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ABSTRACT
Secretion of VGF is increased in cerebrospinal fluid and blood in neurodegenerative 

disorders like Alzheimer’s disease (AD) and VGF is a potential biomarker for these 
disorders. We have shown that VGF is expressed in peripheral T cells and is correlated 
with T cell survival and cytokine secretion. The frequency of VGF+CD3+ T cells 
increases with normal aging. We found an increased number of VGF-expressing T cells 
in patients with AD compared to aged healthy controls, which was associated with 
enhanced HbA1c levels in blood. Upon treatment with rivastigmine, T cell proliferation 
and VGF expression in AD patients decreased to the level found in controls. Moreover, 
rapamycin treatment in vitro reduced the number of VGF+CD3+ cells in AD patients 
to control levels.

INTRODUCTION

Epidemiological studies indicate that the population 
of people aged more than 65 years is constantly growing 
[1]. Therefore, the study of age-related diseases such as 
neurodegenerative or cardiovascular disorders is becoming 
more important. The number of patients suffering from 
Alzheimer´s disease (AD) is expected to triple by the year 
2050 [2]. AD is a progressive disorder characterized by a 
loss of memory and cognitive functions with behavioural 
alterations. The key neuropathological hallmarks of 
AD are extracellular amyloid plaques in the brain and 
intracellular neurofibrillary tangles, accompanied by 
the loss of neurons, white matter and synapses [3]. The 
plaques are often surrounded by activated microglia and 
inflammation may also be important in the pathogenesis of 
AD since increased concentrations of several inflammatory 
mediators, including tumor necrosis factor-alpha (TNF-α), 
interleukin (IL)-6, and IL-1ß have also been detected in 

blood [4].
In this context, the growth factor VGF may provide 

a link between central nervous system pathology and 
systemic immune and energy metabolism changes in 
AD. VGF is synthesized by neurons in the brain where 
it promotes growth and survival of neurons [5], and is 
involved in neurogenesis, synaptogenesis and energy 
homeostasis [6]. VGF is synthesized initially as a larger 
precursor, which undergoes proteolytic processing to 
produce smaller bioactive peptides that are secreted into 
the cerebrospinal fluid (CSF) and blood. Expression of 
VGF is induced by other growth factors, such as nerve 
growth factor (NGF), brain-derived neurotrophic factor 
(BDNF), neurotrophin 3, fibroblast growth factors 
and insulin. Since previous studies have shown that 
altered secretion of these factors occurs in neurological 
and psychiatric disorders, VGF peptides may also 
be biomarkers for AD, frontotemporal dementia or 
schizophrenia [7]. 
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Similar to other brain-associated factors, VGF 
has also been detected in peripheral human leukocytes 
[8]. Recently, we investigated VGF expression in T 
cells of mentally healthy persons aged between 22 and 
88 years and detected an age-dependent increase in the 
number of VGF+CD3+ T cells that correlated with 
glycated hemoglobin (HbA1c) and body mass index 
(BMI) [9]. T cells are known to be involved in healthy 
brain functions such as spatial learning, memory [10] 
and adult neurogenesis [11]. In addition, they have been 
implicated in neurodegenerative disorders like AD [12, 13] 
by regulating and maintaining inflammatory responses in 
the brain and periphery. Since currently used medications 
can only decelerate neurodegeneration for a certain time, 
new therapeutic treatment options for these disorders are 
needed. For example, studies have shown that the mTOR 
inhibitor rapamycin reduces amyloid-beta levels, abolishes 
cognitive deficits in mouse models of Alzheimer´s disease 
[14] and suppresses brain aging in rats [15]. 

T cells are known to produce acetylcholine (ACh) 
[16] and may therefore be affected by ACh inhibitors 
that are commonly used to treat AD patients. Therefore, 
we analyzed T cell VGF expression in AD patients 
and matched healthy controls and tested for effects of 
treatment with the Ach inhibitor rivastigmine on the 
number of VGF+CD3+ T cells.

RESULTS

Expression of VGF and Hb1Ac levels are 
enhanced in AD patients

We determined the number of VGF+CD3+ T cells 
in parallel to HbA1c in AD patients, given the previous 
association found for these two factors in normal aging 
[9]. On average 8.45% of CD3+ T cells expressed VGF in 
healthy controls. However, the frequency of VGF+CD3+ 
T cells was significantly higher at 15.05% (p=0.032) in AD 

patients at the time of diagnosis (Fig. 1). The HbA1c level 
was determined during routine blood analysis as an 8–12 
week integrated average blood glucose measurement. At 
the time of diagnosis, AD patients showed a trend towards 
higher HbA1c (6.7%) compared to controls (5.7%; 
p=0.060; Fig. 1).

