine and betaine, responses to choline and acetylcholine occurred at much lower
concentrations, with a response threshold of 0.1mM for choline and 1mM for acetylcholine.
These response thresholds were at lower concentrations than for a number of other P. aeru-
ginosa chemoeffectors analyzed with the same technique (40, 43, 44). Maximal responses
induced by choline and acetylcholine were observed at 10 mM, and the maximal accumula-
tion of;300,000 bacteria per capillary was significantly higher than the maximal accumula-
tions in response to inorganic phosphate (40), nitrate (43), malate (44), and a-ketoglutarate
(42). The large magnitude of the chemotaxis response acetylcholine evokes, the low thresh-
old concentration, and its important physiological role as a neurotransmitter motivated stud-
ies to identify the corresponding molecular mechanism of acetylcholine sensing.

Role of PctD (PA4633) in chemotaxis to acetylcholine. The McpX chemoreceptor
in Sinorhizobium (Ensifer) meliloti has been reported to mediate chemotaxis to quater-
nary amines (50). This chemoreceptor contains a dCache_1 type LBD. Of the P. aerugi-
nosa chemoreceptors with dCache_1 LBDs, only PA4633 was of unknown function
(35). The LBD of this receptor shares only 17% sequence identity with the McpX-LBD
(Fig. S2A). To assess the role of PA4633 in chemotaxis to the four chemoeffectors, we
have conducted quantitative capillary assays using a mutant defective in this chemore-
ceptor (Fig. S3). Apart from some minor responses to high concentrations of betaine,
the pp4633 mutant failed to respond to these four quaternary amines—phenotypes
that were reversed to wild-type responses by the in trans expression of pa4633 using a
pBBR1MCS-based vector (Fig. S3E). Taken together, these data indicate that PA4633 is
the sole chemoreceptor that mediates chemotaxis to these four quaternary amines at
physiologically relevant concentrations. Chemoreceptor PA4633 was thus renamed
PctD (Pseudomonas chemotaxis transducer D).

Effect of acetylcholine binding on the activity of PctD. There are a number of
ways by which chemoeffectors stimulate chemoreceptors (11). To verify whether the
chemoeffectors activate PctD by direct binding, the LBD of PctD was produced as purified
recombinant protein and submitted to microcalorimetric binding studies. Acetylcholine and
choline bound with high affinity, with dissociation constants of 23 and 2.6 mM, respectively
(Fig. 2, Table 1). Binding of betaine occurred with a much lower affinity (KD = 990 mM). No
response was observed with L-carnitine. This compound probably also binds, but the sensi-
tivity of isothermal titration calorimetry (ITC) experiments is limited by the heat produced
simply by the injection of ligand into the buffer. Data are thus consistent with the notion
that the binding affinity correlates with the onset of chemotaxis, as observed previously for
PctA and PctB (51).

In order to confirm that binding of these quaternary amines mediates the chemotaxis
response, we constructed a chimeric receptor by fusing the PctD-LBD (including transmem-
brane helices and HAMP domain) to the signaling domain of the E. coli chemoreceptor Tar
(Fig. 3E). Similar chimeras were previously used to investigate chemotaxis signaling induced
by binding of chemoeffectors to the LBDs of PctA, PctB, and PctC by measuring the responses
that these hybrid receptors mediate in E. coli using Förster resonance energy transfer (FRET) (9,
51). These FRET measurements rely on stimulation-dependent interaction between the che-
motaxis response regulator CheY fused to yellow fluorescent protein (CheY-YFP) and its phos-
phatase CheZ fused to cyan fluorescent protein (CheZ-CFP) (52). The interaction between
CheY and CheZ depends on the phosphorylation state of CheY. FRET measurements serve as
a precise readout of pathway activity and were found to correlate linearly with physiological
responses (53, 54). When PctD-Tar was expressed as the sole chemoreceptor in the E. coli FRET
strain VS181/pVS88, clear attractant responses were observed in the submicromolar concen-
tration range for acetylcholine and choline (Fig. 3A and B) and in the micromolar concentra-
tion range for betaine and L-carnitine (Fig. 3C and D). The obtained half-maximal effective con-
centration (EC50) values (Fig. 3F) were generally consistent with the relative potency of these
ligands as chemoeffectors for P. aeruginosa (Fig. 1) and with the ITC results (Fig. 2) when the
signal amplification by the E. coli chemotaxis system is taken into account (52). No responses
to these quaternary amines were observed with the E. coli FRET strain expressing only full-
length Tar (Fig. S4), confirming the specificity of signaling via the sensory domain of PctD.
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Choline and acetylcholine also elicited much stronger chemoattraction when the receptorless
E. coli strain UU1250 (55) expressing PctD-Tar was tested in a microfluidic assay (Fig. S5).

