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Breast cancer is the second most commonly diagnosed cancer in American women

following skin cancer. Despite overall decrease in breast cancer mortality due to advances

in treatment and earlier screening, black patients continue to have 40% higher risk

of breast cancer related death compared to white patients. This disparity in outcome

persists even when controlled for access to care and stage at presentation and has been

attributed to differences in tumor subtypes or gene expression profiles. There is emerging

evidence that the tumor microenvironment (TME) may contribute to the racial disparities

in outcome as well. Here, we provide a comprehensive review of current literature

available regarding race-dependent differences in the TME. Notably, black patients tend

to have a higher density of pro-tumorigenic immune cells (e.g., M2 macrophages,

regulatory T cells) and microvasculature. Although immune cells are classically thought

to be anti-tumorigenic, increase in M2 macrophages and angiogenesis may lead to a

paradoxical increase in metastasis by forming doorways of tumor cell intravasation called

tumor microenvironment of metastasis (TMEM). Furthermore, black patients also have

higher serum levels of inflammatory cytokines, which provide a positive feedback loop in

creating a pro-metastatic TME. Lastly, we propose that the higher density of immune cells

and angiogenesis observed in the TME of black patients may be a result of evolutionary

selection for a more robust immune response in patients of African geographic ancestry.

Better understanding of race-dependent differences in the TME will aid in overcoming

the racial disparity in breast cancer mortality.
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microenvironment of metastasis (TMEM)
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INTRODUCTION

Breast cancer is the second most common cancer in women in
the U.S. following skin cancer, and is the second leading cause
of cancer death (1, 2). In both female and male breast cancer,
black race or African American (AA) ethnicity is associated
with a worse prognosis compared to white race or European
American (EA) ethnicity (3–6). Clinical and treatment factors
associated with worse outcomes for black race in breast cancer
are well-described (Table 1). Although breast cancer incidence
and mortality have declined by ∼40% in the U.S. between
1989 and 2017 (2), mortality rates have declined less in black
women, which has contributed to persistently higher breast
cancer mortality rate for black women (17). Furthermore, despite
the lower incidence rate, the death rate for black women with
breast cancer is now 40% higher than for white women (1, 2).
For black women younger than 50 years of age, the death rate is
double than that of white women of the same age group (2).

A widening racial gap in survival has also been observed
for women in the US Department of Defense healthcare system
(18), as well as for women undergoing NCI-sponsored clinical
trials receiving contemporary therapy (Table 2), suggesting that
factors other than disparities in care may be playing a role in
contributing to inferior outcomes (20). A similar disparity in
survival was also observed in patients with ER+/HER2- disease
treated at Montefiore Medical Center, which serves a large
African American population (13).

Indeed, several studies have indicated that racial disparity in
breast cancer outcome between patients of African compared
to those of Caucasian ancestry are due to biological factors
including differences in gene expression patterns of tumor
cells as well as differences in the local milieu (or context) in
which cancer cells reside, typically referred to as the tumor
microenvironment (TME) (21). TME encompasses a variety of
cells including fibroblasts, adipocytes, immune cells, endothelial
cells, as well as a plethora of signaling molecules and extracellular
matrix (ECM) components. The non-cancerous stromal cells
influence the behavior of cancer cells by direct contact, as
well as by secreting ECM proteins, chemokines, cytokines and
growth factors. Thus, it is the dynamic interplay between
cancer cells, non-cancerous cells and other components of TME
that dictates the growth and invasiveness of tumors and may
contribute to racial disparity in breast cancer outcome. This
review will focus on the racial disparities in TME as potential
modulators of cancer progression, metastasis and response
to therapy.

RACIAL/ETHNIC DISPARITIES IN THE
BREAST CANCER MICROENVIRONMENT

Breast cancer is an extremely heterogeneous disease at multiple
levels, including histologic subtype, grade, hormone and growth
factor receptor status, as well as gene expression pattern
(22). Molecular profiling based on the analysis of gene copy
number, mRNA, microRNA and protein expression supports
at least four (23), and up to ten intrinsic subtypes (24).

TABLE 1 | Factors contributing to worse clinical outcomes for black race in breast

cancer.

