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Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. However, there is a lack of adequate means
of treatment prognostication for HCC. Pyroptosis is a newly discovered way of programmed cell death. However, the prognostic
role of pyroptosis in HCC has not been thoroughly investigated. Here, we generated a novel prognostic signature to evaluate the
prognostic value of pyroptosis-related genes (PRGs) using the data from The Cancer Genome Atlas (TCGA) database. The
accuracy of the signature was validated using survival analysis through the International Cancer Genome Consortium cohort
(n = 231) and the First Affiliated Hospital of Wenzhou Medical University cohort (n = 180). Compared with other clinical
factors, the risk score of the signature was found to be associated with better patient outcomes. The enrichment analysis
identified multiple pathways related with pyroptosis in HCC. Furthermore, drug sensitivity testing identified six potential
chemotherapeutic agents to provide possible treatment avenues. Interestingly, patients with low risk were confirmed to be
associated with lower tumor mutation burden (TMB). However, patients at high risk were found to have a higher count of
immune cells. Consensus clustering was performed to identify two main molecular subtypes (named clusters A and B) based
on the signature. It was found that compared with cluster B, better survival outcomes and lower TMB were observed in cluster
A. In conclusion, signature construction and molecular subtype identification of PRGs could be used to predict the prognosis
of HCC, which may provide a specific reference for the development of novel biomarkers for HCC treatment.

1. Introduction

The etiology and molecular mechanism of hepatocellular
carcinoma (HCC), a significant subtype of liver cancer,
remain largely unknown [1]. HCC ranks fourth among the
most lethal cancers and lacks appropriate treatment [2]. In
the United States, the 5-year survival rate for patients with
HCC is approximately 18% [3]. In addition, HCC is a highly
heterogeneous disease, which has been documented at inter-

patient, intertumoral, and intertumoral level [4–6]. Previous
studies have indicated that hepatocyte death chronically pro-
motes HCC, but the related molecular mechanism is not well
defined [7]. Thus, both the poor prognostic conditions and
the unknown molecular mechanisms indicate the urgent
need to improve the prognosis of HCC.

Pyroptosis, a type of programmed cell death, manifests
as the continuous swelling of cells until the cell membrane
ruptures, resulting in the release of intracellular contents,
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followed by the activation of a strong inflammatory response
[8]. As programmed necrosis mediated by gasdermin, pyrop-
tosis is different from other cell death modalities, such as
apoptosis and necrosis in the morphological features, occur-
rence, and regulatory mechanism [9]. Pyroptosis has been
reported to take a part in tumor genesis, invasion, and metas-
tasis [10]. Some studies have been found that pyroptosis is
widely involved in the occurrence and development of vari-
ous types of diseases [11, 12] and could inhibit the onset of
associated diseases to improve the overall survival (OS) of
patients [13]. Pyroptosis has also been confirmed to have
strong associations with multiple known biomarkers [14,
15]. A recent study demonstrated the critical regulatory role
of pyroptosis in the tumor microenvironment (TME), which
provides new therapeutic insights for cancer treatment [16].
Therefore, an in-depth study of pyroptosis may help under-
stand its role in the occurrence and development of cancers
including HCC and provide new ideas for the clinical preven-
tion and treatment [17, 18].

The tumor mutation burden (TMB) is the total number
of substitution and insertion/deletion mutations that occur/
megabase in the exon coding regions of the genes evaluated
in one tumor sample. TMB, as a biomarker for high-
frequency mutations and neoantigens, plays an important
role in the immunotherapy in various cancers [19, 20]. Ele-
vated TMB in tumor cells have more neoantigens, resulting
in an increase in antitumor T cells in the TME. Interestingly,
patients with high TMB have a higher probability in the
response to tumor immunotherapy [21]. Dysregulated TMB
has also been reported to be involved in the prognosis of
cancers [22]. Different cancer species vary in the expression
of TMB [23]. In HCC, the higher of TMB means the worse
in the OS of patients [24]. However, whether TMB could
serve as a biomarker in HCC is still unclear.

