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Abstract: Living a sedentary lifestyle is one of the major causes of numerous health problems.
To encourage employees to lead a less sedentary life, the Hanze University started a health promotion
program. One of the interventions in the program was the use of an activity tracker to record
participants' daily step count. The daily step count served as input for a fortnightly coaching
session. In this paper, we investigate the possibility of automating part of the coaching procedure
on physical activity by providing personalized feedback throughout the day on a participant’s
progress in achieving a personal step goal. The gathered step count data was used to train eight
different machine learning algorithms to make hourly estimations of the probability of achieving a
personalized, daily steps threshold. In 80% of the individual cases, the Random Forest algorithm
was the best performing algorithm (mean accuracy = 0.93, range = 0.88–0.99, and mean F1-score =
0.90, range = 0.87–0.94). To demonstrate the practical usefulness of these models, we developed a
proof-of-concept Web application that provides personalized feedback about whether a participant is
expected to reach his or her daily threshold. We argue that the use of machine learning could become
an invaluable asset in the process of automated personalized coaching. The individualized algorithms
allow for predicting physical activity during the day and provides the possibility to intervene in time.
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1. Introduction

Unhealthy lifestyles lead to increased premature mortality and are a risk factor for sustaining
noncommunicable diseases (NCDs) such as cardiovascular diseases, cancers, chronic respiratory
diseases, and diabetes [1]. NCDs caused 63% of all deaths that occurred globally in 2008 [1]. There are
four behavioral factors that have a significant influence on the prevention of NDCs: healthy nutrition,
not smoking, maintaining a healthy body weight, and sufficient physical activity. Insufficient physical
activity is one of the leading risk factors for the major NCDs and not meeting the recommended level of
physical activity is associated with approximately 5.3 million deaths that occurred globally in 2008 [2].

A high amount of sedentary time without sufficient daily physical activity leads to a higher rate of
all-cause mortality [3]. Besides the increased risk of premature mortality in the long term, the short-term
quality of life, being able to work, and social participation is also threatened by insufficient physical
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activity [4]. Fortunately, these risks are eliminated when this sedentary time is compensated for with
sufficient physical activity of moderate intensity [3].

In Western civilization, living a sedentary lifestyle is the rule rather than the exception, as many
people work in office environments. In pursuance of preventing the negative effects of insufficient
physical activity in the workplace, the Hanze University of Applied Sciences Groningen (HUAS),
a large university in the northern part of the Netherlands, started a novel initiative named (in
Dutch): ‘Het Nieuwe Gezonde Werken’ (The New Healthy Way of Working; HNGW). With HNGW,
the HUAS aims to promote a healthy lifestyle and physical activity during the workday. HNGW
consists of providing participants with educational group meetings, food boxes with healthy recipes,
and individual coaching sessions supplemented with an activity tracker. Despite the fact that
participants are coached every two weeks and measured continuously, it remains difficult for a
coach to provide timely personalized feedback. The manual task of creating personalized feedback is
time consuming, and as such it is not always possible for the participants to get in-depth and timely
daily feedback on their progression. Furthermore, current activity trackers do not provide a prediction
for reaching the daily goal.

In order to fill this gap, we propose a novel, personalized, and flexible machine-learning-based
procedure that can automate a part of the coaching process and serve as a source of information
on a participant's progress with physical activity during the day. The personalized model provides,
throughout the day, information on the probability of the participant meeting his or her daily physical
activity goal. We demonstrate the accuracy and effectiveness of this solution in practice by training
different machine learning algorithms and evaluating their performance using a train-test split dataset
from the HNGW data. We apply techniques like grid search and cross-validation to optimize each
model in order to find their best configuration. To show the applicability of this research in practice,
we developed a proof of concept Web application, which has, to the best of our knowledge, not been
done before. With the personalized actionable information the application provides, we demonstrate
that machine learning automating is feasible as a part of the coaching process. The techniques described
in this work could serve two goals in the field of personalized coaching. Firstly, we envision how
coaches can use such applications and how these applications can provide them with detailed insight
about the participants’ activity during the day. Secondly, the tool could be used as a self-support
tool, in which the participants’ engagement with their lifestyle might increase as a result of the
extra feedback.