Clinical presentation

More advanced stage disease (7)

Higher rates of triple-negative disease (8)

Higher rates of obesity (9)

Treatment

Poorer adherence to chemotherapy (10) and endocrine therapy (11)

Higher rates of taxane neuropathy (12)

Other factors

Worse outcomes in ER-positive breast cancer despite comparable therapy

(9, 13–15)

More comorbidities and disparities in access to care (16)

Although an association of these intrinsic subtypes with disease
outcome has been clearly demonstrated (22), it has been
increasingly appreciated that the tumor microenvironment
(TME) also plays an important role in regulating breast
cancer biology at all stages of progression and ultimately
influences disease outcome (25). Moreover, multiple lines of
evidence indicate that black patients exhibit a TME with
more pronounced pro-tumorigenic properties, which may be
responsible for, and contribute to the disparity in breast
cancer survival.

Disparity in Breast Cancer Immune
Landscape
A number of immune cells reside within the TME and
contribute to cancer progression. Among the well-studied ones
are tumor-associated lymphocytes (TILs), regulatory T cells (T-
regs), neutrophils, tumor-associated macrophages (TAMs), and
myeloid-deprived suppressor cells (MDSCs).

Lymphocytes
TILs, the most abundant immune cells within breast TME,
convey a good prognosis especially in patients with triple
negative (TN) disease (26–28). In particular, high TIL count
in TN disease has been associated with better survival, as
well as better response to treatment (29, 30). Although
the analysis of gene expression variants have shown higher
expression of genes associated with immune response in
tumors from African American (AA) compared to European
American (EA) patients (31), the comparison of TIL counts,
either as percent-area of stroma, or as percent-area of the
whole section did not show any differences between these
two racial groups (32). Likewise, the distribution of tumors
that were lymphocyte-predominant (>50% TIL), lymphocyte-
moderate (10–50% TIL) and lymphocyte-poor (<10% TILs)
was not significantly different (32). The immunomodulatory
score (33), which helps predict response to neoadjuvant
chemotherapy, was also not different between AA and EA
patients (32).

Unlike TILs, increased number of T-regs in breast TME has
been associated with decreased relapse-free and overall survival
(34, 35). This is not surprising as T-regs are suppressors of
T cell responses and mediators of immune tolerance, and as
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TABLE 2 | Adjuvant Breast Cancer Trials.

Study/Cohort No. Black Stage Black race and risk of recurrence

E1199 (NCT00004125) (9) 4,819 405 (8.4%) II–III ↑ 1.58-fold (p = 0.002) in ER+/HER2- disease

(self-identified race)

E5103 (NCT00433511) (14, 15) 4,994 568 (11.4%) II–III ↑ 1.5-fold (p = 0.027) in ER+/HER2- disease (in

subset with genetic African-American [n = 386] or

European-American [n =2,473] by ancestry

informative markers)

TAILORx (NCT00310180) (19) 9,223 722 (7.8%) I–II ↑ 1.29-fold (p = 0.02) in entire population, and

1.8-fold (p < 0.001) for 21 gene RS −11 to 25

Montefiore-Einstein cohort (13) 3,890 1,393 (35.4%) I–III ↑ 1.84-fold (p < 0.05) in ER+/HER2- disease

(self-identified race)

↑, Increased.

such, T-regs may contribute to immune evasion of cancer cells.
Indeed, ablation of T-regs leads to CD4 T-cell- and interferon-γ
(INF-γ)-dependent reduction of primary and metastatic tumor
growth in a transgenic mouse model of breast cancer (36).
When analyzed as relative proportion among 9 immune cell
populations (B-cells, dendritic cells, eosinophils, macrophages,
mast cells, neutrophils, NK cells, CD4 and CD8 T-cells), T-
regs were present in significantly higher proportion in TME of
AA than of EA patients (32). It is therefore possible that more
aggressive disease in AA compared to EA may be due to more
pronounced immunosuppressive TME in breast cancers of AA
patients. Since the recruitment of T-regs into the TME occurs
partly via the C-X-C motif chemokine-12 (CXCL12) signaling
factor, it would be interesting to see if TME in breast cancers from
AA compared to EA patients produces more CXCL12.

