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Abstract

Background: An incomplete picture of the expression distribution of microRNAs (miRNAs) across human cell types has long hindered
our understanding of this important regulatory class of RNA. With the continued increase in available public small RNA sequencing
datasets, there is an opportunity to more fully understand the general distribution of miRNAs at the cell level.

Results: From the NCBI Sequence Read Archive, we obtained 6,054 human primary cell datasets and processed 4,184 of them through
the miRge3.0 small RNA sequencing alignment software. This dataset was curated down, through shared miRNA expression patterns,
to 2,077 samples from 196 unique cell types derived from 175 separate studies. Of 2,731 putative miRNAs listed in miRBase (v22.1),
2,452 (89.8%) were detected. Among reasonably expressed miRNAs, 108 were designated as cell specific/near specific, 59 as infrequent,
52 as frequent, 54 as near ubiquitous, and 50 as ubiquitous. The complexity of cellular microRNA expression estimates recapitulates
tissue expression patterns and informs on the miRNA composition of plasma.

Conclusions: This study represents the most complete reference, to date, of miRNA expression patterns by primary cell type. The
data are available through the human cellular microRNAome track at the UCSC Genome Browser (https://genome.ucsc.edu/cgi-bin/
hgHubConnect) and an R/Bioconductor package (https://bioconductor.org/packages/microRNAome/).
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Background
MicroRNAs (miRNAs) are short, ∼22-nt, critical regulatory ele-
ments that repress protein translation and promote degradation
of messenger RNA (mRNA) [1, 2]. miRNAs are recognized as func-
tional regulators of development and cellular biology. They also
demonstrate altered expression levels in disease states that may
have biomarker potential [3, 4]. Despite their importance, miRNAs
are a challenging biomolecule to characterize. A number of at-
tributes of miRNAs have hampered progress in this area. One is
the short, 7- to 8-nt seed sequence for target recognition that has
innumerable potential targets in the genome, resulting in a vast
overinterpretation of miRNA regulatory roles [5]. A second is what
short RNA sequences should legitimately be considered bona fide
miRNAs versus some other form of non-miRNA that has yet to be
accurately characterized [6]. A third is the unclear distribution of
miRNA expression among cell types.

The confusion surrounding miRNA expression by unique cell
types is twofold. There is general anonymity of miRNAs in which
the numerical naming scheme (e.g., miR-141 [Mir-8-P2b], miR-142
[Mir-142-P1], miR-143 [Mir-143], miR-144 [Mir-144]) hides marked
differences in expression patterns and function [7]. The second is
that early publications of general miRNA expression focused on
tissues, which comprise numerous cell types, and the localization
of miRNAs, whether cell specific or ubiquitous, has not been es-
tablished [8, 9].

Recently, cell-specific miRNA atlases of greater and greater
complexity have been published to understand the expression

patterns of this important RNA class [10–12]. Previously, we de-
scribed a cellular microRNAome based upon 46 primary cell types
from 161 samples [12]. Separately, FANTOM5 reported data from
123 cell types from 304 samples [11]. With the continued output
of small RNA sequencing datasets that have been placed in pub-
lic repositories and the development of miRge3.0, a new, faster
version of our small RNA sequencing analysis tool, we decided to
readdress what was known about specific cellular expression pat-
terns of miRNAs [13].

Herein we describe a more complete microRNAome built upon
2,077 samples from 175 public datasets across 196 primary cell
types. Although the alignments were performed to miRBase v22,
most analyses were performed using only the MirGeneDB 2.1 bona
fide miRNAs (mature and star) [14–16]. This deeply curated re-
source extends our knowledge of patterns of miRNA expression
across diverse cell types.

Results
Generation of miRNA results across cell types
An initial search of cell-specific small RNA sequencing datasets
identified 6,054 potential runs for study. An analysis of adap-
tors and other sequencing-specific factors of these downloaded
FASTQ files identified 4,184 runs as appropriate for further anal-
ysis. miRNA annotation and quantification was performed using
the miRge3.0 pipeline on these 4,184 run FASTQ files. Over 40.7
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billion reads were processed. Of the initial 4,184 runs, 871 were
removed due to a lack of clustering with other appropriate sam-
ples in Uniform Manifold Approximation and Projection (UMAP)–
based clustering (Fig. 1A). Outlier samples were removed for be-
ing tissue-contaminated, immortalized cells, treated with infec-
tious agents, treated with drugs, technical error during process-
ing, low read depth, and other discrepancies. Further, of 640 sam-
ples from the RNA-Atlas project [17], 608 (the nonimmune cells)
consistently clustered together irrespective of their class/cell type
expression. These were also removed, resulting in 2,077 final sam-
ples from 196 cell types. For 173 of the 2,077 samples, we had
329 technical replicates, resulting in 2,406 total runs. The vari-
ous cell types were broadly classified from their source of ori-
gin into “class”—namely, epithelial cells, endothelial cells, brain
cells, fat cells, red blood cells (RBCs), immune cells, fibroblasts,
stem cells, and others (unclassified cells). Plasma, not a cell type,
and platelets, fragments of cells, were also included in the dataset
and represented 2 additional classes. The class distribution is
shown in Table 1, while the details of each cell to correspond-
ing class (Supplementary Table S1) and detailed metadata in-
formation/miRge3.0 summary information (Supplementary Table
S2) are provided elsewhere. In total, ∼9 billion of the ∼20 billion
trimmed reads of the 2,406 runs mapped to guide and passenger
miRNAs covering 89.8% of miRNAs in miRBase [15] and 99.5% of
all miRNAs in MirGeneDB2.1 (99.8% of mature strands) (Supple-
mentary Table S3) [16]. The read distribution across various small
RNA types is provided in Fig. 1B, where the majority (∼46%) of the
reads are mature miRNAs (∼9 billion), of which ∼95.8% are guide
miRNA reads. Among the primary cells, 473 miRNAs had a max-
imum reads per million (RPM) ≥1,000 in at least 1 sample. The
miRNA abundance from the 5p or the 3p arm suggests that there
is no strand bias, as the dominant miRNA is nearly equally found
in both arms of the hairpin miRNA (Fig. 1C). An average of 462
mature MirGeneDB miRNAs were identified across each of the 13
cell classes with the median range between 200 and 350 miRNAs
(Fig. 1D). Plasma, which represents a collection of miRNAs from
multiple cell sources, and sperm, which had low overall reads, had
the fewest average number of unique miRNAs reported. As the
number of miRNAs reads per sample increased, the identification
of unique miRNAs increased (Fig. 1E). The complete read counts
(Supplementary Table S4) and RPM mapped reads (Supplemen-
tary Table S5) for all 2,406 runs mapped to miRBase annotations
are available. A list of miRNAs with no reads is available in Sup-
plementary Table S3.