2. Related Work

A number of studies have been performed on physical activity over days, where the sources of
variance in activity is related to the subject, the day of the week, the season, and occupational and
non-occupational days [5]. Tudor-Locke et al. (2005) showed that the individual is the main source of
variability in physical activity next to the difference between the Sunday and the rest of the week [6].
Another study identified physical inactivity being lower on weekend days, and Saturday was the most
active day of the week for both men and women [5].

To reduce sedentary time and increase physical activity levels, individuals need to change
their behavior and daily routines. This is hard to achieve because of various reasons, and requires
interventions and coaching strategies that use well-established techniques to induce a behavior change.
A review by Gardner et al. (2016) found that self-monitoring, problem solving, and restructuring the
social or physical environment were the most promising behavior change strategies, and—although
the evidence base is quite weak—advises environmental restructuring, persuasion, and education to
enhance self-regulatory skills [7]. Interventions aimed at increasing physical activity levels or reducing
sedentary time varies widely in content and in effectiveness. For example, studies focusing on exercise
training and behavioral approaches have demonstrated conflicting results, whereas interventions
focusing on reducing sedentary time seem to be more promising [8–12]. The use of active video games
seems to be effective in increasing physical activity, but has inconsistent findings on whether they



Sensors 2018, 18, 623 3 of 15

are suitable to meet the recommended levels [13]. Also, interventions targeting recreational screen
time reduction might be effective when using health promotion curricula or counseling [14]. Web- or
app-based interventions to improve diet, physical activity, and sedentary behavior can be effective.
Multi-component interventions appear to be more effective than stand-alone app interventions,
although the optimal number and combination of app features and level of participant contact needed
remain to be confirmed [15,16]. The workplace is often used for health promotion interventions. Recent
reviews on workplace interventions for reducing sitting at work found initial evidence that the use
of alternative workstations (sit-stand desks or treadmills) can decrease workplace sitting by thirty
minutes to two hours. In addition, one review found that interventions promoting stair use and
personalized behavioral interventions increase physical activity, while the other found no considerable
or inconsistent effects of various interventions [17,18].

Step counters provide an objective measure of activity levels and enable self-monitoring.
Furthermore, most modern consumer-based activity trackers already contain several behavior change
models or theories [19,20]. Therefore, based on the aforementioned, using activity trackers in
interventions to promote healthy lifestyles is promising. From meta-analyses by Qiu et al. and
Stephenson et al. it was concluded that step counter use was indeed associated with small but
significant effects in reducing sedentary time [21,22]. Adding an activity tracker to physical therapy or
counseling was effective in some populations [23–25]. Besides collecting activity data for therapy or
counseling, it is known that the Fitbit itself also serves as an intervention mechanism [26]. The mere
fact of wearing an activity tracker (even without any form of coaching) could motivate physical
activity and improve health-related quality of life [27,28]. On the other hand, studies on workplace
interventions using activity trackers report conflicting results [29–33].

There are several studies that use sensor or activity tracker data to build a custom-made
application to support research. An example is the social computer game, Fish'n'Steps, which connects
the daily steps of an employee to the growth and activity of the individual avatar fish in a virtual fish
tank. The more one is active, the faster the fish grows and prospers [34]. Another example is the study
on increased physical activity as the effect of social support groups using pedometers and an app [35].

Although applying machine learning to coaching is new, machine learning techniques in
combination with sensors have been applied before to identify the type of activity. Identifying human
activity using machine learning and sensor data have been studied, for example, by Wang et al. for
recognizing human daily activities from an accelerometer signal [36], by Li et al. on the quantification
of the lifetime circadian rhythm of physical activity [37], or by Catal et al. on the use of an ensemble of
classifiers for accelerometer-based activity recognition [38]. Only a few studies have investigated the
use of actionable, data-driven predictive models. A study on creating a predictive physical fatigue
model based on sensors identified relevant features for predicting physical fatigue, however the model
was not proven to be predictive enough to be applied [39].