Myeloid Cells
Neutrophils have been typically involved in the pathophysiology
of acute infection and elimination of bacteria. However, about a
decade ago, studies in pre-clinical models of cancer demonstrated
that depending on the levels of chemokines in TME, tumor-
associated neutrophils (TANs) may develop an either pro- or
anti-tumor phenotype (37). More recent meta-analyses showed
that a high neutrophils-to-lymphocytes ratio is associated with
worse outcome (38–40). Neutrophils are also found to be
potent suppressors of T-cell mediated immunity (41). Moreover,
neutrophils can expulse their DNA to create so-called neutrophil
extracellular traps (NETs), which can promote metastasis (42).
Relative to other immune cell populations, the mean proportion
of neutrophils was not found to be different between AA and
EA (32). Quite interestingly, up to 12.5% of healthy women
of AA descent were found to have neutropenia (43). However,
it is not yet clear how that may affect breast cancer incidence
and progression.

The role of TAMs in the progression of breast cancer has
been extensively studied (44–47). This is not surprising given that
macrophages are the most abundant leukocytes in breast TME in
both AA and EA patients (32). Macrophages are extremely plastic
and under constant influence of TME, which can modify them
to function as either tumor inhibitory (M1) or tumor promoting
(M2) agents (48, 49). M1 macrophages, also called classically-
activated macrophages, secrete pro-inflammatory cytokines such

as INF-γ, TNF-α, IL-1, IL6, and IL-12, while M2 macrophages
secrete anti-inflammatory cytokines, such as IL-10 and TGF-β. It
is important to mention that both within and between the M1
and M2 polarization states, there exist several subcategories of
macrophage phenotypes. Although most studies associate high
macrophage density with poor outcome (50–52), macrophage
density does not seem to play a role in the outcome of patients
who have ER+ tumors smaller than 1 cm (53). However, TAMs
seem to differ in TME of AA and EA patients not only in
their density, but also in their composition. For instance, AA
patients compared to EA and non-black Hispanic patients tend
to have not only higher macrophage density (54), but also higher
density of pro-tumorigenic M2, CD206-expressing macrophages
in the TME (55). Consistent with the well-established role of
M2 macrophages in promoting tumor invasion, angiogenesis,
metastasis and immunosuppression (56–58), the density of
CD206 M2 macrophages was found to be a significant predictor
of progression-free survival independently of race (54). This
even held true after adjusting for race and HER2 expression.
Interestingly, if evaluated as a mean proportion of the leukocyte
compartment within TME, tumors from AA compared to EA
patients have a higher overall macrophage score, but tumors from
EA patients score higher for M2 macrophages (32). One of the
pro-tumorigenic properties of M2 macrophages is their ability
to promote angiogenesis (58, 59). Indeed, M2 TAMs secrete
various cytokines as well as matrix degrading enzymes that
orchestrate not only cancer cell invasion, but also angiogenesis.
In particular, a subset of M2 macrophages that expresses the
tyrosine kinase receptor Tie2 produces large amounts of vascular
endothelial growth factor (VEGF), which, in turn, regulates
cancer cell dissemination (60, 61). Thus, macrophages serve as
principal modifiers and regulators of blood vessel development
and structure in the tumor microenvironment, suggesting that
racial disparities inmacrophage populationsmay indirectly shape
the angiogenic milieu in different ethnic groups.

Myeloid-derived suppressor cells (MDSCs) represent
well-established mediators of the immunosuppressive tumor
microenvironment, and also serve as critical regulators of
angiogenesis, cancer cell invasion and migration, as well as
pre-metastatic niche formation (62–64). MDSCs are currently
categorized into two distinct subtypes with clearly defined surface
phenotype and functions, the granulocytic (G-MDSC) and the
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monocytic (Mo-MDSC) types (65).The levels of G-MDSCs in
the peripheral blood of breast cancer patients receiving neo-
adjuvant chemotherapy (doxorubicin and cyclophosphamide)
are significantly elevated, especially for those who do not present
with pathologic complete response (pCR) (66). Interestingly,
this study additionally demonstrated that AA patients present
with a comparably lower increase in G-MDSC levels following
chemotherapy, compared to Caucasians (66).These observations
suggest that racial disparities in MDSC responses and functions
in the breast TME, especially in the context of chemotherapy
treatment, may account for significant differences in tumor
progression and even therapeutic outcome among different
ethnic backgrounds.