Herein, we constructed a novel prognostic gene signa-
ture to explore the prognostic value of pyroptosis-related
genes (PRGs) and the relationships with tumor mutation
and immunotherapy. Our data suggested that risk score
was identified as an independent prognostic factor. Notably,
the prognostic prediction of our risk signature was also
confirmed by the International Cancer Genome Consortium
(ICGC) cohort (n = 231) and the First Affiliated Hospital of
Wenzhou Medical University (FAHWMU) cohort (n = 180).
Finally, the effects of risk scores and molecular subtypes on
TMB and immune filtration were explored to further evalu-
ate the value of the signature in molecular therapy.

2. Materials and Methods

2.1. Data Preparation. The RNA sequencing data and rel-
evant clinical characteristics of 371 HCC patients were
downloaded from TCGA database (https://portal.gdc
.cancer.gov/). We matched the RNA sequencing data and
clinical features according to each patient’s ID number
and excluded six follow-up tumor samples. Thus, TCGA
cohort with 365 HCC patients was finally enrolled as the
training cohort. The other 231 patients with HCC, along with
their RNA-seq data and clinical features, were obtained from
the ICGC database (https://dcc.icgc.org/projects/LIRI-JP/).
HCC patients obtained from the ICGC database were derived
from a subset of Japanese population with HBV or HCV
infection [25]. Thus, the ICGC cohort was used as the testing
cohort. The data of TCGA cohort and ICGC cohort were
downloaded from public databases; thus, our study followed
the public data access policies; there was no ethical rela-
tionship involved. The FAHWMU cohort (n = 180) was
obtained from the First Affiliated Hospital of Wenzhou
Medical University (Wenzhou, China). HCC samples in

Table 1: The clinical characteristics of TCGA cohort, ICGC cohort and FAHWMU cohort.

Variables TCGA cohort (N = 365) ICGC cohort (N = 231) FAHWMU cohort (N = 180)
Survival status

OS days (median) 556 780 803

Age (median) 61 69 64

Gender

Female 119 61 114

Male 246 170 66

TNM stage

Stage I 170 36 62

Stage II 84 105 50

Stage III 83 71 59

Stage IV 4 19 9

Unknown 24 0 0

Grade

G1 55 NA 24

G2 175 NA 76

G3 118 NA 64

G4 12 NA 13

Unknown 5 NA 3
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the FAHWMU cohort were collected from 2010 to 2020,
and OS time was used as the main indicator of the sur-
vival time. The collection of this cohort was reviewed
and approved by the human research ethics committee
of the First Affiliated Hospital of Wenzhou Medical Uni-
versity. The patients/participants provided their written
informed consent to participate in this study. All the clin-

ical characters of these patients with HCC are shown in
Table 1. Meanwhile, 55 pyroptosis-related genes (PRGs)
used in this study were extracted from the MsigDB data-
base (http://www.gsea-msigdb.org/gsea/msigdb/) and prior
reviews (Table S1) [26–28]. In addition, the data of TMB
and immune infiltration of HCC patients in TCGA
cohort were also obtained from TCGA database.
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Figure 1: The flow chart of this study.
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Figure 2: Continued.
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2.2. Identification of Prognosis-Related DEPRGs. The Wil-
coxon rank sum test was used for the differential analysis
to identify differentially expressed pyroptosis-related genes
(DEPRGs) between HCC samples and adjacent nontumor-
ous samples (P < 0:05). Then, univariate Cox regression
analysis was used to further identify prognosis-related
DEPRGs. The expression of each gene (i) was adjusted to
log2ði + 1Þ to increase the accuracy of the Cox regression
results. In the univariate Cox regression analysis, FDR <
0:05 was set as the cut-off value. The Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analyses were performed using the “http://org
.Hs.eg.db” and “enrichplot” package.