In order to improve physical activity in combination with activity trackers, a coaching feature is
helpful, but only when the messages are personal and placed in context [40]. Perceiving the coaching
information as personal and relevant is crucial for the effectiveness of (e)Coaching [41]. Such tailored
(e)Coaching has many aspects, two of which are personalization and timing [42]. Timeliness of
information is important for participants to be able to process the information and apply the advice
while it is still relevant for them. In order to provide such advice, access to real-time predictions is
vital, as it allows for timing the moment of coaching, either virtual or in real life and as flexible as
needed. To the best of our knowledge, no studies exist about the use of sensor data combined with
machine learning techniques for creating validated and individualized predictive models on physical
activity. The individualized models could help the coach and the participant in the process of behavior
change and increased physical activity.
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3. Materials and Methods

The present work revolves around the HNGW project. This project was started in 2015 and
focuses on promoting a healthy lifestyle. We describe the design of this study and how the resulting
data is used in the present work. Next we describe our analysis pipeline. We describe the conversion
of the raw data set into a feature set, the evaluation methods of the predictive models, and the choice
of the algorithms. Finally we shed light on the proof of concept application we created to demonstrate
how these techniques could be used in practice.

3.1. Study Design

The goal of the workplace health promotion intervention HNGW at the HUAS was to increase
physical activity during workdays, by improving both physical and mental health, and several
work-related variables. In the study, several performance-based tests and self-reported questionnaires
were used to assess its effectiveness on a group level.

Forty-eight eligible participants from the HUAS were randomized into two groups, stratified
according to age, gender, BMI, and baseline self-reported health. One group followed a twelve-week
workplace health promotion intervention; the other served as a control during the first twelve weeks
and thereafter received the twelve-week workplace health promotion intervention.

During the study, minutely step count data of the participants was collected. Step count was measured
using a wrist-worn activity tracker, the Fitbit Flex. The Fitbit Flex has been shown to be a reliable and valid
device for step count and suitable for health enhancement programs [13]. Further details of the trial design
on HNGW at the HUAS are represented in the manuscript of van Ittersum et al. [43].

3.2. Data Set

The anonymized data used in the present study was collected from participants during their
participation in the HNGW health promotion program. All participants provided informed consent
for participation in the HNGW study and for the use of their anonymized data for research purposes.

We used the steps per minute of each participant, resulting in a total of 349,920 measurements
across all participants. We only considered the step data collected during the intervention period.
That is, for both the intervention and the control group, we used the last twelve weeks of available step
data. By focusing on the intervention period, we have a more homogeneous sample than we would
have when including both the intervention and control data.

While the Fitbit platform provides us with several minutely measures (e.g., steps, metabolic
equivalent of tasks [METs], calories, and distance), in our analysis we only included the steps variable.
We used the steps variable as we expect it to be the most accurate and relevant, as all other variables
are by-products derived using approximation algorithms.

3.3. Data Processing, Transformation, and Performance

To prepare the available minutely step data as input for training the algorithms, we first performed
a data cleaning, reformatting, and pre-processing step. First, we removed incomplete days from the
data set. We also removed all days with zero steps and weekend days. We then converted all provided
variables in a format that could be used by our algorithms, by augmenting our initial data set with
several new augmented variables, such as hour of the workday, the number of steps for that hour,
and a cumulative sum of the number of steps till that hour.

Note that we define a workday as the weekdays Monday to Friday. The normal working hours at
the university are between 8:00 AM and 5:00 PM. The HNGW tried to motivate the participants to
walk at least a part of the distance they commute daily. As a consequence, the hours of interest are
the combination of the working hours and the period of commuting. Therefore we only considered
the number of steps per hour between 7:00 AM and 6:00 PM. As features for training the algorithms,
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we used the hour per workday (ranged from 7:00 AM to 6:00 PM), the number of steps of that hour,
and the cumulative sum of the number of steps till that hour.