The three-dimensional structure of PctD-LBD in complex with acetylcholine
and choline. To understand in molecular detail the mechanism of ligand recognition
by PctD, we carried out crystallization trials of PctD-LBD in its ligand-free state and in com-
plex with the identified ligands. Crystals formed in the presence of acetylcholine and chol-
ine, and atomic structures were determined and refined to a resolution of 1.8 and 2.0 Å,
respectively. The structures showed the typical dCache fold (Fig. 4), and alignments with all

FIG 2 Isothermal titration calorimetry study of the binding of different ligands to the ligand-binding
domain of chemoreceptor PctD. (Upper panel) Raw data for the titration of 15 to 22 mM protein with
9.6-mL aliquots of 0.5 to 10 mM ligand solutions. (Lower panel) Concentration-normalized and
dilution heat-corrected raw data for the titration with acetylcholine and choline. The continuous line
is the best fit with the “one binding site model” of the MicroCal version of ORIGIN.

TABLE 1 Thermodynamic parameters for the titration of P. aeruginosa PctD-LBD and
P. atrosepticum PacA-LBD with different ligandsa

Protein Compound KD (mM) DH (kcal/mol)
PctD(PA4633)-LBD Acetylcholine 236 1 212.26 1.0
PctD(PA4633)-LBD Choline 2.66 0.1 220.36 0.3
PctD(PA4633)-LBD Betaine 9906 59 22.46 4.1
PctD(PA4633)-LBD L-carnitine No binding
PacA(ECA_RS10935)-LBD Acetylcholine No binding
PacA(ECA_RS10935)-LBD Choline 1136 16.4 22.16 0.2
PacA(ECA_RS10935)-LBD Betaine 7.56 0.1 216.16 0.1
PacA(ECA_RS10935)-LBD L-carnitine 206 2 24.96 0.4
aThe corresponding titration data are shown in Fig. 2 and 6, respectively.
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FIG 3 Characterization of responses mediated by a PctD-Tar hybrid using FRET measurements in E. coli. (A to D) FRET responses of buffer-adapted
E. coli cells expressing PctD-Tar as the sole receptor upon stepwise addition (down arrow) and subsequent removal (up arrow) of the indicated
concentrations of acetylcholine (A), choline (B), betaine (C), and L-carnitine (D). (E) Cartoon representation of the hybrid PctD-Tar. (F) Corresponding
dose-response curves of responses mediated by PctD-Tar. The amplitudes of the initial FRET responses were calculated from changes in the ratio of
YFP/CFP fluorescence after stimulation with the indicated ligand concentrations and normalized to the saturated response. Error bars indicate the
standard errors of three independent experiments; wherever invisible, error bars are smaller than the symbol size. Data were fitted using the Hill
equation, with the EC50 (half-maximal effective concentration) fit values being 0.07 6 0.02 mM for acetylcholine, 0.04 6 0.01 mM for choline,
150 6 25 mM for betaine, and 31 6 6 mM for L-carnitine.
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structures present in the protein data bank (Table S1) showed that it is most similar to the
LBD of the TlpQ chemoreceptor from P. aeruginosa in complex with histamine (10), another
neurotransmitter.

Among other similar structures are the McpX chemoreceptor for quaternary amines
(56), several amino acid sensing chemoreceptors (57, 58), and the DctB and KinD sensor ki-
nases (59, 60) that bind organic acids. Well-defined electron density was observed for chol-
ine and acetylcholine, which permitted the precise placement of ligand structures (Fig. 5A).
As in the majority of dCache domains, the ligand was bound to the membrane-distal mod-
ule (Fig. 4). The quaternary amine moiety of both ligands is coordinated by hydrophobic
interactions with a number of aromatic amino acids (Phe124, Phe188, Tyr206, and Trp155)
and two methionine residues (Met169 and Met215). However, the tails of the two ligands
point in opposing directions (Fig. 5). The choline tail interacts with Ser217 and Asp235,
whereas the acetylcholine tail interacts with Ala168, Asp171, and Ser172 (Fig. 5).