2.3. Generation and Validation of the Signature. The LASSO
Cox regression analysis was applied to identify hub DEPRGs
to minimize the risk of overfitting among the signature [29,
30]. The independent variable in the regression was the nor-
malized expression matrix of candidate prognostic DEPRGs,
and the response variables were OS and the status of patients
in TCGA cohort. Penalty parameter (λ) for the gene signa-
ture was determined by tenfold cross-validation following
the minimum criteria (i.e., the value of λ corresponding to

the lowest partial likelihood deviance). Thus, a total of five
optimal genes were screened, and their relevant coefficients
were calculated. Next, we used the following formula to
calculate the risk score for each patient:

risk score = expression for each gene ∗ coefficient for each gene:
ð1Þ

Based on the median risk score, all HCC patients were
separated into high- and low-risk groups. The different OS
between high- and low-risk groups was analyzed via the
log rank test. The sensitivity and specificity of the signature
were evaluated by time-dependent receiver operating char-
acteristic (ROC) analysis.

The hazard proportional model was constructed by
employing multivariate Cox regression analysis to determine
the independent prognostic factors. A novel nomogram,
including the risk score and other three clinical factors
(age, gender, and TNM stage), was constructed to explore
the proportional hazards assumption of the multivariate
Cox model. Next, the calibration curves of the 1st, 2nd, and
3rd years were generated to verify the accuracy of the
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Figure 2: Identification of five optimal prognosis-related DEPRGs. (a) The heat map illustrated the differential expression of 40 PRGs
between tumor samples and adjacent normal samples. (b) The Forest plot displayed the univariate Cox regression analyses regarding
overall survival, and only DEPRGs with P < 0:05 and HR > 1 were regarded as prognosis-related DEPRGs. (c) CIRC plot for GO
function enrichment of 12 prognosis-related DEPRGs. (d) CIRC plot for KEGG pathway enrichment of 12 prognosis-related DEPRGs.
(e, f) LASSO regression analyses for screening five optimal PRGs.
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nomogram. The correlation between risk scores and individ-
ual clinical characteristics was analyzed via Wilcoxon rank
sum test.

2.4. Function Enrichment Analyses and Drug Sensitivity Test.
All DEGs were screened between the high-risk and low-risk
groups using the following filter (∣log 2FC ∣ ≥1, FDR < 0:05).
The GO and KEGG enrichment analyses were performed
based on the “clusterProfiler” R package. Estimated by the
Gene Set Variation Analysis algorithm, the infiltrating score
of 16 immune cells and the activity of 13 immune-related
pathways were calculated. The half-maximal inhibitory con-
centration (IC50) was estimated by R package “pRRophetic”
to evaluate the drug sensitivity [31]. The Connectivity Map
(CMap) database (https://portals.broadinstitute.org/cmap/)
was used to predict potential chemotherapeutic drugs.

2.5. Consensus Clustering Analyses. In the consensus cluster-
ing, the cumulative distribution function (CDF) and consis-
tent matrix were used to evaluate the optimal number of
subtypes [32]. Thus, two robust subtypes (clusters A and
B) were obtained according to the transcription matrix of
the five genes in the signature. The Kaplan-Meier survival
curves were performed to analyze the OS of subtypes. The
correlations between the subtypes, OS status, and risk score
were explored using the “ggalluvial” R package.

2.6. Tumor Mutation Burden Correlation. The TMB score of
each HCC patient in TCGA cohort was evaluated using the
somatic mutation analysis. We constructed correlation scat-
ter and boxplots based on the Pearson correlation analysis to

search the effect of risk score on TMB. Waterfall plots
regarding high- and low-risk groups were generated by R
package “maftools.”

2.7. Immune Infiltration Analysis. The immune infiltration
analysis was performed to calculate the correlation coeffi-
cient and construct bubble chart. The ESTIMATE algorithm
was applied to derive the corresponding immune score, stro-
mal score, and ESTIMATE score [33]. Next, the proportions
of 22 immune cell types of HCC patients were calculated via
the CIBERSORT algorithm.