As the outcome measure, we calculated the average number of steps for all workdays over all
weeks. That is, for each individual, we calculated one average for all workdays. We considered the
number of steps between 7:00 AM and 6:00 PM. Note that this outcome measure is not used as input in
the training process. We constructed a binary outcome variable represented by the indicator variable
Yj =

(
sj ≥ θj

)
, in which sj refers to the number of steps on a workday for individual j, and θj refers to

the specific step goal for that j. The indicator function returns one (the ‘true’ label) when the inside
condition holds, and zero (the ‘false’ label) otherwise.

Three days of repeated measures are necessary to represent adults’ usual activity levels with an
80% confidence [6]. Forty-four participants met the criteria. The processing and transformation for
these forty-four participants resulted in a total of 120,480 data blocks (for the number of steps, mean =
9031, median = 8543, range = 0–47,121). The total number of positives when the threshold is met at
6:00 PM, is 1528. The total number of negatives when the threshold is not met at 6:00 PM, is 1879.

Note that we did not include any of the group level/baseline variables like age or gender, as we
only considered personalized models. Although these variables might affect the outcome, they do not
vary within the individual and as such do not add information.

3.4. Evaluation of the Performance of Algorithms and Models

We trained eight different machine learning algorithms. To compare their performance, we used a
method known as ‘confusion matrices’. The confusion matrices give an overview of the true positives
(TP; the model predicted a ‘true’ label and the actual data contained a ‘true’ label), true negatives
(TN; the model predicted a ‘false’ label and the actual data turned out to have a ‘false’ label), false
positives (FP; the model predicted a ‘true’ label, but the actual data contained a ‘false’ label), and false
negatives (FN; the model predicted a ‘false’ label, but in fact the data contained a ‘true’ label) of a
model. An example of a confusion matrix is provided in Table 1. These confusion matrices served as a
basis for the calculation of two other performance measures: The accuracy and the F1-score [15].

Table 1. Confusion matrix.

True Class

Yes No

Predicted class
Yes True Positives (TP) False Negatives (FN)

No False Positives (FP) True Negatives (TN)

True Positive: the threshold of daily steps was met and predicted; True Negative: the threshold of daily steps was
not met and predicted; False Negative: the threshold of daily steps was met and not predicted; False Positive: the
threshold of daily steps was not met and not predicted.

Accuracy is a metric to determine the nearness of the prediction to the true value. A value of
the accuracy close to one indicates the best performance. It calculates the ratio between the correctly
classified cases and all cases as Accuracy = TP+TN

TP+TN+FP+FN .
Besides the accuracy metric, we calculated the F1-score for each model. Similar to the accuracy

metric, the F1-score takes its values from between zero and one, one corresponding to the best
performance. To calculate the F1-score, we use two other metrics known as the precision and the recall
of the model. Precision is the proportion of the true positives and the false negatives, and is calculated
as Precision = TP

TP+FN .
Recall is the true positive rate, which is calculated as Recall = TP

TP+FP .
Using these definitions of precision and recall, the F1-score can be calculated as F1-score =

2 × Precision×Recall
Precision+Recall .
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3.5. Computing the Personalized Predictive Model