Identification of PacA from Pectobacterium atrosepticum that binds quaternary
amines but not acetylcholine. We wanted to advance our understanding of the mo-
lecular mechanism for acetylcholine binding at dCache domains. Pectobacterium atrosepticum
SCRI1043 is used in our laboratory to investigate chemotaxis of plant pathogens. This strain
showed low but reproducible chemotaxis to betaine, choline, and L-carnitine, but it failed to
respond to acetylcholine even at 1 mM (Fig. S6). Of the 36 chemoreceptors of SCRI1043, two
(ECA_RS10935 and ECA_RS05475) possess a dCache type LBD (61). The LBDs of these recep-
tors share only 20% and 17% sequence identity with PctD, respectively (Fig. S2). We hypothe-
sized that one of these receptors is responsible for the responses to quaternary amines.

To identify the corresponding chemoreceptor, we overexpressed and purified the LBD
of ECA_RS10935. Microcalorimetric titrations of the protein with 1 mM solutions of betaine,
choline, and L-carnitine showed binding in each case (Fig. 6, Table 1). Betaine bound most
tightly (KD = 7.5 mM), followed by L-carnitine and choline with KD values of 20 mM and
113mM, respectively. Importantly, titration with 5 mM acetylcholine (Fig. 6) did not produce
any change in heat, indicating an absence of binding.

Given these results, we hypothesized that the observed weak chemotaxis of SCRI1043
to ligands bound by ECA_RS10935 (Fig. S6) may be due to a low level of receptor expres-
sion under the experimental conditions. To evaluate this, we constitutively expressed the
ECA_RS10935 gene from a pBBR1MCS-based multicopy vector. P. atrosepticum SCRI1043
harboring the resulting plasmid, pBBR_ECA_RS10935, exhibited up to an 8-fold increase
in chemotaxis to the corresponding ligands compared to the strain harboring the empty
plasmid (Fig. S7). The receptor was thus renamed PacA (Pectobacterium atrosepticum che-
moreceptor A).

FIG 4 The three-dimensional structures of the ligand-binding domains of the PctD chemoreceptor of
P. aeruginosa PAO1 in complex with acetylcholine and the PacA chemoreceptor of P. atrosepticum
SCRI1043 in complex with betaine. Structures are shown in two different orientations. Bound ligands
are shown in space-filling mode.
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Comparing the atomic structures of ligand-bound PacA-LBD and PctD-LBD. We
crystalized the PacA-LBD and solved its 3D structure in complex with betaine to a resolution
of 1.9 Å (Fig. 4B). The overall structure is highly similar to that of PctD-LBD, with a root mean
square deviation of 1.6 Å for the Ca atoms in a structural alignment. This similarity is also evi-
denced by the fact that the structural homologs of PctD-LBD correspond largely to those of
PacA-LBD (Table S1). A well-defined electron density was observed for betaine bound to
PacA-LBD (Fig. 5A). The orientation of betaine corresponded to that of acetylcholine in PctD-

FIG 5 The molecular detail of signal recognition by the PctD and PacA chemoreceptors. (A) A zoom view of the ligand-binding sites. The mesh
representation of the final j2Fo–Fcj electron density map is contoured at approximately 1.0 s . Ligands are shown in stick mode. (B) Amino acids involved
in ligand binding. Hydrogen bonds are shown as dotted lines. Amino acids that are conserved in the ligand-binding pockets of PctD and PacA are labeled
in red (fully conserved) and blue (aromatic amino acid conserved). Ach, acetylcholine. (C) Schematic view of ligand binding as generated by LigPlot
software (106). Hydrophobic interactions are shown as spoked arcs, and hydrogen bonds as dashed green lines (Distances (in Å) are indicated). Cyan
spheres are water molecules. Amino acids that are conserved in the ligand-binding pockets of PctD and PacA are labeled in red (fully conserved) and blue
(aromatic amino acid conserved).
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LBD (Fig. 5B), which was the opposite of the orientation of choline. Comparing the composi-
tion of the ligand-binding sites of PctD and PacA resulted in the identification of two con-
served amino acids (Tyr and Asp, shown in red in Fig. 5B, C) and two positions occupied by ar-
omatic amino acids in both proteins (shown in blue in Fig. 5B, C). The coordination of the
quaternary amine moiety in PacA-LBD is very similar to that of PctD-LBD and primarily involves
a number of aromatic amino acids. However, the amino acids that coordinate the acetylcho-
line tail in PctD-LBD (Ala168, Met169, Asp171, and Ser172) are not conserved in PacA-LBD
(Fig. 5B, C, Fig. S2C). These four amino acids in PctD-LBD may thus correspond to a feature of
acetylcholine-binding dCache domains.