Disparity in Breast Cancer Vascular
Compartment
Microvascular density has been consistently associated with
tumor progression and outcome in breast cancer (67), because
blood vessels are critical for the development and progression of
the primary breast cancer, cancer cell dissemination to distant
sites (60, 68, 69), metastatic seeding, as well as outgrowth of
metastatic nodules. Angiogenesis is a complex process regulated
by a plethora of cytokines produced in response to hypoxia-
induced activation of HIF-1 transcription factors (70). Given
such importance of vasculature in tumor progression, it is not
surprising given the disparity in outcome described above that
one of the most striking differences in TME between patients of
African and European ancestry is in the biology of angiogenesis
(55). A comprehensive study by Martin et al. (55) looked at
differences in gene enrichment in specific biological processes in
tumor stroma and tumor epithelium, separated by laser capture
micro-dissection, between black and white patients. The study
found that patients of African ancestry had significantly higher
expression of genes involved in cell cycle control and chemotaxis
in tumor epithelium, while tumor stroma was enriched for genes
involved in neovascularization. This study also found increased
microvascular density in TME from AA patients. Interestingly
however, an analysis of the National Cancer Database (NCDB)
found that black race was not associated with higher risk of
lymphovascular invasion in patients with early ER+/HER2-
breast cancer (71). Given that a subset of TAMs stimulates
angiogenesis, it is plausible that breast cancers in black patients
release more macrophage chemotactic signals such as CSF-
1, which could result in macrophage recruitment, increased
density of proangiogenic TAMs and subsequent increase in
microvascular density. Indeed, plasma levels of granulocyte
colony-stimulating factor (G-CSF) was found to be elevated
in African-American compared with Caucasian patients (72).
Increased microvascular density along with increased density
of proangiogenic CD206 expressing macrophages within TME
likely contribute to an enhanced assembly of specialized
doorways for cancer cell dissemination to distant sites called
tumor microenvironment of metastasis (TMEM) doorways
(60, 61). TMEM doorways are sites of localized transient
vascular permeability. Each TMEM doorway is composed of one
proangiogenic CD206 macrophage expressing high levels of Tie2

receptor, one tumor cell expressing high levels of actin regulatory
protein Mena, and one endothelial cell expressing angiopoietin-2
(Ang2), all in direct physical contact (60). The TMEM doorway
is a clinically validated prognostic biomarker for breast cancer
metastasis to distant sites such as lung, bone or brain (73–75).
It would be interesting to investigate if the density of TMEM
doorways differs in breast TME of patients from different racial
ancestry and if the difference in TMEM density contributes to the
disparity in breast cancer outcome.

Cancer-Associated Fibroblasts (CAFs),
Extracellular Matrix (ECM), and Breast
Density in Patients of Different
Racial/Ethnic Backgrounds
Cancer-associated fibroblasts (CAFs) are the most common
stromal cell type of mesenchymal origin in the tumor
microenvironment (76). However, due to the lack of molecular
markers specific for CAFs, it is challenging to identify and study
them (77). Nevertheless, it has been observed that breast CAFs
secrete a large number of growth factors such as fibroblast
growth factor (FGF), transforming growth factor beta (TGF-β),
CXCL12, and hepatocyte growth factor (HGF), as well as various
cytokines that contribute to cancer cell proliferation, invasiveness
and angiogenesis (76). While, to the best of our knowledge, the
effect of CAFs on cancer progression from patients of different
racial backgrounds has not been investigated, one study describes
the effect of ECM and fibroblasts isolated from healthy pre-
menopausal women of various racial backgrounds on breast
cancer cell growth and invasion both in vivo and in vitro (78).
This study reports that fibroblasts from both AA and EA women
enhanced cancer progression albeit in slightly different ways. In
vitro, ECM from AA women induced invasiveness of TN cancer
cells, while fibroblasts from EA women induced invasiveness
of ER+/PR+ cancer cells. In xenograft models, ECM from EA
women increased tumorigenesis of ER+/PR+ cells and enhanced
metastasis. However, in vitro studies must be viewed with caution
since in vitro assays suffer from uncertainty regarding the lack of
TME associated factors which can lead to the observation of cell
phenotypes that are unrelated to cell behavior in vivo.