Expression of VGF decreases during treatment of 
AD patients with rivastigmine

The number of VGF+CD3+ T cells was also 
determined after treatment of AD patients with 
rivastigmine patches for 12 and 30 weeks. This showed 
that the VGF+CD3+ T cell percentage decreased from 
15.05% at week 0 (before treatment initiation) to 14.31% 
at week 12 and to 6.0% at week 30 (p=0.001; Fig. 2).

Proliferation of T cells is influenced by 
rivastigmine treatment

To measure the influence of rivastigmine treatment 
on T cell proliferation, cells were stimulated with either 
anti-CD3 or a combination of phorbol 12-myristate 
13-acetate (PMA) and ionomycin. The proliferation index 
(PI) was calculated by dividing the value of ³H-thymidine 
incorporation in stimulated cell cultures by that in 
untreated cells (medium control). The PI of anti-CD3-
stimulated T cells at the time of diagnosis was 361.2 and 
this was reduced after the 12 week rivastigmine treatment 
to 48.0 (p=0.024). Stimulation with PMA/ionomycin 
resulted in a PI of 294.8 which was reduced to 33.4 after 
the treatment period (p= 0.032; Fig. 3).

Rapamycin decreases the frequency of 
VGF+CD3+ cells in AD patients

Since Rapamycin is a suggested novel treatment 
for AD, we cultured PBMCs from AD patients for 24h 

Figure 1: VGF+CD3+ T cells and HbA1C level are increased in AD patients. The number of VGF-expressing T cells (left) and 
levels of HbA1c (right) were determined in the peripheral blood of 24 AD patients (week 0) and 14 neuropsychiatric healthy age-matched 
controls.
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in the presence or absence of rapamycin and determined 
the frequency of VGF+CD3+ T cells by flow cytometry. 
In cells treated without rapamycin, the percentage of 
VGF+CD3+ T cells was 9.56% in controls and13.65% 
in AD patients (p=0.0284). Treatment with rapamycin 
decreased the number of VGF+CD3+ T cells in AD 
patients to 9.1% (p=0.0197). 

DISCUSSION

In this study, we showed that VGF is expressed 
in a higher percentage of peripheral CD3+ T cells from 
AD patients compared to age-matched neuropsychiatric 
healthy volunteers. Upon treatment with rivastigmine, the 
percentage of VGF+CD3+ T cells decreased to the level 
found in control persons.

Figure 4: The frequency of VGF+ T cells decreases upon rapamycin treatment in vitro.

Figure 3: T cell proliferation decreases upon rivastigmine treatment. The proliferation index was calculated by dividing the 
mean of anti-CD3-stimulated cultures by that of medium controls (left) and by dividing the mean of PMA/Ionomycin-stimulated cultures 
by that of medium controls (right).

Figure 2: Frequency of VGF+CD3+ T cells decreases upon rivastigmine treatment. Upon diagnosis of AD (week 0), 
treatment with rivastigmine patches was initiated. VGF expression was determined in peripheral T cells after 12 weeks and 30 weeks of 
constant medication.



Oncotarget14846www.impactjournals.com/oncotarget

T lymphocytes are key components of the immune 
system which also exert pro-cognitive functions [17]. 
Brain-specific T cells could have beneficial roles in 
the protection against neurodegeneration by several 
mechanisms, such as enhancing uptake of cell debris by 
microglia [18, 19], release of anti-inflammatory cytokines 
[20, 21], increasing the capacity for buffering glutamate 
toxicity [22, 23], increased expression of neurotrophic 
factors [19, 24, 25] and enhanced neurogenesis [11, 
26-28]. However, effector and regulatory functions of 
lymphocytes are compromised during aging [29, 30], 
a process called immunosenescence. Further immune 
manifestations accompany the progression of AD [4, 
31], with negative effects on brain function and neuronal 
repair processes in general. This includes the deposition 
of extracellular amyloid plaques and intracellular 
neurofibrillary tangles and the associated induction of 
inflammatory reactions in the brain [32]. 