We aim to predict (throughout the day) whether or not an individual will meet his or her daily step
goal. Prediction of meeting a set goal is a supervised two-class classification problem. Nowadays, many
different algorithms for performing such classifications are available. Unfortunately, it is generally
considered impossible to determine a priori which algorithm will perform best on any given data
set [44]. Although distinct algorithms are better suited for different types of data and problems, the
type of algorithm is merely an indication of the most suitable algorithm. Currently, the preferred
way to find the best-performing algorithm is by empirically testing each of them [45]. Nevertheless,
there exist general guidelines to direct the search for specific algorithms for the problem at hand.
One of the leading organizations on open source machine learning library, scikit-learn.org, offers a
flowchart about which algorithms can be chosen in which situation [46]. Also, Microsoft provides a
‘cheat sheet’ on their Azure machine learning platform [47]. The flow chart and ´cheat sheet´ served as
a basis for our selection process and we chose the following machine learning classification algorithms:
(i) AdaBoost (ADA), (ii) Decision Trees (DT), (iii) KNeighborsClassifier (KNN), (iv) Logistic Regression
(LR), (v) Neural Networking(NN), (vi) Stochastic Gradient Descent (SGD), (vii) Random Forest (RF),
and (viii) Support Vector Classification (SVC). The performance of each of these algorithms was first
determined for seventy percent of the whole dataset including five-fold cross-validation with scaling
of the factors for KNN, NN, SGD, and SVC. Subsequently, for every participant we individualized
the algorithms with five-fold cross-validation and grid search on selected hyperparameters. Seventy
percent of the available individual data was used as training data. After training the algorithms,
the algorithms were turned into persistent predictive models per participant. We used the individual
models to construct confusion matrices, which in turn served as a basis for the F1-score and the
accuracy per individual predictive model. To compare the performance of the machine learning
models, we included a baseline model. This baseline model checks the cumulative step count. If this
cumulative step count equals or exceeds the average personalized goal, the model returns true and
false otherwise. We ranked all machine learning models (including the baseline model) using the
average of the F1-score and the accuracy.

3.6. Proof of Concept

We designed and implemented a Web application to demonstrate how the personalized prediction
based on machine learning and activity tracker data could be used in practice. We developed this
application as a Web application, which can be accessed on http://personalized-coaching.compsy.nl/.
In this application, the user can input the values ‘Hour of the day’, ‘Steps previous hour’, ‘Total steps till
the Hour’, combined with the participant’s ID and the algorithm to use. The Web application then uses
the individualized model and input data to predict the outcome together with the probability thereof.

3.7. Implementation Details

We used scikit-learn (v0.18, [48]) to establish the best predictive model for the individual.
Scikit-learn is an open-source Python module integrating a wide range of machine learning algorithms.
Scikit learn was integrated in Anaconda (v4.2.13, [49]) and Jupyter Notebooks (4.0.6, [50]) was used in
combination with Python (v3.5.2, [49]) for creating the data processing and machine learning pipeline.
Jupyter Notebooks is an interactive method to write and run various programming languages, such as
Python. The participants, their physical activity data, and the results of the performance of the
algorithms and models were saved in an Oracle database (v11g2 XE; [51]). The Oracle database
management system is a widely-used SQL-based system for persisting data. The source code and
corresponding notebooks of the machine learning procedure is available as open-source software on
Github (https://github.com/compsy/personalized-coaching-ml).

For the Web application, we used Flask (Version 0.10.1, [52]), a Python-based Web application
microframework for developing Web applications. We used a PostgreSQL database to store information

http://personalized-coaching.compsy.nl/
https://github.com/compsy/personalized-coaching-ml
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regarding the models and the participants. The machine learning models resulting from the
pipeline are exported as Python Pickle files, which were imported into the Web application. The
infrastructure-as-a-service provider Heroku is used to host a demo version of the Web application.
This Web application is available at http://personalized-coaching.compsy.nl. The Web application is
available as open-source software on Github (https://github.com/compsy/personalized-coaching-app).

4. Results

After optimizing our machine learning models by applying grid search in combination with
cross-validation, we assessed the models using the test set. The results are presented here.

4.1. Accuracy and F1-Score on Group Level

Table 2 presents the F1-score and accuracy of the eight different algorithms at the group level.
The top three group algorithms based on the mean accuracy and F1-score are:

Table 2. Algorithms and their scores for the whole dataset.

Algorithm Name Mean Accuracy
(Standard Deviation)

Mean F1
(Standard Deviation) Rank

AdaBoost (ADA) 0.776623 (0.002080) 0.854157 (0.001626) 1
Neural Networking (NN) 0.777774 (0.001545) 0.852797 (0.002938) 2
Support Vector Classifier (SVC) 0.770728 (0.002505) 0.856341 (0.002405) 3
Stochastic Gradient Descent (SGD) 0.767623 (0.005490) 0.853575 (0.004574) 4
KNeighborsClassifier (KNN) 0.749171 (0.005683) 0.829826 (0.005544) 5
Logistic Regression (LR) 0.742125 (0.009821) 0.825725 (0.008487) 6
Random Forest (RF) 0.737451 (0.003210) 0.819065 (0.003840) 7
Decision Tree (DT) 0.720535 (0.004787) 0.804220 (0.003006) 8