Acetylcholine chemotaxis in other species. Having obtained the first evidence for
bacterial chemotaxis to acetylcholine, we investigated whether other strains show a similar
behavior. To this end, we conducted capillary chemotaxis assays to 1 mM acetylcholine using
a variety of strains with different lifestyles, including human pathogens, nonpathogenic plant-
associated bacteria, soil bacteria, and plant pathogens. Two strains, Agrobacterium tumefaciens
C58 and Dickeya solani MK10 showed acetylcholine chemotaxis (Fig. 7). The magnitude in
A. tumefaciens was comparable to that in P. aeruginosa, whereas that of D. solani was
about a third of that observed in P. aeruginosa. Both strains are plant pathogens, indicating
that bacteria with different lifestyles inhabiting dissimilar ecological niches are able to per-
form acetylcholine chemotaxis.

DISCUSSION

Acetylcholine is one of the key signaling molecules of life. It is best known as the
primary neurotransmitter in the vertebrate peripheral nervous system, where it mediates

FIG 6 Isothermal titration calorimetry study of the binding of different ligands to the LBD of the P.
atrosepticum SCRI1043 chemoreceptor ECA_RS10935 (PacA). (Upper panel) Raw data for the titration
of 20 mM protein with 9.6-mL aliquots of 1 mM (betaine, carnitine) and 5 mM (acetylcholine) ligand
solutions. (Lower panel) Concentration-normalized and dilution heat-corrected raw data for the
titration with acetylcholine and choline. The continuous line is the best fit with the “one binding site
model” of the MicroCal version of ORIGIN.
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signal transmission at the neuromuscular junction (62). In addition, many human tissues
contain nonneuronal acetylcholine, mostly in epithelial cells (airways, alimentary tract, uro-
genital tract, epidermis), muscles and other mesothelial cells (pleura, pericardium), and en-
dothelial and immune cells (63, 64). The signaling function of nonneuronal acetylcholine
modulates diverse processes, including immune and inflammatory responses, wound
healing, and development of cancer, cardiovascular, respiratory, digestive, and orthopedic
diseases (65, 66). Importantly, nonneuronal acetylcholine is also produced by bacteria,
archaea, algae, protozoa, tubellariae, and plants, suggesting an extremely early appear-
ance of acetylcholine in evolution (63). Acetylcholine mediates interkingdom and interbac-
terial communication (67). It has, for example, been identified as a key regulator of the
interaction between microbes and the human immune system (68).

The acetylcholine-mediated interdomain communication between bacteria and other
kingdoms is bi-directional, and there are several reports indicating that bacteria perceive ac-
etylcholine. For example, acetylcholine is not a chemoeffector for E. coli, but it inhibits che-
motaxis to aspartate (69). In another study, acetylcholine was found to reduce chemotaxis of
Pseudomonas fluorescens to L-Leu (70). However, the mode by which acetylcholine is per-
ceived is unknown. In Bacillus subtilis, the transcriptional regulator BmrR binds acetylcholine
with significant affinity (KD = 6.6 mM) to control the expression of the Bmr multidrug efflux
pump (71). In S. meliloti, the solute-binding protein ChoX binds acetylcholine (72). In Dickeya
dadantii, acetylcholine was identified as a competitive antagonist that interacts with a
ligand-gated ion channel (73). To the best of our knowledge, our data constitute the first
report that bacteria sense acetylcholine as a strong chemoattractant via chemoreceptors.
Because acetylcholine is a crucial signal molecule, it is reasonable to suggest that chemotaxis
to acetylcholine promotes the virulence of P. aeruginosa.

Signal transduction consists of converting a signaling input into an output. Here, we
have used ITC to quantify the signaling input (Table 1) and three different approaches to
quantify the PctD-mediated signaling output, namely, (i) P. aeruginosa chemotaxis assays
(Fig. 1 and Fig. S3), (ii) analysis of E. coli cells harboring a PctD-Tar chimera by FRET