DESeq2 VST provided superior normalization
Due to the large number of independent studies, technical causes
of expression variation across shared cell types were a major con-
cern. We employed a “leave one study out” cross-validation strat-
egy to identify the normalization approach that resulted in the
highest classification accuracy in correctly assigning cell types
across 5 groups. The method assigned test samples to the cell type
that minimized the Euclidean distance between the test sample
and training cell-type centroids. We specifically compared non-
adjusted raw data to adjustments utilizing ComBat-Seq, DESeq2
VST, RUVr, RUVg, and combinations of these approaches. The DE-
Seq2 VST method, without additional batch correction, had the
highest accuracy identifying cell types (96.8%; Supplementary Ta-
ble S6) and was the normalization approach used for downstream
analyses. The highest accuracy was for immune cells (99%), while
the lowest accuracy was for neurons (93.6%), where ∼6% matched
fibroblasts, rather than neurons (Table 2). After appropriate nor-

malization, a UMAP cluster of the entire dataset (Fig. 2) and
cell class–specific clusters (Supplementary Figs. S1–S11) were
generated. An HTML interactive UMAP with cell-type informa-
tion is available in the GitHub repository (https://github.com/m
halushka/miROme/tree/main/data/UMAP/Figures). These images
demonstrate generalized appropriate clustering of similar cell
types, despite the range of studies they were pulled from. The read
counts normalized with DESeq2 VST are available in Supplemen-
tary Table S7.

Categorization of miRNAs by appearance in
different cell types and class
The cell specificity or ubiquitousness of individual miRNAs was
determined across the 196 cell types. We focused only on the 323
mature strand miRNAs with a minimum RPM ≥100 of any cell type
and presence in MirGeneDB. Of these, 108 were considered “cell
specific/near specific” based on methods described below. This
group included highly expressed miRNAs such as miR-7-5p (Mir-
7-P2_5p) found in beta cells and lowly expressed miRNAs such
as miR-190b-5p (Mir-190-P3_5p) found in sperm. Fifty-nine miR-
NAs were classified as “infrequent,” 52 as “frequent,” and 54 as
“near ubiquitous.” Fifty miRNAs were classified as “ubiquitous,” in-
cluding most of the well-known let-7 miRNAs and others such as
miR-21-5p (Mir-21_5p), miR-26a-5p (Mir-26-P1_5p), and miR-30d-
5p (Mir-30-P1a_5p) (Supplementary Table S8).

We also evaluated miRNAs that demonstrated specificity
among 7 cell classes (see Methods) that are based on the simi-
larities of the 196 cell types described above (Fig. 3A). Plasma and
platelets were grouped with immune cells into “blood.” Many miR-
NAs are class specific but can vary widely among specific cells of
that class, as observed in the epithelial class (Fig. 3B) and the blood
class (Fig. 3C). For example, miR-122-5p (Mir-122_5p) is nearly
exclusive to hepatocytes, while miR-205-5p (Mir-205-P4_5p) is a
more generic epithelial miRNA.

miRNA expression patterns vary by age of the
miRNA
MirGeneDB classifies all miRNAs by a node of origin, based on
their deep analysis of miRNA phylogeny [16, 18]. We selected all
152 mature miRNAs from the Bilateria (7), Vertebrata (38), Catar-
rhini (46), and Homo sapiens (61) locus nodes of origin to deter-
mine whether general expression patterns differed by evolution-
arily young or old miRNAs. The Bilateria clade and Vertebrata sub-
phylum both originated over 450 million years ago [19]. The par-
vorder Catarrhini originated 35 million years ago and the H. sapi-
ens species ∼300,000 years ago. We utilized 8 samples from each
of 12 cell classes (n = 96), selecting those with the most abun-
dant summed DESeq2 VST values. A direct comparison of aver-
age expression of Bilateria and Vertebrata versus Catarrhini and
H. sapiens demonstrated the older miRNAs were significantly more
frequently expressed (average VST value 7.4 vs. 3.0, P = 2.7e–13,
Wilcoxon rank-sum test). The sperm and stem cells had the most
frequent expression of the younger miRNAs (Supplementary Fig.
S12) [20].