Previous studies have shown that Aβ-specific T cells 
are not suitable as biomarkers for AD, as the frequency of 
Aβ-specific T cells is significantly increased both in elderly 
healthy individuals and patients with AD [33]. Moreover, 
we have shown that an immune response against brain-
specific proteins is found in patients with dementia as well 
as in aged people without neuropsychiatric disorders [9, 
34, 35]. However, other studies have found differences 
in brain-specific miRNAs in blood from AD patients 
and healthy controls [36, 37]. Here, we found that VGF 
is expressed at a higher frequency in T cells from AD 
patients compared with those from aged-matched healthy 
controls. This is consistent with previous studies which 
found changes in the VGF level in brain or CSF from 
schizophrenia [38], depressive disorder [39], Parkinson’s 
and Alzheimer’s disease patients [40, 41], as compared 
to the respective healthy control populations. We also 
found previously that blocking VGF reduced the cytokine 
secretion and proliferation of T cells, suggesting that the 
enhanced frequency of VGF-expressing T cells from AD 
patients reflects a higher inflammatory state. 

Neurotransmitters and neuropeptides can modulate 
the functions of immune cells such as T cells, myeloid 
cells or dendritic cells when released into the blood. 
Moreover, T cells themselves produce growth factors 
like NGF [42, 43], BDNF [44, 45], and insulin/ insulin-
like growth factors (IGF-I and IGF-II) [46]Production 
of these factors is increased in activated T cells, as 
found in inflammation [43], and may induce VGF via an 
autocrine mechanism. Here, we showed that treatment 
with the acetlycholinesterase inhibitor rivastigmine led to 
decreased VGF expression and T cell proliferation to the 
levels detected in control T cells. Treatment of cognitive 
impairment in AD patients [47] with acetylcholinesterase 
inhibitors have also been found to decrease the production 
of pro-inflammatory cytokines and induced the secretion 
of the anti-inflammatory cytokine IL-4 [48]. T cells 
express both muscarinic and nicotinic acetylcholine 

receptors and choline acetytransferase [49]. The latter 
synthesizes ACh which is released from T cells and acts 
as an immunomodulator [50]. Rivastigmine treatment 
stimulates ACh release which subsequently induces 
cholinergic receptor activation. The drug suppresses α7 
nAChR-dependent the T-cell proliferation [51], as we have 
shown here for anti-CD3- and PMA/Ionomycin-induced 
T cell proliferation. However, while T cell proliferation 
was reduced 12 weeks after beginning of rivastigmine 
treatment, VGF expression was diminished only after 30 
weeks. This suggests that VGF is mainly expressed by 
activated T cells. 

Previous studies have shown that VGF peptides 
are involved in regulation of several functions, including 
energy balance homeostasis [52]. We have already 
described a positive correlation between HbA1C and 
the frequency of VGF-positive T cells [9]. Here we 
show that AD patients have an increased HbA1C level 
compared to aged-matched controls. Increased Previous 
studies have shown that HbA1c levels are correlated with 
plasma Aβ1-42 concentrations [53] and mild cognitive 
impairment or dementia [54]. Moreover, elevated 
HbA1c levels are associated with insulin resistance [56], 
cardiovascular diseases [54], which could also be linked 
to the development of neurodegenerative disorders [55]. 
Our data identify VGF as a biomarker for AD that involves 
peripheral inflammation as well as long-term glucose 
levels. 

As with insulin and insulin-like growth factor 
1 (IGF-1) signalling, the mTOR (the molecular 
target of rapamycin) pathway, has been implicated 
in aging according to the hyperfunction theory [57, 
58]. Specifically, mTOR regulates cellular biomass by 
promoting protein translation and inhibiting autophagy. 
Consequently, blockade of mTOR signalling via 
rapamycin treatment has anti-aging and neuroprotective 
effects, and has been proposed as a potential therapeutic 
pharmacological compound to restrict neurodegenerative 
disorders [59] such as AD [60-62]. 