AdaBoost, Neural Networking, and Support Vector Classifier.
We visualized the accuracy and F1-score per algorithm using boxplots in Figures 1 and 2. The box

represents the second and third quartile groups and the red line indicates the median. The upper
whisker visualizes the fourth quartile group and the lower whisker visualizes the first quartile group.
Finally, the plus sign indicates outliers on either side of both whiskers.
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4.2. Individual Algorithms

We trained all algorithms on the training set of each individual and performed cross-validation
to tune the hyperparameters. Table 3 lists the used machine learning algorithms, the set of tested
hyperparameters, and the selected grid search values.

Table 3. Algorithms, used parameters, and grid search values.

Algorithm name Hyperparameters Values

AdaBoost (ADA) n_estimators: number of decision trees in the ensemble [10,50]
learning rate: the shrink of the contribution of each
successive decision tree in the ensemble [0.1, 0.5, 1.0, 10.0]

Decision Tree (DT) criterion: the algorithm to use to decide on split [‘gini’, ‘entropy’]
max_features: the number of features to consider when
to split [‘auto’,‘sqrt’,‘log2’]

KNeighborsClassifier (KNN) metrics: the distance metric to use [‘minkowski’,‘euclidean’,‘manhattan’]
weights: weight function used [‘uniform’,‘distance’]
n_neighbors: number of neighbors to use for queries [5, 6, 7, 8, 9]

Neural Networking (NN) learning_rate_init: the control of the step-size in
updating the weights [‘constant’, ‘invscaling’, ‘adaptive’]

activation: the activation function for the hidden layer [‘identity’, ‘logistic’, ‘tanh’, ‘relu’]
learning_rate: the rate for the weight of the updates [0.01, 0.05, 0.1, 0.5, 1.0]

Logistic Regression (LR) C: regularization strength [0.001, 0.01, 0.1, 1, 10, 100, 1000]
penalty: whether to use Lasso (L1) or Ridge (L2)
regularization [‘l1’, ‘l2’]

fit_intercept: whether or not to compute the intercept
of the linear classifier [True, False]

Stochastic Gradient Descent
(SGD)

fit_intercept: whether or not the intercept should be
computed [True, False]

l1_ratio: the penalty is set to L1 or L2 [0,0.15,1]
loss: quantification of the loss [‘log’,‘modified_huber’]

Support Vector Classifier
(SVM) kernel: the kernel type to be used in the algorithm [‘linear’,‘rbf’]

Random Forest (RF) n_estimators:number of decision trees [10, 50, 100, 500]
max_features: the number of features to consider when
to split

[0.1, 0.25, 0.5, 0.75, ‘sqrt’, ‘log2’,
None]

criterion: which algorithm should be used to decide on
split [‘gini’, ‘entropy’]

The accuracy and F1-score of the individual algorithms differ. Figure 3 visualizes the results of
the average of the individual scores.
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For thirty-five subjects, the best-performing individual model was the Random Forest algorithm,
in eight cases this was the Decision Tree algorithm, and for one subject the AdaBoost algorithm
performed best. The average accuracy of the Random Forest algorithm is 0.93 (range 0.88–0.99). Thus,
in terms of accuracy, the individual Random Forest models score better than its counterpart that was
generalized over all individuals (mean personalized accuracy = 0.93 versus mean generalized accuracy
= 0.82). The average accuracy of the Decision Tree model is 0.93 (range 0.91–0.97) and outperforms the
generalized, group-based Decision Tree accuracy of 0.75. The accuracy of the single AdaBoost model is
0.98, which outperforms the group accuracy of 0.85.

The mean F1-score of the Random Forest model is 0.90 (range 0.87–0.94). The mean F1-score of
the Decision Tree model based on the eight best performing models is 0.90 (range 0.87–0.93). Finally,
the best AdaBoost model has an F1-score of 0.92, while the group accuracy for the AdaBoost algorithm
was 0.77.