Unique patterns of new cell types added to the
cellular microRNAome
In our current collection of 196 cell types, 30 were not part of pre-
viously published large cellular microRNAomes projects (McCall
et al. [12] and de Rie et al. [11]). We identified several more specific
patterns of enriched miRNAs expressed across these cells (Fig. 4).
miR-184 (Mir-184_3p) is highly enriched in conjunctival epithelial

https://github.com/mhalushka/miROme/tree/main/data/UMAP/Figures
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Figure 1: Overview of the human cellular microRNAome. (A) Workflow employed in obtaining, cleaning, and processing the human primary cell
samples. (B) The overall read distribution of the samples used across different small RNA libraries and the percent across each bar is the individual
number of reads over total filtered reads (∼20 billion). (C) Strand dominance of the 5p and 3p arms among 203 abundant MirGeneDB miRNAs. (D)
Distribution of mature MirGeneDB miRNA counts for 2,406 samples across each cell class. (E) Scatterplot of mature and star MirGeneDB miRNA count
abundance with the increase in sequencing depth of filtered miRNA reads (log10).

cells (n = 8), miR-199a-5p (Mir-199-P1-v1_5p∗) in fibroblast fore-
skin (n = 14), and miR-373-3p (Mir-430-P7_3p) in iPSC (induced
pluripotent stem cell) fibroblasts (n = 32). The microRNAs miR-
26b-5p (Mir-26-P2_5p) and miR-29b-2-5p (Mir-29-P1d_5p∗) were
enriched among CD27 cells.

Tissue microRNA expression is clarified by
cellular expression patterns
Tissues are composed of numerous, diverse cell types. Thus, tissue
miRNA expression estimates are a composite of the cell-specific
expression patterns of the cell types they contain. To demonstrate

this, we obtained miRNA expression estimates of 4 tissue sam-
ples (colon, liver, spleen, lymph node) for which the main cell
types are present in our dataset. As seen in Fig. 5, the top 10
highest expressed miRNAs in each sample are both from specific
cells and generally expressed across numerous cells. For example,
in colon, miR-192-5p/215-5p (Mir-192-P2_5p/Mir-192-P1_5p) is ex-
pressed exclusively in epithelial cells, while miR-103a-3p/107 (Mir-
103-P4_3p/Mir-103-P1_3p) is more ubiquitously expressed. Some
tissue-abundant miRNAs were not noted to be expressed in any of
the common cell types, including miR-1-3p (Mir-1-P1_3p) in colon
and miR-139-5p (Mir-139_5p) in spleen.



4 | GigaScience, 2022, Vol. 11, No. 1

Table 1: Table of primary cells included in the analysis, by general cell class. All cell classes, except sperm, had >1,000,000 average
miRNA reads/sample. The average number of miRNAs detected across all 2,077 samples was 550.

Cell class Samples (count) Cell types (count)
Total input reads

(average)
miRNA reads

(average)

Unique miRBase
miRNAs
(average)

Brain 77 3 11,836,198 5,011,006 748
Endothelial 147 14 10,160,565 4,446,952 588
Epithelial 216 36 8,730,464 5,036,673 524
Fat 19 3 2,114,216 1,201,275 485
Fibroblast 121 32 10,638,286 5,137,329 607
Immune 725 31 8,153,797 3,830,646 517
Muscle 124 24 9,043,430 4,228,642 579
Other 39 15 5,029,231 3,079,742 544
Plasma 85 1 5,469,997 1,535,698 295
Platelet 17 1 14,938,514 3,137,852 546
RBC 61 2 7,655,051 3,221,434 424
Sperm 89 1 3,421,680 166,735 401
Stem 357 35 9,429,860 4,690,630 714

Table 2: Comparison of cell-type classification accuracy across normalization methods. Accuracy was defined as the number of predicted
cell types that matched the truth divided by the total number of predictions. DESeq2 VST had the highest accuracy. Only miRNAs present
in MirGeneDB and ≥100 max(RPM) (n = 670) were included.

Method Accuracy Neuron Endothelial Fibroblast Immune Plasma

Raw counts 56.5 47.6 38.1 43 91.6 30.6
Log2(raw counts) 81.1 100 90.5 64.4 76.3 85.9
DESeq2 VST 96.8 93.6 95.9 95.0 99.0 97.6
ComBat-Seq 79.3 100 89.1 62 73.4 85.9
ComBat-Seq + DESeq2 VST 95 95.2 93.9 90.9 98.5 94.1
RUVg 94 100 93.9 95.9 94.6 84.7
RUVg + DESeq2 VST 95.5 98.4 94.5 97.5 97.5 87.0
RUVr 86.3 92.0 90.5 96.7 79.8 75.3
RUVr + DESeq2 VST 84.5 87.3 88.4 96.7 78.3 72.9
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clustering by cell class.
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Figure 5: Contributions of individual cells toward tissue-level miRNA expression. Ratio of RPM expression between tissue miRNA and the individual
cell miRNA RPM value for (A) colon, (B) spleen, (C) liver, and (D) lymph node. Ratio between 0 and 1.25 (capped at 1.25 for illustration purposes). (E) A
boxplot of CIBERSORT estimates for each of 31 cell types with barcode strips overlaying each sample estimate for all 139 plasma samples. Cell types
are in decreasing order of average composition estimate. (F) Stacked boxplot of the average composition of all plasma samples by the 31 cell types.
Contribution ranges from <0.001% for beta cells to 27.4% for red blood cells.