It is generally accepted that aging is the greatest 
risk factor for AD. We have already described an age-
associated increase in VGF-expressing T cells in healthy 
volunteers [8] and here we have shown that treatment 
of PBMCs with both rivastigmine and rapamycin in 
vitro reduces the number of these cells in AD patients. 
Halloran et al. have shown that chronic inhibition of 
mTOR by rapamycin treatment in mice enhances learning 
and memory and modulates their behavior throughout 
their lifespan [66], an effect mediated by IL-1β and 
NMDA signalling [67]. Therefore, rapamycin could be 
an effective cognition-improving drug in AD. This may 
also be achieved via antioxidant and anti-inflammatory 
effects of rapamycin [77-80], leading to a reduction of 
Aβ plaques and neurofibrillary tangles, which normally 
contribute to the progressive cognitive deficits of AD [70-
72]. The present findings suggest that peripheral VGF 
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levels could be used as a biomarker for detection of AD 
and for monitoring treatment response with rivastigmine 
and rapamycin.

MATERIALS AND METHODS

Study population

The study was performed in accordance with 
German laws, the Declaration of Helsinki and guidelines 
of the local institutional review board. Written consent 
was obtained from all patients and healthy controls. We 
collected 18 ml blood from 24 AD patients and 14 matched 
controls without neuropsychiatric disorders (suppl. table 
1). Routine blood analysis were performed, including 
differential blood cell count, levels of C-reactive protein, 
glucose, lipids, liver enzymes and thyroid hormones. None 
of the subjects were excluded due to changes in these 
routine blood parameters. Also, no person had a history 
of autoimmune disorders, immunomodulating treatment, 
cancer, chronic terminal disease, severe cardiovascular 
disorder, substance abuse or severe trauma. 

Treatment of AD patients

Within the first six weeks after diagnosis, AD 
patients received patches with 4.6 mg rivastigmine, 
followed by patches with 9.5 mg rivastigmineuntil the end 
of the study. Patches were changed each day.

Preparation of peripheral blood monocyte cells 
(PBMC) 

Blood was collected in BD Vacutainer lithium 
heparin-treated tubes (BD Biosciences; San Jose, CA, 
USA), and diluted 1:1 with phosphate-buffered saline 
(PBS). Peripheral blood mononuclear cells (PBMCs) 
were prepared by density gradient centrifugation on Ficoll 
Paque (Biochrom AG, Berlin) at 375g for 20 min at room 
temperature. The cells were harvested and washed twice in 
PBS. Cells were then suspended in Fluorescence Assisted 
Cell Sorting (FACS) staining buffer (PBS w/ 0.5% BSA) 
and cell numbers determined.

Flow cytometry

Isolated PBMCs were washed in PBS and incubated 
with fluorescently-labeled antibodies for 20 min at 4°C 
in FACS buffer. Antibodies (Abs) used in this study were 
anti-CD3 (UCHT1) from BD Pharmingen (San Diego, 
CA, USA), and anti-VGF (D-20) and donkey anti-goat 
IgG FITC from Santa Cruz Biotechnology (Dallas, TX, 

USA). Data were collected on a FACS LSR-Fortessa (BD 
Biosciences, Mountain View, CA, USA) and analyzed 
using FlowJo software (Treestar Inc., Ashland, OR, USA). 
Data were analyzed using biexponential transformation for 
complete data visualization.

Measurement of cell proliferation

CD3+ T cells were isolated using the Pan T cell kit 
(Miltenyi Biotech, Bergisch Gladbach, Germany) and 
AutoMacs separation. CD3+ T cells were resuspended in 
RPMI 1640 medium supplemented with 10% FCS and 1% 
antibiotics and plated in triplicate at a density of 1x106 
cells/ml in 96-well plates. T cells were stimulated with 
PMA/ Ionomycin (1mg/ml) and anti-CD3 (0.5µl/100µl; 
eBioscience, San Diego, CA, USA) for 3 days. 
³H-Thymidine (0.2µCi/well) was added to the cultures 
for the last 17 hours Then cells were harvested and 
³H-Thymidine incorporation was measured as an index of 
lymphocyte proliferation in a betaplate liqid scintillation 
counter (Wallac). Proliferation of T cells was calculated 
by division of the mean value of each triplicate of anti-
CD3- or PMA/ Ionomycin-stimulated cell cultures by that 
of control medium cultures.

Treatment of PBMC with rapamycin in vitro

Isolated PBMCs from AD patients and controls 
were cultured for 24h in complete RPMI medium with or 
without addition of rapamycin (200 ng/ml). The cells were 
harvested and expression of VGF on CD3+ T cells was 
measured using flow cytometry.

Statistical analysis

Diagnostic group differences were calculated using 
Student’s t test or ANOVA. Significance was defined as 
p< 0.05, while a probability level of 0.05≤ p< 0.10 was 
considered as a statistical trend.
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