FIG 7 Chemotaxis to acetylcholine in different bacterial species. The results of quantitative capillary
chemotaxis assays toward 1 mM acetylcholine are shown. Data are shown as the means and standard
deviations of results from three biological replicates conducted in triplicate.
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(Fig. 3), and (iii) microfluidics measurements (Fig. S5). There was satisfactory agreement
between these four data sets. Choline and acetylcholine showed high-affinity binding,
with KD values of 2.6 and 23 mM, respectively. It was shown that the KD values of 60% of
all characterized chemoreceptors are between 1 to 50 mM (4), indicating that the recogni-
tion of both chemoeffectors by PctD is in the same range as most that of chemoreceptors.
In contrast, betaine bound with low affinity, and L-carnitine binding could not be visualized
by ITC (Table 1). In agreement with these data, all three approaches to monitor the signaling
output showed highly sensitive responses to choline and acetylcholine, whereas low-sensi-
tivity responses were observed for betaine and L-carnitine. The EC50 values derived from
FRET experiments (legend to Fig. 3) were well below the KD values from the ITC binding
studies (Table 1), which is an observation that has been made for other chemoreceptors (9,
51) and is likely due to signal amplification in chemoreceptor arrays. It can thus be con-
cluded that the magnitude of signaling input determines the magnitude of signaling output
at PctD.

The threshold concentration of acetylcholine for chemotaxis was found to be 1 mM,
with a maximal response at 10mM. How do these parameters compare to physiological
acetylcholine concentrations? P. aeruginosa is the primary etiological agent of ulcerative
keratitis (74). Acetylcholine concentrations of 100 to 150mMwere detected within the cor-
neal epithelium (75), concentrations comparable to those at which strong chemoattraction
is observed (Fig. 1). In many cases, chemotaxis is required for the initial steps of infection,
in which sites that are suitable for establishing infection are recognized and colonized.
Once infection is established, chemotaxis is no longer essential, and transcription of che-
motaxis and motility genes is downregulated (76). A possible involvement of the PctD che-
moreceptor in virulence is supported by the downregulation of pctD transcript levels in
human sputum (77, 78), human burn wound infections (78), and mouse lung infection
(79) compared to the levels seen during in vitro growth.

Experiments are needed to establish whether other bacteria also possess acetylcho-
line receptors. Overall sequence similarity with LBDs of known ligand profile does not
permit prediction of the ligand recognized. However, comparison of the three-dimen-
sional structures of ligand-bound PctD-LBD and PacA-LBD identified the amino acids
uniquely involved in acetylcholine recognition. To identify potential acetylcholine-
binding receptors in other species, precise models of dCache domains can be gener-
ated using AlphaFold (80) and inspected for the presence of these amino acids.

PctD was determined to bind acetylcholine, a central neurotransmitter and signal
molecule. Interestingly, two PctD orthologs in P. aeruginosa, PctC and TlpQ, bind and
mediate chemoattraction to other neurotransmitters. GABA is the preferred ligand for the
PctC chemoreceptor (KD = 1.2 mM) (39), and histamine binds TlpQ with a KD of 0.64 mM. P.
aeruginosa exhibits attraction to concentrations of histamine as low as 500 nM (10). The
three-dimensional structures of the LBDs of these three dCache family receptors complexed
with their respective ligands have been solved (Fig. 8). Acetylcholine, GABA, and histamine
are human neurotransmitters and signal molecules involved in interkingdom communica-
tion. Therefore, the existence of three chemoreceptors for their recognition by P. aeruginosa
suggests a particular relevance of chemoattraction to these compounds. Chemoattraction
to neurotransmitters has also been observed in E. coli. E. coli is strongly attracted to norepi-
nephrine (5), a response that requires the conversion of norepinephrine to dihydroxyman-
delic acid, which is then sensed by the LBD of the Tsr chemoreceptor (5, 81). This chemotaxis
response is of physiological relevance, as in enterohemorrhagic E. coli, norepinephrine
controls the expression of many virulence genes, a response mediated by the QseC sen-
sor kinase (82–84).

We have tested other bacteria for chemotaxis to acetylcholine. Significant responses
were seen with Agrobacterium tumefaciens and Dickeya solani, two plant pathogens (Fig. 7).
No chemotaxis to acetylcholine was observed in a number of other plant pathogens and
nonpathogenic plant-associated species. Acetylcholine has been detected in many plant tax-
ons and is considered to be a plant hormone (85). Within the plant, it is ubiquitously distrib-
uted, ranging from seeds and cotyledons to roots, shoots, and leaves (86). Acetylcholine
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regulates vital plant activities such as seed germination and plant growth. It mimics the
action of red light, influencing leaf movement and membrane permeability to ions and
modifying enzyme activities and metabolic processes (85). Acetylcholine concentrations in
plants are typically in the lower mM range but can be as high as 100 mM (86, 87). Future
investigations will be necessary to establish the physiological relevance of chemotaxis to ac-
etylcholine in plant pathogens. Our study lays the foundation for studies to assess the phylo-
genetic spread of acetylcholine chemotaxis and to assess its physiological relevance in
bacteria.