Plasma miRNAs are predominately derived from
RBCs and platelets
Blood plasma has been described as a full-body biopsy since the
nucleic acid and protein material that it contains are derived
from many cell types of the body. Based on the range of cell
types in this microRNAome, we could evaluate the contributions
of different cell types to plasma miRNA estimates. We deconvo-
luted 85 plasma samples from 30 representative cell types using

CIBERSORT [21] and determined the major contributors to plasma
miRNA are RBCs and platelets (38%) (Fig. 5E, F).

Accessing the human cellular microRNAome
through R/Bioconductor and the UCSC Genome
Browser
To access the human cellular microRNAome, we have provided
several useful tools. The first is an R/Bioconductor package “mi-
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croRNAome” containing raw counts, RPM values, and DESeq2
VST–normalized values. The second is the “ABC of cellular mi-
croRNAome” barchart available under track hubs on the UCSC
Genome Browser (https://genome.ucsc.edu/) (Supplementary Fig.
S13) [22]. This tool provides miRNA expression estimates for all
196 cell types (plus plasma and platelets) described in this project
at a well-maintained website.

Discussion
This study represents the largest microRNAome of primary hu-
man cells that we are aware of to date. It consists of 2,077 samples
from 2,406 runs representing 196 cell types, platelets, and plasma
and covering 89.8% of miRNAs in the miRBase reference database.
It generally replicated miRNA expression estimates from prior
studies [11, 12, 23], while significantly adding to the number of
samples upon which those estimates are based. Patterns of cell
enrichment and ubiquitousness are similar to those reported ear-
lier with a few new associations based on new-to-this-study cell
types.

A continuing limitation of cellular microRNAomes are that the
data are collected primarily from cells grown in culture. Ex vivo
conditions are known to sometimes dramatically alter miRNA ex-
pression patterns, as seen for passaged endothelial cells [24]. Ad-
ditionally, some cell types, neurons in particular, are cultured only
as a derivation from a stem cell. Thus, these cells are likely to
be more primitive than fully mature in vivo cell types. In fact,
while the neurons in this study all had high levels of miR-9 (Mir-9-
P1), a classic neural maker, they also shared many miRNAs with
stem cells and were notable for being adjacent to stem cells in
the UMAP of Fig. 2. The neurons also did not display some of the
coexpression patterns of miRNAs described in brain tissue [25].
New methods to identify in vivo expression patterns may change
absolute expression estimates substantially [26, 27].

Normalizing datasets from so many resources was a tremen-
dous challenge. We chose to only include samples that had li-
brary preparations using Illumina TruSeq small RNA kits or that
appeared similarly processed. We are aware of large expression es-
timate differences by library preparation methods due to ligation
biases and other differences and felt excluding these other cases
would improve batch correction [28, 29]. This limited the number
of studies that appeared in the final analysis. Unlike our previ-
ous microRNAome effort, we initially included many noncontrol
samples in this project, reasoning that some would have minor
effects on miRNA expression, to increase the sample size. How-
ever, we removed those treated samples that did result in notable
expression alterations. Ultimately, the DESeq2 VST normalization
method proved to be a robust approach to normalize and stabilize
the remaining samples, without adding a specific batch correction
approach.

A significant loss to the number of samples and cells in our
cellular microRNAome was the removal of 608 RNA Atlas runs
due to their poor clustering relative to other cell types [17]. It was
difficult to ascertain a pattern for why these cells were so differ-
ent, but there were clear and consistent differences where some
miRNAs were significantly higher or lower expressed in these 608
runs compared to matched runs from other studies. Regarding the
32 hematologic cells from the RNA Atlas, clustered appropriately
with other studies, we reasoned something related to the cultur-
ing method drove these changes, but what that was is unclear.
We caution the use of this dataset relative to other microRNA re-
sources [30]. Thus, our cellular microRNAome has several impor-
tant biases. These relate to the library preparation method, inclu-

sion of some treated cells, exclusion of most RNA Atlas samples,
and cell culture passaging rather than in vivo isolation.

The selection of which miRNA library to align reads was a diffi-
cult decision. miRGeneDB has clearly established itself as the re-
source for bona fide miRNAs, while miRBase still includes scores
of dubiously identified miRNAs [6, 14, 16, 31, 32]. The challenge is
that our dataset appears as a UCSC Genome Browser Track Hub
and this Genome Browser includes the full miRNA repertoire of
miRBase. We chose to use the miRBase library to provide data
for all “miRNAs” and demonstrate, unequivocally, how so many
“miRNAs” are not expressed in many cell types. In fact, despite
over 9 billion reads aligned, 280 “miRNAs” had no expression (Sup-
plementary Table S3). This information, and the information on
scores of other very lowly expressed miRNAs, should be useful in
the evaluation of miRNA reports that claim activity of miRNAs
that are either not expressed or not expressed in the cell type of
analysis [33, 34]. Another concern is that while not all reported
miRNAs are bona fide, any short RNA could hypothetically rep-
resent a useful biomarker if expressed uniquely in a disease set-
ting. Thus, even non-miRNAs could have value. Nonetheless, mov-
ing forward, we strongly urge the use and reporting of miRNAs
found in the MirGeneDB repository and only used miRNAs that
were present in MirGeneDB for most of our deeper analyses.