According to several studies it seems that single nucleotide
polymorphisms (SNPs) in the FGF family of genes may
influence the risk for breast cancer in patients of various racial
backgrounds. In particular, SNP variants in the fibroblast growth
factor receptor-2 (FGFR-2) gene and/ or the FGFR-2 promoter
are associated with an increased risk of breast cancer in Chinese
women (79, 80), Northern Indian (81), Caucasian (82), and AA
women (83). Thus, it is plausible that there are racial differences
in which fibroblasts affect cancer susceptibility and progression
via the secretion of protumoral and prometastatic cytokines.

Likewise, CAFs and ECM may affect breast tissue density,
which has important clinical implication not only for cancer
progression but also for mammographic screening. Indeed, in a
large multiethnic study, it was shown that women of Hispanic
ancestry had the highest mammographic breast density, followed
by AA and EA women (84). To what extent this CAF-related
phenotype is affected by differential deposition of collagen,
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collagen crosslinking, or regulation of interstitial pressure among
the different racial groups needs to be determined using in vivo
studies in the future.

Cancer-Associated Adipocytes in Patients
of Different Racial/Ethnic Backgrounds
The interplay between cancer cells and adipocytes has not been
extensively studied. This may potentially be due to the fact that
adipocytes, which represent a large portion of the healthy breast
tissue, are frequently replaced by desmoplastic stroma during
cancer progression. Nevertheless, cancer cells often invade the
surrounding adipose tissues and such interplay may affect breast
cancer outcome (85). Indeed, several studies indicate a positive
correlation between cancer cell invasion into adipose breast tissue
and poor patient outcome (86, 87). Recently, a microanatomical
adipocyte-associated structure called crown-like structure (CLS)
was described in breast TME (54). CLS are composed of
macrophages surrounding dying adipocytes. A higher density
of CLS was found in black compared to Caucasian and non-
black Hispanic patients (54). Interestingly, CLS containing
pro-inflammatory M1 macrophages are associated with worse
survival in all racial groups. Thus, adipocytes may affect cancer
outcome by influencing cancer behavior locally, as shown in
several in vitro studies (88). Alternatively, adipocytes may be
affecting overall inflammation at the systemic level, which is
also cancer-promoting (89, 90). Since AA race is associated with
higher obesity rates compared to EA (91), and obesity induces
low-grade chronic inflammatory milieu, it is possible that CLSs
are more frequently associated with M1macrophages in AA than
in EA patients due to obesity-induced inflammation. Indeed,
obesity is not only associated with increased circulating fatty
acids, but also with enrichment of chemo-attractants for immune
cells into the TME (92). In particular, adipose tissue produces
inflammatory cytokines such as TNF-α, interleukin (IL-6), IL-
1β, and monocyte chemoattractant protein (MCP)-1. Moreover,
adipocytes transdifferentiate into macrophages, which can be
stimulated by fatty acids to produce inflammatory cytokines.
High cytokine levels perpetuate chronic inflammation, which in
turn, can promote tumor progression. Therefore, the interplay
between TME and circulating cytokines may be responsible for
the association of obesity with worse outcome in patients with
breast cancer (93).

SERUM CYTOKINE PROFILE IN BREAST
CANCER PATIENTS OF DIFFERENT
RACIAL/ETHNIC BACKGROUNDS

Cytokines, the signaling molecules that mediate and regulate
immunity, inflammation and hematopoiesis, are the biological
milieu and constitute important components of the TME
associated with breast cancer (94, 95). Cytokines have been
used as biomarkers for prognosis and have been associated with
clinical symptoms and adverse outcomes in breast cancer (95).