MATERIALS ANDMETHODS
Strains, plasmids, and culture conditions. The bacterial strains, plasmids, and oligonucleotides

used are listed in Table S2. E. coli strains were grown in LB medium at 37°C. E. coli DH5a was used as a
host for gene cloning. When necessary, antibiotics were used at the following concentrations: kanamy-
cin, 25 mg/mL (E. coli strains); ampicillin, 100 mg/mL (E. coli strains); chloramphenicol, 17 mg/mL (E. coli
strains); tetracycline, 50mg/mL (P. aeruginosa strains).

Construction of plasmids. The DNA fragment encoding the LBD of P. aeruginosa PAO1 chemore-
ceptor PA4633 (amino acids 32 to 361) was amplified by PCR from genomic DNA and cloned into the
NdeI and XhoI sites of pET28b(1) to generate plasmid pET28_PA4633-LBD. The DNA fragment encoding
the LBD of P. atrosepticum SCRI1043 chemoreceptor ECA_RS10935 (amino acids 37 to 317) was amplified
by PCR from genomic DNA. The resulting PCR fragment was then submitted to restriction free-cloning
into pET28b(1) as described in reference 88. For the construction of the plasmid for complementation
assays, the pa4633 gene was PCR amplified and cloned into pBBR1MCS-2_START. The resulting plasmid
was transformed into P. aeruginosa PAO1-PA4633 by electroporation. The DNA sequence of gene
ECA_RS10935 was amplified from the genomic DNA of P. atrosepticum SCRI1043 and cloned into plasmid
pBBR1MCS-2_START digested with NdeI and BamHI, resulting in pBBR_ECA_RS10935. The hybrid gene
encoding PctD-Tar was constructed using PCR and inserted under the salicylate-inducible promoter into
pKG116 using NdeI and BamHI sites to yield plasmid pVS1743. All plasmids were verified by sequencing
the inserts and flanking regions.

Protein overexpression and purification. E. coli BL21-AI and E. coli BL21(DE3) harboring plasmids
pET28_PA4633-LBD and pET28_ECA_RS10935-LBD, respectively, were grown in 2-L Erlenmeyer flasks
containing 500 mL LB medium supplemented with kanamycin. Cultures were grown under continuous
stirring (200 rpm) at 30°C. At an optical density at 660 nm (OD660) of 0.5, PA4633-LBD expression was
induced by the addition of 0.2% (wt/vol) L-arabinose and 1 mM isopropyl-b-D-thiogalactopyranoside
(IPTG). Growth was continued at 30°C for 5 h, and cells were harvested by centrifugation at 20,000 � g
for 20 min at 4°C. ECA_RS10935-LBD expression was induced by adding 0.1 mM IPTG at an OD660 of 0.5,
and growth was continued overnight at 18°C, prior to cell harvest by centrifugation at 20,000 � g for
20 min. Proteins were purified by metal affinity chromatography. Briefly, the cell pellets of PA4633-LBD and

FIG 8 The three dCache domain-containing chemoreceptors of P. aeruginosa PAO1 that mediate
chemotaxis to important neurotransmitters. The 3D structures of the ligand-binding domains of PctD
in complex with acetylcholine (PDB ID 7PRR), TlpQ in complex with histamine (PDB ID 6FU4) (10), and
PctC in complex with GABA (PDB ID 5LTV) (37) are shown. The respective KD values are 23 mM,
1.2 mM, and 0.64 mM (10, 39).
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ECA_RS10935-LBD were resuspended in buffer A (30 mM Tris/HCl, 300 mM NaCl, 10 mM imidazole, 5% [vol/
vol] glycerol, pH 8.0) or buffer B (40 mM KH2PO4/K2HPO4, 10 mM imidazole, 10% [vol/vol] glycerol, pH 7.0),
respectively, containing cOmplete protease inhibitor (Roche) and Benzonase (Merck). Cells were then broken
by French press treatment at a gauge pressure of 62.5 lb/in2. After centrifugation at 10,000 � g for 1 h, the su-
pernatant was loaded onto a 5-mL HisTrap column (Amersham Bioscience) equilibrated with buffers A or B.
Proteins were eluted by a gradient of 40 to 500 mM imidazole in the same buffers.