We also chose to not search for novel miRNAs in these datasets.
Too many “novel miRNAs” lack clear miRNA features and have
only served to further complicate the miRNA field [17, 35, 36]. We
recently explored new chromosomal regions of the genome from
the work of the T2T consortium and found no new novel miRNAs
or paralagous miRNA loci [37]. With the exception of truly unique
human cell types that have yet to be explored, we are confident
that essentially all reasonably expressed bona fide human miR-
NAs have been identified.

The cell-type specificity of any miRNA is dependent on the
sample types to be compared. Thus, the comparison of our find-
ings to other studies with a different collection of cell types needs
to be considered. With 196 cell types in this evaluation, we were
reasonably confident we had good coverage of most human cell
types. The majority (108) of evaluated miRNAs (323) were con-
sidered “cell specific/near specific,” but many of these were more
lowly expressed (∼100–500 RPM).

For many uses, having a cellular, rather than a tissue, microR-
NAome is preferred. As noted herein, a tissue signal is a composite
of a number of different cell types, and it can easily but wrongfully
be assumed that one’s miRNA of interest is present in a cell type
of interest if its expression estimate is only obtained from tissues
[33]. Conversely, some miRNAs are seen commonly in tissues that
cannot be explained by cell data. For example, miR-1 (Mir-1-P1), a
known myomiR with skeletal and cardiac muscle expression, was
noted in a colon sample here and was seen in a prostate sample
previously [38, 39]. Skeletal and cardiac myocytes are not believed
to be in these tissues, and an absence of miR-1 (Mir-1-P1) in any
reasonably expressed cell type from these tissues suggests an al-
ternative cell state or simple gap in our cellular coverage of tis-
sues. In our tissue analysis, only a general idea of cellular contri-
butions is conveyed as the exact composition of each tissue with
a deconvolution technique was not employed.

Similar to a recent manuscript on cell-free RNA in plasma [40]
and consistent with other miRNA-based studies [41–43], we ob-
served that most plasma miRNAs were RBC derived, followed by
platelets, mesenchymal cells, and immune cells. Of note, there
was a very minor miRNA signal for brain-enriched miRNA, miR-9
(Mir-9-P1), and the contributions of neurons and astrocytes to the
plasma miRNAs were estimated at 0.43% and 0.89%, respectively.

https://genome.ucsc.edu/
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This calls into question plasma biomarker studies purported to
show brain-specific changes in general miRNA expression esti-
mates [44, 45].

In conclusion, we present the largest human cellular microR-
NAome project generated to date, which largely agrees with and
expands upon prior knowledge of cell-type miRNA expression pat-
terns. It is easily accessible through the UCSC GenomeBrowser or
through an R/Bioconductor experimental data package.

Methods
Sample ascertainment
Identification of suitable samples and their metadata were ob-
tained from the NCBI Sequence Read Archive (SRA) with the
query ((miRNA[All Fields] OR microRNA[All Fields] OR (small[All
Fields] AND RNA[All Fields]) AND (“Homo sapiens”[Organism] OR
(“Homo sapiens”[Organism] OR human[All Fields]))) AND “Homo
sapiens”[Organism] AND (cluster_public[prop] AND “library lay-
out single”[Properties] AND 1900[MDAT] : 2900[MDAT] NOT “strat-
egy epigenomic”[Filter] NOT “strategy genome”[Filter] NOT “strat-
egy exome”[Filter] AND “filetype fastq”[Properties])). This search
was performed on 22 January 2021 and yielded 58,117 runs cor-
responding to 1,872 studies (Fig. 1A). Metadata from these sam-
ples was manually curated to obtain sample data exclusive to
primary cell types. This curation excluded any sequencing runs
that corresponded to paired-end sequencing, cancer cells, ex-
osomes, and non-Illumina sequencing platforms. Further, cat-
egory “Assay type” was filtered to only include “miRNA-Seq,”
“ncRNA-Seq,” “RNA-Seq,” and the broad unknown category of
“OTHER.” This resulted in 6,054 runs that were downloaded using
fasterq-dump/fastq-dump of the NCBI SRA Tookit (version 2.9.2)
(https://github.com/ncbi/sra-tools) [46]. All runs were evaluated
for adapter sequences, and any samples with barcodes, unique
molecular identifiers (UMIs), or adapter sequences on both ends
were not processed (n = 1,870 runs were removed) due to the
use of miREC in the processing [47]. Four tissue SRA runs, colon
(SRR837824), spleen (SRR6853286), liver (SRR950887), and lymph
noted (SRR14130226), were also obtained and processed.