Studies indicate that certain cytokine levels may be influenced
by racial background of the patient. For instance, plasma
levels of IL-8 and granulocyte colony-stimulating factor were

elevated in AAs compared with EAs (72), and TNF-α has
been reported to be higher in non-obese Mexican Americans
compared with matched non-Hispanic whites (96). Moreover,
it was also demonstrated that plasma levels of circulating
cytokines are influenced by both age and race (97). Most
studies comparing racial differences in cancer at the cytokine
levels investigated only a few cytokines. The reason may be
the lack of sufficient numbers of AA patients in population-
based case-control studies to observe significant differences
in circulating cytokines and race-specific associations between
cytokines and cancer (98). Studies in various cancer types
demonstrated that there are substantial racial differences in
inflammation between AA and EA patients. In lung cancer
for instance, certain cytokines (IL-4, IL-5, IL-8, IL-10, IFN-γ,
and TNF-α) were significantly elevated among EA compared to
AA patients, whereas elevated IL-1β, IL-10, and TNF-α levels
were associated with lung cancer only among AA patients (98).
In other studies, AA compared to EA patients appeared to
have higher levels of circulating C-reactive protein [a non-
specific marker of inflammation (99)], higher levels of IL-6, and
reduced levels of TNF-α (100). Of note, AA and EA patients
were found to have significantly different frequencies of single
nucleotide polymorphisms (SNPs) in cytokine genes, which may
functionally alter and explain the differences in serum cytokine
concentrations (99, 100).

A recent study demonstrated that race affects inflammatory
cytokine levels (IL-6 and IFN-γ) and breast cancer risk. (101).
Interestingly, other studies have shown that milk from healthy
black women may contain higher levels of IL-1β than from
white women even when controlled for BMI (102), which
strengthens the hypothesis that increased inflammation within
the breast of black women compared with white women
may be linked to the higher rates of early onset breast
cancer in black women (103). Therefore, potential strategies
to reduce racial disparities in breast cancer risk could be
through interventions such as short courses of anti-inflammatory
agents (102). This is further supported by preclinical results
reported by Lyons et al. (104) showing that a postpartum
pro-inflammatory mechanism may promote development of
aggressive breast cancer. Interestingly, TAMs, one of the major
contributors of pro-inflammatory cytokines, are found in higher
density in breast cancer specimens from AA compared to EA
patients. Among other cytokines, TAMs produce resistin, which
is the main mediator of obesity associated pro-inflammatory
effects in various diseases, including cancer (105). Indeed,
resistin, a main inducer of IL-6, was found to be expressed
at greater levels in the TME of AA than of EA patients
(106), specifically in breast cancer cells. This, in turn, may
promote proliferation of breast cancer cells through STAT3
activation (105).

Since cytokines operate in integrated networks, a more
complete understanding will be gained with the exploration and
accurate measurements of multiple cytokines simultaneously
(known as cytokine patterns or signatures), using advanced
proteomic technologies (107). A wide range of cytokine
assays is available for accurate measurements in biological
fluids, e.g., immunoassays, cytokine bioassays, multiplex

Frontiers in Oncology | www.frontiersin.org 5 June 2020 | Volume 10 | Article 1022

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Kim et al. Race and Breast Tumor Microenvironment

bead array assays, mass spectrometry, multi-parametric flow
cytometry, among others (107). However, further research
using bioanalytical techniques is needed to identify patterns
of cytokine expression that may serve as biomarkers in
clinical research, and to determine further differences
in the cytokine landscape among patients of different
racial backgrounds.

RACIAL/ETHNIC DISPARITIES IN TME
ELUCIDATED USING HIGH THROUGHPUT
TISSUE ANALYSES

Disparity in TME Gene Expression Pattern
Several groups have previously compared breast cancer gene
expression patterns between AA and EA patients using
high throughput approaches such as RNA sequencing and
found differences in signaling pathways primarily related to
angiogenesis, chemotaxis and immunity (32, 55). However,
the two most significantly differentially expressed genes in the
breast cancer epithelia between AA and EA patients are the
phosphoserine phosphatase like (PSPHL) and Beta-crystallin B2
(CRYBB2) (55).Interestingly, PSPHL and CRYBB2 are also the
most differentially expressed genes in prostate cancer patients
from these two ancestral backgrounds (108). In fact, the racial
ancestry of 94% of breast cancer epithelia could be correctly
classified based only on the expression pattern of these 2 genes.
The reasons for this are not understood.