The use of grid search to tune the hyperparameters of the algorithms led to several optimized
models per individual. To demonstrate the difference this optimization operation can have, we present
an example of two individual models with different hyperparameter configurations in Table 4. Table 5
gives an overview of the number of occurrences of a value for the Random Forest hyperparameters.

Table 4. Example of different tuned personalized Random Forest models.

Participant Parameters Values

1119
criterion

max_features
n_estimators

gini
sqrt
50

1121
criterion

max_features
n_estimators

entropy
log2
50

Table 5. The number of different values per Random Forest hyperparameter.

Hyperparameter Value Number of Occurrences

criterion entropy 7
gini 37

max_features 0.1 4
0.25 5
0.5 7

0.75 15
log2 2
sqrt 2
null 9

n_estimators 10 3
100 17
50 16
500 6

The accuracy and F1-score of the various machine learning algorithms increase slightly during the
day. The size of this increase differs slightly per machine learning algorithm. For instance, the F1-score
of Random Forest increases with 10% during the day, starting with an F1-score of 0.89 at 7:00 AM and
ending with an F1-score of 0.97 at 6:00 PM. Both Figures 4 and 5 also show the increase in accuracy
and F1-score of the baseline algorithm during the day. Its accuracy starts with 0.55 and ends at 1 at the
end of the workday, while the F1-score starts at 0 and ends at 1. The accuracy increases for Random
Forest, Logistic Regression, and AdaBoost, whereas the accuracy of Neural Networking is best at 11:00
AM and Stochastic Gradient Descent remains the same.
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4.3. The Web Application

The Web application is a demonstration of how the aforementioned machine learning techniques
could be used in practice, from the perspective of both the coach and the participant. The application
allows the user to determine whether a participant will achieve his or her goal for the day, during the
day, by applying the individualized algorithms. The procedure for predicting this goal is as follows.
First, the user selects a participant identifier from the dropdown menu. After this selection had been
made, the application selects the best and personalized machine learning algorithm for this specific
participant. Then the user can fill out a form, providing the necessary details to base the prediction on
(hour of day, the number of steps so far, and the number of steps in the past hour). Finally, when the
user submits the form, the application returns advice personalized for the individual selected from
the dropdown menu. The demo application is available at http://personalized-coaching.compsy.nl/.
Figure 6 provides a screenshot of both the input fields of the application and the generated prediction
and advice.

http://personalized-coaching.compsy.nl/
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5. Discussion

We investigated machine learning as a means to support personalized coaching on physical
activity. We demonstrated that for our particular data sets, the tree algorithms and tree-based ensemble
algorithms performed especially well. To demonstrate how the results of machine learning techniques
could be used in practice, an application was used to aid the coaching of the physical activity process.
Furthermore, the analysis shows that selecting the right algorithm, using the dataset of the individual
participant, and tuning its individual algorithm parameters, can lead to significant improvements in
predictive performance and is a critical step in machine learning application. All source code, including
the different notebooks and the proof-of-concept Web application is available online as open-source
software. The source code can serve as a blueprint for other researchers when aiming to apply machine
learning for coaching.

Although Random Forest outperformed most of the other algorithms, it is problematic to
provide a generalized recommendation for specific algorithms, parameters, or parameter settings [44].
Presumably due to individually different physical activity patterns, different algorithms and
parameters have to be considered. As a starting point, we selected the algorithms based on
well-established sources [41,42], applied cross-validation, and grid-searched the values of the selected
parameters. Nevertheless, it’s important to note that these algorithms, parameters, and grid search
values might not work best on all individual physical patterns, and the algorithms, parameters,
and grid search values should only be used as starting points. Future work might consist of
investigating the underlying mechanisms to be able to choose the best algorithm beforehand.
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We based the prediction solely on the hour of the day and the number of steps. These steps are
naturally increasing over the day, and as such, not independent from each other. By including the
cumulative number of steps for each block of data, and by including the number of steps made in the
past hour, we assume each block to be independent from the other blocks, and as such, are still able to
use the regular machine learning methods.