Isothermal titration calorimetry.Measurements were made using a VP-ITC microcalorimeter (MicroCal,
Inc., Northampton, MA) at 25°C. PA4633-LBD was dialyzed into 5 mM Tris, 5 mM PIPES [piperazine-N,N9-bis(2-
ethanesulfonic acid)], 5 mM MES (morpholineethanesulfonic acid), 150 mM NaCl, 10% (vol/vol) glycerol, pH 7.5,
whereas ECA_RS10935-LBD was dialyzed into 40 mM KH2PO4/K2HPO4, 10% (vol/vol) glycerol, pH 7.0. Proteins
at 15 to 22mM were placed into the sample cell and titrated with 9.6-mL aliquots of 0.5 to 10 mM ligand solu-
tions made up in dialysis buffer. In the absence of binding, the experiment was repeated at 15°C. The mean
enthalpies from the injection of ligands into the buffer were subtracted from raw data prior to data fitting
using the “one binding site model” of the MicroCal version of the ORIGIN software.

Chemotaxis assays. Overnight cultures in M9 minimal medium supplemented with 6 mg/L Fe-ci-
trate, trace elements (89), and 15 mM glucose were used to inoculate fresh medium to an OD660 of 0.05.
Cells were cultured at 30°C (Pectobacterium atrosepticum, Pantoea agglomerans, Serratia plymuthica,
Pseudomonas stutzeri, Agrobacterium tumefaciens, Dickeya solani, Pseudomonas savastanoi pv. savasta-
noi) or 37°C (P. aeruginosa, E. coli, Salmonella enterica serovar Typhimurium) to an OD660 of 0.4 to 0.5.
Subsequently, cells were washed twice by centrifugation (1,667 � g for 5 min at room temperature) and
resuspension in chemotaxis buffer (50 mM KH2PO4/K2HPO4, 20 mM EDTA, 0.05% [vol/vol] glycerol, pH
7.0) and then resuspended in the same buffer at an OD660 of 0.1. Aliquots (230 mL) of the resulting cell
suspension were placed into the wells of 96-well microtiter plates. Then, 1-mL capillaries (Microcaps,
Drummond Scientific) were heat-sealed at one end and filled with buffer (control) or chemoeffector so-
lution prepared in chemotaxis buffer. The capillaries were rinsed with sterile water and immersed into
the bacterial suspensions at their open ends. After 30 min, capillaries were removed from the wells,
rinsed with sterile water, and emptied into 1 mL of chemotaxis buffer. Serial dilutions were plated onto
M9 minimal medium plates supplemented with 20 mM glucose, incubated at 30°C or 37°C prior to col-
ony counting. Data were corrected with the number of cells that swam into buffer containing capillaries.
Data are the means and standard deviations of three biological replicates conducted in triplicate.

Protein crystallization and structure resolution. Freshly purified PctD-LBD was dialyzed into 5 mM
Tris/HCl, 5 mM MES, 5 mM PIPES, 150 mM NaCl, and 10% (vol/vol) glycerol, pH 7.5, and concentrated to
20 mg/mL using 10-kDa cutoff Centricon concentrators (Amicon). For the cocrystallization experiments, ligands
were added to a final concentration of 10 mM and incubated on ice for 30 min. The excess of ligand was
removed by rounds of concentration and dilution with the above-described buffer. Protein (20 mg/mL) was
submitted to crystal screening using the hanging-drop vapor diffusion and capillary counterdiffusion techni-
ques. Vapor diffusion experiments were set up in 24-well crystallization plates (VDX; Hampton Research) using
the Hampton Research Screen I. Droplets were prepared by mixing protein with reservoir solution at a 1:1 ratio
and equilibrated over a 500-mL reservoir solution. Counterdiffusion experiments were set up by loading protein
into 0.2-mm inner diameter capillaries and equilibrated against an excess of precipitant cocktails prepared ad
hoc (90). A similar procedure was employed to crystallize PacA-LBD, except that protein was at 35 mg/mL and
in 5 mM Tris/HCl, 5 mM PIPES, and 5 mM MES, pH 7.4. The conditions that resulted in crystals are given in
Table S3. Crystals were equilibrated in mother solution supplemented with either 15% (vol/vol) glycerol or
20% (vol/vol) polyethylene glycol (PEG) 200, recovered by LithoLoops (Molecular Dimensions), and flash-frozen
in liquid nitrogen. Data collection was done at beamlines ID30B, ID23-1, and ID30A-3 of the European
Synchrotron Radiation Facility (Grenoble, France) and the Xaloc beamline of the Alba Spanish synchrotron radi-
ation source (Barcelona, Spain). Data were indexed and integrated with XDS (91) and scaled and reduced with
AIMLESS (92) of the CCP4 program suite (93). PctD-LBD was phased by molecular replacement with MOLREP
(94) using a truncated version of the model predicted by RaptorX (95) that was based on templates with PDB
ID 6F9G, 6FU4, and 6PZJ. The molecular replacement solution of PacA-LBD was found by implementing the
deep learning-based method AlphaFold within the Rossetta predictor software run in the Robetta server
(RoseTTAFold) (96) and top ranked in CAMEO (97). Refinement was initiated with phenix.refine (98) and
REFMAC5 (99) of the CCP4 program suite. Manual building, water inspection, and ligand identification were
done in Coot (100), and final refinement was assessed, including titration-libration-screw parameterization
(101). Models were verified with Molprobity (102) and the PDB validation server prior to deposition at the
PDBe (103). The crystallographic data statistics and final model characteristics are provided in Table S3.