A similar prediction could be made using five genes
most differentially expressed in the breast cancer stroma,
PSPHL, CXCL10, CXCL11, ISG20, and GMDS. Importantly,
this separation was independent of estrogen receptor expression
status. Interestingly, CXCL10, CXCL11, and ISG20 are IFN-
γ-regulated genes, which is consistent with the presence of
interferon signature found in breast cancer from AA patients
(55). There are several reasons for the presence of interferon
signature in tissues from AA, including chronic inflammation
and/or presence of specific mutations in immune-related genes
in tumors of AA patients (109). An extensive study by the Pusztai
group performed a detailed analysis of immune gene expression
in a multiracial patient cohort. The authors compared expression
of 14 immune metagenes (patterns of gene expression) between
AA and EA tumors, and found that although the median
expression of all metagenes were higher in tumors from AA, only
the major histocompatibility complex-1 (MHC1) was expressed
at statistically significant higher levels. After looking deeper into
the differences within tumor subtypes, it became evident that
ER+ but not TN breast cancers from AA had higher median
expression of the MHC1 metagene. Furthermore, the tumor
immune dysfunction and exclusion (TIDE) analysis, which is
used to assess the function and inclusion of T cells in the
TME, showed only IFN-γ to be statistically higher in AA
tumors, consistent with the presence of INF-γ signature in breast
TME of AA women (55). Thus, IFN-γ network appears to
be a main difference in breast cancer TME between AA and
EA patients.

Disparity in Genomic Variations Affecting
the TME
Racial differences in the immune TME have also been observed
at a genomic level. It has been postulated and confirmed by
several studies that populations with geographic ancestries that
have been heavily exposed to environmental pathogens have
variants in genes involved in innate immunity that protect
them against infection, but negatively impact cancer incidence
and progression (109). In a proof-of-principle, pilot study for
example, it was shown that a Cypriot population displayed higher
risk of developing cancer when there was a prior exposure
to parasitic infections by Echinococcus granulosus (110). Such
observations suggest that genomic variations may be prevalent
in certain ethnic groups or patient populations of variable
geographic origins, possibly as an inadvertent result of protection
against local/endemic pathogens. Further evidence by Lazarus
et al. (111) demonstrated that distinct SNPs patterns exist in
innate immune genes in AA compared to EA patients. Likewise,
Kwiatkowski et al. (111) found higher incidence of SNP variants
in AA than in EA indicating that greater haplotype diversity exists
within AA gene pool.

These observations collectively suggest that racial differences
in transcriptomic/genomic landscape are indeed prevalent
among breast cancer patients, which partially explain
the intrinsic differences in the tumor microenvironment
composition and disease progression.

CAN RACIAL/ETHNIC DISPARITIES IN
BREAST TME HELP PERSONALIZE
BREAST CANCER THERAPY?

The rationalized targeting of the tumor microenvironment
has been proposed as early as the publication of the original
“Hallmarks of Cancer” by Weinberg and Hanahan (112).
In this review, we add a new dimension to this premise:
different racial backgrounds are associated with different tumor
microenvironments, which may partly explain the disparities in
disease development and progression. This premise suggests that
in the era of personalized oncology and rationalized targeting
of the tumor microenvironment, race should clearly be taken
into account as a major determinant of TME composition.
Unfortunately, successful targeting of the components of TME
have proven to be challenging. For example, anti-angiogenic drug
bevacizumab (humanized monoclonal anti-VEGF antibody),
failed to improve overall survival in either localized or metastatic
breast cancer despite promising pre-clinical results (113). The
key to successful bevacizumab treatment may lie in identifying
patients with the appropriate TME, which could be racially
determined (114). We postulate that studying racial disparities
in the context of TME may facilitate identification of novel
biomarkers for tailored treatment and for development of new
therapeutics that specifically target the TME in AA. An example
is the targeting of TMEM function using TMEM score as a
prognostic for patients who would respond. Drugs specific for
inhibition of macrophages supporting the assembly and function
of TMEM its associated tumor cell dissemination, such as
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rebastinib (115), might present an opportunity if the TMEM
score is elevated in AA patients.