Sample nomenclature
The miRNA samples (n = 2,077) were derived from 175 different
projects. We also included 329 duplicate runs of 173 samples, for a
total of 2,406 runs processed. Due to the large number of uniquely
named samples, cell types were clustered into batches for certain
analyses. The classes for each cell type are fibroblast, muscle, fat,
epithelial, stem, endothelial, brain, immune, platelet, plasma, red
blood cell (RBC), sperm, and other (not easily classified cell types).
Of note, plasma, the blood fluid, and platelets, megakaryocyte cell
fragments, are not cells but are listed as such for analyses, bring-
ing the total “cells” to 198 in some analyses. Each project contain-
ing ≥2 samples was termed a batch (n = 165). All singleton runs
were collected into a single batch (batch 1). Groups (n = 67) were
defined as highly similar cell types (e.g., all endothelial cells, re-
gardless of tissue origin).

miRge3.0 run parameters
The miRge3.0 pipeline was run in batches (an average of 11 sam-
ples, (-s <samples>)) on 2 computational clusters (BlueHive, Uni-
versity of Rochester and ARES, Johns Hopkins University) and lo-
cally on a PC (with 64–128 Gb RAM and 12–40 CPUs) [13]. miRge3.0
default parameters were used along with parameters for miRNA

error correction [47] and aligned to miRbase v22.1 (RRID:SCR_003
152) [31, 32]. A typical run parameter is as follows:

miRge3.0 -s SRAS-file.fastq.gz -a <adapter_sequence> -gff -
bam -trf -lib miRge3_Lib -on human -db miRBase -o OutputDir
-mEC -ks 20 -ke 20

Dominant miRNA strand calculation
The abundance of miRNA strands (5p/3p) was computed based on
raw read counts. Only MirGeneDB miRNAs were selected that had
≥1,000 total reads (mature and passenger) in >100 cell types (n =
203). The ratio of cells with 5p or 3p dominance was determined
and codominance was assigned to miRNAs that were not >4-fold
dominant by 5p or 3p, indicating that >75% of cells had to have
the same 5p or 3p for that miRNA arm to be considered dominant.

Multiple approaches to normalize for batch effect
across datasets
The raw read counts from all of the SRA runs were combined to
form a single matrix with samples as columns and miRNAs as
rows using the Pandas data frame in Python. Duplicate runs (tech-
nical replicates) were summed together for batch effect analysis.
Four normalization methods and combinations of the methods
were evaluated on this dataframe. These were variance stabilizing
transformation (VST) in DESeq2 (v1.30.1) [48], Combat-Seq [49],
RUVg and RUVr from RUVSeq package (v1.24.0) [50], or combina-
tions of these approaches. The metadata information of all the
samples was supplemented to these tools as matrix (CSV format)
along with expression matrix (CSV format). All default parame-
ters were used for each normalization method with the excep-
tion of the use of “group as design” in DESeq2, “batch and group”
in CombatSeq, and “batch as design” in RUVr. The spike/control
genes used in the RUVg method were “let-7a-5p/7c-5p,” “let-7f-
5p,” “miR-103a-3p/107,” “miR-125a-5p,” “miR-181a-5p,” “miR-186-
5p,” “miR-191-5p,” “miR-22-3p,” “miR-27a-3p/27b-3p,” and “miR-
30d-5p,” based on the ubiquitous expression pattern in SRA runs,
described below. miRNAs that are also present in MirGeneDB [14,
16] and have an average RPM of ≥100 across all studies were used
(n = 670). The miRNA read counts were used for all normalization
approaches, and to avoid errors pertaining to divisible by zeros
and/or infinity values, the value of 1 was summated across the
matrix to replace zeros prior to applying normalization methods.

Solving ubiquitously expressed miRNAs for RUVg
RUVg requires ubiquitous miRNAs from across the datasets to
serve as spike-in controls. To identify these, we established an
expression range using the Q1 and Q3 quartile values of let-7a-
5p/7c-5p using the Excel function “QUARTILE.EXC.” All miRNAs in
the data matrix were queried and common miRNAs that could
serve as RUVg control genes were found when true for this func-
tion: = IF(AND(QQ1 ≥ TQ1–1500, QQ3 ≤ TQ3 + 1500),“T,”“F”), where
TQ1 = the threshold miRNA Q1 (lower quantile of let-7a), TQ3

= the threshold miRNA Q3 (upper quantile of let-7a), and QQ1

= query miRNA Q1, QQ3 = query miRNA Q3. This resulted in
the identification of 10 appropriate, ubiquitous control genes for
RUVg.

Euclidean distance measurement
To identify the best batch-correction optimization approach to our
data, we investigated accurate cell-type prediction based on dif-
ferent approaches. For this, 4 cell types (neuron, fibroblast, en-
dothelial cell, lymphocyte) and plasma, containing 619 individ-
ual samples with a median of 5 samples per study (range, 1–122),

https://github.com/ncbi/sra-tools
https://scicrunch.org/resolver/RRID:SCR_003152
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were used. A leave-one-study-out cross-validation strategy was
used in which each study was used as the test set once with all
other studies being used as a training set. In R, we generated cell
type (and plasma) specific centroids by averaging gene counts over
all training samples from a given cell type/plasma. The Euclidean
distance was computed between each test sample and the cell-
type centroids, and we assigned each test sample to the cell type
that minimized the Euclidean distance. Since there are 70 stud-
ies, this resulted in 70-fold cross-validation. Classification accu-
racy was assessed for datasets either using raw counts or after
using ComBat-Seq, RUVSeq (RUVr and RUVg), DESeq2 VST, and/or
combinations of these approaches for corrections. As normaliza-
tion occurred on all samples prior to the leave-one-out approach,
there was a common bias toward increasing homogeneity of sam-
ples in all of the ComBat-Seq, RUVr, and RUVg approaches, likely
inflating overall accuracy but not affecting accuracy rank.