2.8. Quantitative Real-Time PCR (qRT-PCR). The total RNA
from the liver tissues of the FAHWMU cohort was extracted
using TRIzol reagent. The mRNA was then reverse tran-
scribed into cDNA using ribo SCRIPTTM reverse transcrip-
tion kit. The expression level of mRNA was calibrated with
glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The
designed primers are shown in Table S2. SYBR Green
master mix was added, and real-time PCR was carried out
using a 7500 rapid quantitative PCR system (Applied
Biosystems, USA). The CT value of each well was recorded,
and the relative quantification of the amplified products
was performed using the 2−ΔCt method.

2.9. Statistical Analysis. Here, the R version 3.6.1 (http://
www.R-project.org) and its appropriate packages were used
to perform all statistical analyses. P < 0:05 was considered
as the standard of significantly statistical difference. The
FDR method was used for multiple testing. Pearson test
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Figure 5: The enrichment analyses of the signature. (a) GO function enrichment of the signature (abscissa: number of DEGs, P < 0:05,
Q < 0:05). (b) KEGG pathway enrichment of the signature (abscissa: number of DEGs, P < 0:05, Q < 0:05). (c) Comparison of the
enrichment scores of 16 immune cells between different risk groups. (d) Comparison of the enrichment scores of 13 immune-related
functions between different risk groups.
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Figure 6: Continued.
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was used to compare the categorical variables. The overall
workflow of this study is shown in Figure 1.

3. Results

3.1. Twelve Prognosis-Related DEPRGs Were Identified
between Adjacent Nontumorous Samples and HCC Samples.
The expressions of 55 PRGs were compared between 50
adjacent nontumorous and 365 HCC samples, and 40 DEGs
were identified (P < 0:05). Among these, the expressions of 3
genes (IL6, IL1B, and NLRP3) were found to be downregu-
lated in the tumor group while others were upregulated
compared to the adjacent nontumorous group. The expres-
sion of these DEGs was shown in the heat maps
(Figure 2(a)). The univariate Cox regression analyses further
identified 12 DEPRGs regarding OS. The DEPRGs with
P < 0:05 and hazard ratio ðHRÞ > 1:000 were regarded as
prognosis-related DEPRGs (Figure 2(b)). In addition, the
GO enrichment analyses revealed that prognosis-related
DEPRGs were mainly enriched in the pathways, including
activation of cysteine−type endopeptidase activity involved
in the apoptotic processes (Figure 2(c), P < 0:05 and Q <
0:05). The KEGG pathway enrichment plots demonstrated
enrichment in Kaposi sarcoma-associated herpesvirus infec-
tion, necroptosis, and human immunodeficiency virus 1
infection (Figure 2(d), P < 0:05 andQ < 0:05). The overfitting
of genes during the signature generation was prevented by
LASSO regression analysis and finally identified the optimal
five genes (GSDMC, DHX9, CHMP4B, BAK1, and NOD2)
(Figures 2(e) and 2(f)).

3.2. Prognostic Value of the Signature Was Validated in
TCGA Cohort and the Extra Validation Cohort. In TCGA
cohort, using five optimal genes and the relevant coefficients,
the risk score was calculated using the following formula:

risk score = 0:132 ∗GSDMC exp:ð Þ + 0:217 ∗NOD2 exp:ð Þ
+ 0:149 ∗DHX9 exp:ð Þ + 0:201 ∗ CHMP4B exp:ð Þ
+ 0:055 ∗ BAK1 exp:ð Þ