Although prior epidemiologic and meta-analysis studies have
documented that breast cancer patients treated with neoadjuvant
(NAC) vs. adjuvant (AC) chemotherapy have no difference in
survival (116, 117), a recent study by Pastoriza et al. (118)
which stratified patients according to race, demonstrated that
black patients treated with NAC have worse distant recurrence-
free survival (DRFS) compared to matched white patients. Such
racial disparities may partially be due to differences in the
TME between AA and EA patients, including the increased
density of prometastatic TAMs and microvascular density in
black compared to white patients (54, 55). Since the main cause
of breast cancer morbidity is metastatic disease, in addition to
shrinking tumors with cytotoxic and anti-angiogenic therapies,
targeting the sites of hematogenous dissemination at TMEM
doorways may modify the TME and improve overall survival
(115, 119, 120). Since AA compared to EA patients have
higher microvascular and macrophage density as explained
above, they may also have higher density of TMEM doorways,
and thus respond better to anti-angiogenic and anti-TMEM
therapy. Examining racial differences in TME may identify
subpopulations of patients that do not receive full clinical benefit
from current standardized therapies, and can define the need for
novel, alternative treatment options in such patients.

Other promising therapies targeting the TME are
immunotherapies (121). Although breast cancer is generally not
highly immunogenic, the response to immunotherapies may
vary according to the subtype: TN breast cancer, for example,
is considered as the most immunogenic subtype, whereas ER+
disease is not (122). Since AA women tend to have higher

incidence of TN disease as a population, one may speculate that
AA patients may benefit more from immunotherapy. It would
be interesting to evaluate if there is a racial disparity in patient
response to immunotherapy. TCGA RNA sequencing data show
significantly greater expression of the PD-L1 gene as compared
to non-TNBC (123). Further studies established a link between
androgen receptor (AR) expression in breast cancer and distinct
gene signatures finding that those breast cancers with a lack of
AR expression and triple negative biology had shorter time to
progression and decreased overall survival with significantly
elevated expression for immune checkpoint inhibitors PD-1, PD-
L1, and CTLA 4. AR status was found to be a prognostic marker
with increased capacity for AA patients (124). These findings
show promise for the potential selective use of checkpoint
inhibitors in this population. The lack of AR expression in the
tumor can be used as a surrogate marker for increased expression
in checkpoint inhibitors as PD-L1 expression in tumors has not
been shown to be a reliable biomarker in regards to durable
response to therapy (125). Further studies would need to be done
in order to confirm whether AR status can be used in this way
and if a correlation exists between AR expression and response
to anti-PD-1/PD-L1-directed treatments.

GEOGRAPHIC ANCESTRY—THE
ULTIMATE CULPRIT FOR DISPARITY IN
TME OF BREAST CANCER?

Disparities encountered in the TME are a part of the dynamic
interplay between local and systemic factors. As discussed above,
the most pronounced differences in TME are associated with

FIGURE 1 | Potential link between tumor microenvironment and racial disparity in breast cancer outcome.
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inflammation and angiogenesis. African ancestry is associated
with higher inflammatory gene expression and enhanced
bacterial clearance likely due to pathogen-rich geographic
ancestry. While aggressive immune response is beneficial in
defeating pathogens prevalent in certain geographical regions, it
may also be promoting pro-tumorigenic properties in the TME
as an unintended consequence. These protective innate immune
variants are both disproportionately distributed among racial
populations and are linked with racial disparities in cancer (109).
Therefore, genetic and phenotypic characteristics that developed
in response to environmental stressors specific to a particular
geographic ancestry regionmay be the underlying cause for racial
disparity in TME and ultimately outcome in patients with breast
cancer (Figure 1) (126).

CONCLUSION

The TME is rapidly emerging as a key contributor to cancer
progression, and patient outcome. The complex interplay
between tumor cells and surrounding immune, vascular, and
stromal components continue to be studied extensively. In this
review, we highlight the racial differences in TME on cellular,
molecular, and genetic levels. Furthermore, we explore systemic

immune and cytokine signatures as contributors to the racial
disparity in TME. The awareness of these differences and further
research will lead to development of race-specific biomarkers
and therapeutic targets and ultimately improved personalized
cancer treatment.
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