UMAP algorithm and outlier detection
The UMAP algorithm was used for dimensionality reduction and
plotting of the cell-type clusters (v0.2.7.0) in R [51]. The UMAP
clustering on the miRNA counts was performed to detect outliers
for each class individually and included outclasses “fat” and “RBC”
as controls for each cluster. The sum of miRNA counts across all
samples ≥5,000 was considered for UMAP clustering (n = 1,111).
Any samples that were outliers in the UMAP clusters for specific
class (e.g., epithelial) were individually evaluated for metadata-
based or manuscript-based explanations of their unexpected dif-
ferences to like samples. Some examples of elements that led
to exclusion of a sample at this step were RNA source (nuclear
only, exosome), protocols (drug stimulation, infectious agent use,
small interfering RNA use), and technical issues (low read depths,
likely contamination due to isolation method). Such outlier sam-
ples were removed from the downstream analysis. R-based Plotly
graphing library for ggplot, ggplotly (version 4.10.0), was used to
create interactive HTML images of the UMAP clustering.

Determination of cell expression specificity of
miRNAs
The determination of cell expression specificity of miRNAs was
performed for miRNAs that met the following conditions: present
in the MirGeneDB database, guide strand, and RPM average value
≥100 for at least 1 of the 198 cell types. Expression patterns were
classified into 5 groups. “Cell specific/near specific” indicated a
miRNA in which expression was present in <5 dominant cells
based on relative RPM peaks. “Infrequent” indicated a miRNA in
which expression was present in ∼5–10 dominant cells based on
relative RPM peaks. “Frequent” indicated a miRNA present in ∼10–
30 cell types based on dominant RPM peaks. “Near ubiquitous”
was a miRNA with common expression in ∼30–178 cell types
(<90%) at ≥100 RPM. “Ubiquitous” was a miRNA with common
expression in >178 cell types (>90%) at ≥100 RPM with no domi-
nant expression patterns. Not all miRNAs were easily placed in a
category.

Analysis was performed at the cell-type level (196) and at the
cell class level for classes epithelial, endothelial, stem, brain, fi-
broblast, and muscle as described above. Class “blood,” used here,
combines immune cells, red blood cells, and platelets. A 75th per-
centile (Q3) of the RPM value was determined for individual miR-
NAs demonstrated to be cell class specific.

miRNA expression by miRNA evolutionary age
MirGeneDB identifies the evolution origin of each miRNA as a
node of origin for either the individual miRNA (locus) or the
miRNA family (family) [16]. We selected all miRNAs from 2 an-
cient nodes, Bilateria (n = 7) and Vertebrata (n = 38), and 2 re-
cent nodes, Catarrhini (n = 46) and Homo sapiens (n = 61). The
DESeq2 VST–normalized expression values of these 152 mature
(dominant) strand miRNAs were evaluated for the 8 samples from
each cell class with the highest summation of DESeq2 VST values
(n = 96). The class “other” was omitted. A Wilcoxon rank-sum test
was performed comparing summed DESeq2 VST values of the an-
cient and new miRNA nodes. A heatmap was generated with the R
package pretty heatmap, Pheatmap (version 1.0.12). The R-script
and corresponding Rdata files are available online at https://gith
ub.com/mhalushka/miROme/tree/main/data/other_RScripts.

Cellular contributions to tissue miRNA
expression
Four representative tissues were obtained and processed through
miRge3.0. The 10 most highly expressed miRNAs were reported for
each as RPM. Expression levels of these 10 miRNAs were obtained
from the 8–10 most common cell types of each tissue. For each
miRNA, the tissue-level RPM was divided by the average cell-type
RPM level. Any miRNA expression level in a cell type greater than
tissue was capped at a ratio of 1.25. A heatmap of ratios (from
0–1.25) was generated for each tissue using Pheatmap in R.

CIBERSORT deconvolution of plasma miRNA
expression
A deconvolution of 85 plasma samples was performed from a
reference dataset comprising 30 cell types (1,048 samples) us-
ing CIBERSORT [21]. The reference data were first batch corrected
with the RUVSeq method [50]. The reference and mixture data
were then normalized with the DESeq2 method [48], and the de-
convolution was performed with CIBERSORT using q = 0.5 and
a minimum of 50 and maximum of 200 signature genes per cell
type. CIBERSORT was performed on each plasma sample individ-
ually and across a single averaged value of each miRNA for the 85
plasma cells.