ð2Þ

According to the median score calculated by the risk
score formula, 365 patients were separated into low- and
high-risk groups (Figures 3(c) and 3(d)). With an increase
in the risk score, there was a gradual decrease in the survival
time as well as an increase in the number of patients in death
status (Figure 3(e)). Compared to the high-risk group, the
low-risk group showed a better OS probability (Figure 3(a),
P < 0:05). We found that the area under the ROC curve
(AUC) reached 0.729 for 1st year, and the AUC value for
2nd and 3rd years was both >0.600 (Figure 3(b)). HCC
patients in the ICGC cohort and the FAHWMU cohort were
also divided into high-risk group and low-risk group. The
results of the survival analysis were similar to TCGA cohort
(Figures 3(f) and 3(g)). Taken together, our results suggest
the potential prognostic value of our signature in the progno-
sis of HCC patients.

3.3. Risk Score Was Identified as an Independent Prognostic
Factor. In the univariate Cox analysis, the risk score and clin-
ical factors (age, gender, and TNM stage) were significantly
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Figure 6: Drug sensitivity of the signature. (a) Boxplots displayed the estimated IC50 of different potential drug sensitivity (ATRA,
Bleomycin, Doxorubicin, Etoposide, Nilotinib, and Tipifarnib) between low- and high-risk groups (all P < 0:05). (b) Violin plots
presented significant differences in the expression of individual genes across the signature in high- and low-risk groups (∗∗∗P < 0:001).
(c) K-M survival curves illustrated that the lower expression of individual genes across signature had better OS (P < 0:1).
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correlated with OS (Fig. S1A). Importantly, the risk score was
confirmed as an independent predictor for OS in the multi-
variate Cox model (Fig. S1B). The OS-related nomogram
was constructed to test the proportional hazards assumption
in the multivariate Cox model (Figure 4(a)). Compared with
other clinical factors, risk score had a better effect on the OS
in the nomogram. With the integration of the risk score and
clinical features (age, gender, and TNM stage), the 1st, 2nd,
and 3rd years of OS of patients with HCC could be predicted
accurately. The subsequent calibration curves further verified
the accuracy of the nomogram (Figures 4(b)–4(d)). The
correlations between the risk and clinical characteristics
(age, gender, tumor grade, TNM stage, T stage, N stage,
and M stage) were shown in the complex heat map
(Figure 4(e)). With increasing risk, the correlation between
tumor grade and risk score was most significant (P < 0:001).
The boxplot further confirmed that there was a significant
upward trend of risk score with tumor grade from G1 to G4
(Figure 4(j), G1-G4: P = 0:0071). Additionally, with stage T
from T1 to T3, the risk score was also significantly increased
(Figure 4(i), T1-T3: P = 0:0094). The results of TNM stage
were consistent with the results of stage I to stage III
(Figure 4(h), stages I-III, P = 0:0015). Compared to the
female patients with HCC, a lower risk score was found in
male patients with HCC (Figure 4(f)).

3.4. Functional and the Immunological Activity Analyses. GO
function enrichment and KEGG pathway enrichment were
performed based on the risk score. In the results of GO
enrichment, we found that the DEGs were mainly associated
with immune response-activating cell surface receptor
signaling pathway and immune response-activating signal
transduction (Figure 5(a)), suggesting the involvement of
immune infiltration in pyroptosis. KEGG pathway enrich-
ment indicated that DEGs were mainly enriched in human
T cell leukemia virus 1 infection, cell cycle, and phagosome
(Figure 5(b)). ssGSEA was used to further analyze the scores
of immune cells and immune-related pathways between the
low- and high-risk groups. The scores of most immune cells
(aDCs, DCs, iDCs, Tfh, Th2 cells, and Treg) were signifi-
cantly increased with the increasing of risk (Figure 5(c),
P < 0:001). In addition, the activity of 8 immune pathways
in the high-risk group was higher than that in the low-risk
group, except for the APC coinhibition, Cytolytic activity, T
cell coinhibition, and type I IFN response (Figure 5(d)).
Notably, type II IFN response was significantly lower in the
high-risk group.