Growth experiments. PAO1 was grown overnight in M9 minimal medium containing 10 mM glu-
cose. Cultures were washed twice and then diluted to an OD600 of 0.02 in either M9 or M8 medium (M9 minimal
medium without NH4Cl) containing 10 mM glucose and medium supplemented with each of the compounds
present in the Biolog compound array PM2A (https://www.biolog.com/wp-content/uploads/2020/04/00A-042
-Rev-C-Phenotype-MicroArrays-1-10-Plate-Maps.pdf) as sole carbon source. Then, 200 mL of these cultures were
transferred into microwell plates, and growth at 37°C was followed on a Bioscreen microbiological growth an-
alyzer (Oy Growth Curves Ab Ltd., Helsinki, Finland).

FRET measurements. FRET measurements were performed as described previously (52, 54, 104).
Cells of chemoreceptorless E. coli strain VS181 expressing PctD-Tar and the CheY-YFP/CheZ-CFP FRET
pair were prepared by inoculating 200 mL of the overnight culture into 10 mL tryptone broth (TB; 1% [wt/vol]
tryptone and 0.5% [wt/vol] NaCl) supplemented with ampicillin, chloramphenicol, 50 mM IPTG, and 2 mM so-
dium salicylate and grown in a rotary shaker at 34°C and 275 rpm. Cells were harvested at an OD600 of 0.5 by
centrifugation, washed with tethering buffer (10 mM KH2PO4/K2HPO4, 0.1 mM EDTA, 1mMmethionine, 10 mM
sodium lactate, pH 7.0), resuspended in 10 mL tethering buffer, and kept at 4°C. For microscopy, the cells were
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attached to poly-lysine-coated coverslips for 10 min and mounted into a flow chamber that was maintained
under constant flow of 0.3 mL/min of tethering buffer using a syringe pump (Harvard Apparatus) that was also
used to add or remove compounds of interest. FRET measurements were performed on an upright fluores-
cence microscope (Zeiss AxioImager.Z1) equipped with photon counters (Hamamatsu). The fluorescence sig-
nals were recorded and analyzed as described previously (52, 54).

Microfluidic assay. The microfluidic assay was performed as previously described, using a chip with
24 parallel microchannels (105). In brief, cells of the receptorless E. coli strain UU1250 expressing green
fluorescent protein (GFP) and PctD-Tar were grown at 34°C in TB supplemented with ampicillin, chloram-
phenicol, 100 mM IPTG, and 2 mM sodium salicylate to an OD600 of 0.5. Cells were harvested by centrifu-
gation and washed twice with tethering buffer. Chemoeffectors were dissolved in tethering buffer at a
concentration of 50 mM, and the pH was adjusted to 7.0. The chemical source microchannels were filled
with 4% (wt/vol) agarose gel to create a semipermeable barrier. E. coli cells were added to the reservoir
well and allowed to spread for 30 min into the channels. Compounds were added to the source well
and allowed to form a concentration gradient. Cell fluorescence was recorded with a Ti-E inverted micro-
scope system (Nikon Instruments Europe BV, Amsterdam, Netherlands) using a 20�lens objective. Data
were analyzed using ImageJ (Wayne Rasband, NIH, USA).

Data availability. The 3D structures reported have been deposited at the protein data bank with
the accession codes 7PRQ, 7PRR, and 7PSG.
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