Generating bigBarChart for UCSC genome
browser
The RPM values of the miRNA expression across 196 primary cell
types, platelets, and plasma were used to create bigBarChart cus-
tom tracks for the UCSC genome browser [22]. A category file with
2 columns of named SRA runs and its corresponding cell type
was created from the metadata. The genomic coordinates of miR-
NAs in the form of a BED file were obtained from miRBase (https:
//mirbase.org/). Two utility programs, “expMatrixToBarchartBed”
and “bedJoinTabOffset,” obtained from the UCSC genome browser,
were used to transform the input expression matrix into a Browser
Extensible Data (BED) bed6+5 file format (bed file). Another, utility
“bedToBigBed,” and chromosome sizes for Hg38 genome database
“hg38.chrom.sizes” were downloaded from the UCSC genome
browser. The “bedToBigBed” program was executed with default
parameters except for parameter “-as = barChartBed.as,” where
definition of each field was slightly adjusted to represent miR-
NAs in the AutoSql format. The generated bigBed file, along with
all supporting information, is provided in trackDb.txt and hub.txt
files and linked to the UCSC genome browser via a GitHub repos-
itory (https://github.com/mhalushka/miROme).

https://github.com/mhalushka/miROme/tree/main/data/other_RScripts
https://mirbase.org/
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Data Availability
Data from all 2,077 samples (2,406 runs) across 196 merged cell
types, plasma, and platelets are available through the track hubs
feature at the UCSC genome browser (https://genome.ucsc.edu/).
The track hub, “ABC of cellular microRNAome,” allows one to
query individual miRNAs. The expression patterns across differ-
ent cell types can be visualized as a bar chart or a boxplot. The
raw counts, RPM values, and DESeq2 VST–normalized values are
available for download as CSV files from the description page of
the UCSC track hubs and Bioconductor repository [52]. All custom
scripts and code for this project are stored at GitHub [53].

An archival copy of the GitHub repository and a table with in-
formation on the 6,054 runs initially identified in this study are
available via the GigaScience database GigaDB [54].

Additional Files
Supplementary Table S1. Cell type and cell class for all 2,077 sam-
ples and 2,406 runs used in this study.
Supplementary Table S2. Metadata for each sample from the Se-
quence Read Archive (NCBI) and miRge3.0 run summary informa-
tion for all 2,406 runs.
Supplementary Table S3. Key linking miRBase and MirGeneDB
nomenclature, along with guide/mature versus passenger/star
identification and identification of unmapped miRNAs.
Supplementary Table S4. miRNA raw counts across all 2,406 runs.
Supplementary Table S5. miRNA RPM values across all 2,406
runs.
Supplementary Table S6. The Euclidean distance-based accuracy
of cell type clustering among 5 classes of cells.
Supplementary Table S7. The DESeq2 VST–normalized values of
miRNA expression across all samples and used for further analy-
sis in this project. All miRNAs are also present in MirGeneDB.
Supplementary Table S8. The cell-type specificity of 323 miRNAs.
Supplementary Figure S1. UMAP clustering of cell class “Brain” (n
= 77) corresponding to 3 distinct cell types and 2 outgroups fat (n
= 19) corresponding to 3 distinct cell types and red blood cells (n
= 37).
Supplementary Figure S2. UMAP clustering of cell class “Endothe-
lial” (n = 147) corresponding to 14 cell types and 2 outgroups fat
(n = 19) corresponding to 3 distinct cell types and red blood cells
(n = 37).
Supplementary Figure S3. UMAP clustering of cell class “Epithe-
lial” (n = 216) corresponding to 36 cell types and 2 outgroups fat
(n = 19) corresponding to 3 distinct cell types and red blood cells
(n = 37).
Supplementary Figure S4. UMAP clustering of cell class “Fibrob-
lasts” (n = 121) corresponding to 32 cell types and 2 outgroups fat
(n = 19) corresponding to 3 distinct cell types and red blood cells
(n = 37).
Supplementary Figure S5. UMAP clustering of cell class “Im-
mune” (n = 725) corresponding to 31 cell types and 2 outgroups
fat (n = 19) corresponding to 3 distinct cell types and red blood
cells (n = 37).
Supplementary Figure S6. UMAP clustering of cell class “Muscle”
(n = 124) corresponding to 24 cell types and 2 outgroups fat (n =
19) corresponding to 3 distinct cell types and red blood cells (n =
37).
Supplementary Figure S7. UMAP clustering of cell class “Other”
(n = 39) corresponding to 15 cell types and 2 outgroups fat (n = 19)
corresponding to 3 distinct cell types and red blood cells (n = 37).

Supplementary Figure S8. UMAP clustering of cell class “Plasma”
(n = 85) and 2 outgroups fat (n = 19) corresponding to 3 distinct
cell types and red blood cells (n = 37).
Supplementary Figure S9. UMAP clustering of cell class “Platelet”
(n = 17) and 2 outgroups fat (n = 19) corresponding to 3 distinct
cell types and red blood cells (n = 37).
Supplementary Figure S10. UMAP clustering of cell class “Sperm”
(n = 89) and 2 outgroups fat (n = 19) corresponding to 3 distinct
cell types and red blood cells (n = 37).
Supplementary Figure S11. UMAP clustering of cell class “Stem”
(n = 357) corresponding to 35 cell types and 2 outgroups fat (n =
19) corresponding to 3 distinct cell types and red blood cells (n =
37).
Supplementary Figure S12. Heatmap showing expression of an-
cient and new miRNAs. DESeq2 VST values for 96 samples across
12 cell classes demonstrate more abundant miRNA expression
across all cell classes for ancient miRNAs. Only sperm and stem
cells had frequent elevated miRNAs from younger nodes of origin.

Supplementary Figure S13. Screen capture of the UCSC
Genome Browser ABC of Cellular microRNAome track hub. (A) Bar-
chart of miR-22-3p expression. (B) Boxplot of miR-22-3p across 196
cell types, plasma, and platelets.
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