3.5. Drug Sensitivity Test Screened Six Potential
Chemotherapy Drugs. The boxplots showed the results of
drug sensitivity test (Figure 6(a)). By estimating IC50 between
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the low-risk and high-risk groups, 6 potential chemotherapy
drugs were identified. The patients with HCC in the high-risk
subtype showed obvious sensitivity to chemotherapy drugs,
like ATRA, Bleomycin, Doxorubicin, Etoposide, Nilotinib,
and Tipifarnib (all P < 0:05). Moreover, violin plots showed
that individual genes in the signature were enhanced in the
high-risk group (Figure 6(b)). Additionally, the K-M survival
curves of individual genes in the signature showed a better
OS in the low-expression group (Figure 6(c)).

3.6. Two Main Subtypes Were Divided Based on the
Consensus Clustering Analysis. According to the k value
selected by the highest cophenetic correlation coefficient,
we divided all patients with HCC into two main subtypes
(clusters A and B) (Figures 7(a)–7(c)). Compared to cluster
A, patients in cluster B had higher risk scores and worse
OS (Figures 7(d) and 7(e)). Moreover, all the expressions
of individual genes were found to be higher in cluster B
(Figure 7(f), P < 0:001). Combined with other clinical char-
acteristics (age, gender, grade, TNM stage, T stage, N stage,
and M stage) and risk score, the complex cluster-based heat
map was constructed (Figure 7(g)).

3.7. The Potential Correlation between Signature and
Tumor Mutation. The association between clinical features
and TMB is shown in Figure 8(a). We found that patients
with male and >65 y had a higher TMB value. TMB values
were obviously increased with tumor grade from G1 to G4
and TNM stage from stages I to II. With an increase in risk
score, TMB values were additionally increased (Figure 8(b),
P = 0:047). Unfortunately, the correlation between TMB value
and risk score was not significant (Figure 8(c), R = 0:019,
P = 0:72). Our results showed that the higher level of TMB
was observed in cluster A. Interestingly, K-M survival curves
showed that the combination of higher TMB value and higher
risk score was associated with worse OS (Figures 8(d) and 8(e),
P < 0:001). Additionally, waterfall plots revealed that the

mutation profiles of patients with HCC was lower in the
low-risk group (Figures 8(f) and 8(g)).

3.8. Significant Correlation between Immune Infiltration and
Signature. Next, positive correlations were found between
immune infiltration and risk score (Figure 9(a)). Boxplots
showed that the contents of 6 immune cells were signifi-
cantly higher in all the high-risk groups (Figure 9(b), all
P < 0:001). Based on the ESTIMATE and CIBERSOFT
algorithms, the proportions of 22 immune cell types in
patients with HCC, the relevant ESTIMATE scores were
calculated (Figure 9(c)). We found that the coefficients of
immune cells including T cells and macrophages were sig-
nificant. The complex heat map revealed the expression
patterns of clinical features and the proportions of 22
immune cell types (Figure 9(d)). The boxplot showed the
differences in scale of fraction of different immune cells
in two clusters (Figure 9(e)).

4. Discussion

Recent studies have identified pyroptosis as a new form of
programmed cell death, which plays an essential role in
tumor development and treatment mechanisms [8]. Pyrop-
tosis has been found to play a crucial role in various cancers,
such as non-small-cell lung cancer and head and neck
cancer [34, 35]. Currently, the pyroptosis-related prognos-
tic signature has been constructed in ovarian cancer and
gastric cancer, with an excellent prognostic potential [36,
37]. Thus, targeting PRGs may be a promising therapeutic
strategy for HCC. However, comprehensive analysis of
PRGs for prognosis prediction and targeted therapy in
the patients with HCC still remains unclear. In the present
study, we aimed to construct a novel prognostic risk signa-
ture and identify potential molecular subtypes to better
predict the prognosis in HCC. The signature, which was
validated by the ICGC cohort and the FAHWMU cohort,
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Figure 8: Tumor mutation burden analyses. (a) Boxplots showed the differences in TMB value among different clinical characteristics (age:
P = 0:0008, gender: P = 0:0066, and G1-G4: P = 0:027). (b) Boxplot illustrated that the TMB value was significantly higher in the high-risk
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contributed to accurate prediction of the OS in patients with
HCC. In addition, the high-risk patients identified by this
signature were confirmed to be associated with higher
TMB, drug sensitivity, and tumor immune cell content.
Molecular subtypes (clusters A and B) were identified based
on the signature. Further studies revealed that compared
with cluster B, better survival outcomes and lower TMB were
observed in cluster A. All these results suggest that this signa-
ture could serve as a new biomarker to improve the prognosis
of HCC.

DHX9, CHMP4B, BAK1, NOD2, and GSDMC were
the PRGs included in the prognostic signature. Wang
et al. found that DHX9 could interact with CDK6 to pro-
mote the growth of HCC [38]. Elevated expression of
CHMP4B has been found to play a key role in accelerating
cell proliferation and resistance to doxorubicin in HCC
[39]. In addition, elevated expression of BAK1 could exac-
erbate pyroptosis and further aggravate the invasion of
HCC [40]. Hepatic NOD2, a well-characterized intracellular
PRR of the NOD-like receptor (NLR) family, has been shown
to promote hepatocarcinogenesis [41]. In addition, GSDMC,
metabolized by α-ketoglutarate and mediated through cas-
pase-8, results in pyroptosis [42]. Overall, increasing studies
have confirmed the roles of these genes (DHX9, CHMP4B,
BAK1, NOD2, and GSDMC) in HCC.

Previously, Hage et al. found that pyroptosis in macro-
phages mediates natural killer cell cytotoxicity against
HCC [43]. In the present study, the effect of this signature

on immune infiltration was also explored. Moreover, there
was a positive correlation between macrophages under the
TIMER database and risk score. The relative content of mac-
rophages under the TIMER database was elevated in the
high-risk group. It is known that drug therapy is crucial
for the treatment of HCC [44, 45]. Previous studies have
identified Doxorubicin as an effective drug to inhibit HCC
via the regulation of apoptosis [46]. Herein, Doxorubicin
was also confirmed as a potential drug against HCC, with
higher drug sensitivity in the high-risk group. TMB, as a
novel biomarker, has been intensively studied in precision
medicine for HCC [47, 48]. Xu et al. found that TMB is
positively correlated with clinical features in HCC [49]. Liu
et al. found that LRP1B mutations are associated with higher
TMB and poor prognosis in patients with HCC [50]. We
also analyzed the correlation between TMB and the signa-
ture. Clearly, there was an obviously lower TMB value in
the low-risk group, suggesting a potential correlation
between TMB value and the signature.

There are several advantages in this study. First, the
prognostic signature could accurately predict the OS for
patients with HCC. In addition, the signature is significantly
correlated with immune infiltration and TMB, suggesting its
biomarker potential in HCC. The prognosis prediction of
the signature is further confirmed by the FAHWMU cohort,
suggesting its good prognostic prediction ability. More clin-
ical samples are needed to validate the reliability of HCC
prognostic value of this signature.
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Figure 9: Immune correlation analyses and immune differential analyses of three clusters in the HCC patients. (a) Correlation coefficients
between different immune cells and risk score. (b) Boxplots showed the content of immune cells with high correlation coefficients is
significantly higher in the high-risk group. (c) The correlation plot of immune cells in TCGA cohort. (d) Complex heat map displayed
the association between the expression levels of immune cells and clinical features in the HCC patients. (e) The differential analyses
between immune cells and the scale of fraction for cluster A and cluster B.
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In conclusion, a novel prognostic PRG-signature is con-
structed for better prediction of prognosis in HCC, which
may provide new insights into the treatment of HCC. In
addition, this signature is closely associated with TMB and
immune infiltration.
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