A limitation of the present work is that all participants included in this study participated in an
intervention. This intervention might have made the participants more aware and engaged with the
project, and as such, the individualized models might be biased towards the best scenario. When people
are not extrinsically motivated to meet their daily physical activity goal, and lower their physical
activity, the predictive power of the models and therefor the effect of automated intervention will lessen.
On the other hand, when an intervention like the health promotion program ends, the individualized
models check the participant on his or her performance as if the program is supporting the participant.

As presented in the state of the art literature, the total number of steps differ significantly between
Sunday and rest of the weekdays [5,6,48]. Within this health promotion program, the focus was on
improving physical activity during working hours and commuting. Therefore, the machine learning
models were trained based on the normal workweek. Only one model per participant, based on the
five weekdays, is adequate to predict whether or not a participant will meet his or her threshold. It may
be necessary to conduct different models for the weekend and weekdays when a health promotion
program is expanded to weekends. A reason to establish more than one or two models per participant
is found in the variances between weekdays [5]. Examples of different factors that could influence the
level of physical activity are weekly sport obligations, weekly meetings, or lunch walks on certain days.
Constructing a model per weekday might establish an even more personalized and precise prediction.

In the present work, we only train our machine learning algorithms on variables provided by the
activity tracker, extending this set of variables with other (exogenous) variables from other data sources.
For example, the data can be extended to include information on the changes in the weather conditions
and/or season, which are known to correlate with the day-to-day activity [5,53], or non-working time
during weekdays like national holidays and free time, or part-time working schedule, for the activity
level differs between non-occupational and occupational time, or the influence and effectiveness of
coaching and interventions. Adding the mentioned factors to the dataset might improve the predictive
accuracy of the model and might increase the effectiveness of the coaching process.

To apply the personalized machine learning models effectively, they have to become a part of
a larger ecosystem. An ideal coaching process is fully tailored to the individual participant. One of
the most important characteristics of the personalization of a coaching strategy consists in the timing
and ease to execute triggers to change behavior [54]. To support these two aspects of coaching, timely
information on the participant and the effectiveness of the coaching strategy are needed. Coaching
might not be limited to a personal real life coach but also may include virtual coaching. An example of
a possible use of the system is: at the moment the participant doesn’t score a ‘yes’ for two hours in a
row on the prediction of meeting his threshold, a notification is sent out to both the participant and the
coach. On the basis of this notification, the participant and the coach can take action; the coach can
timely intervene to stimulate his client to become physically active and the participant can become
instantly more active. Blok et al. proposed a system which combines the real-time analysis of activity
tracker data and other personal streaming data as well as the evaluation of virtual coaching strategies,
which enables it to tune the coaching to the person [55]. The present work could serve as a central
component of a virtual coach system like that envisioned by Blok et al. [55].

To make the information even more personal and relevant, a promising direction for future work
is to include a prediction of the actual number of steps at the end of the day. Adding more (and
personalized) information might strengthen the effectiveness of the system. To do so, we could apply a
similar procedure to the one presented in this study, but instead replace our classification algorithms
with regression machine learning algorithms. The predicted number of steps could be a valuable
extension in addition to the currently implemented classification of the step goal.
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To conclude, machine learning is a viable asset to automate personalized daily physical activity
prediction. Coaching can provide accurate and timely information on the participants’ physical activity,
even early in the day. This is the result of applying machine learning to the behavior of the individual
participant as precisely and frequently measured by wearable sensors. The prediction of the participant
meeting his goal in combination with the probability of such achievement allows for early intervention
and can be used to provide support for personalized coaching. Also, the motivation for self-coaching
might be increased, while every model is personalized and the results are better fitted to the situation.
Furthermore, machine learning techniques empower automated coaching and personalization.

Acknowledgments: We thank the Hanze University Health Program for providing the physical activity data of
the Health Program and all the participants in the experiment.

Author Contributions: Miriam van Ittersum conceived and designed the study of the health promotion program;
Talko Dijkhuis developed the database, notebooks and performed the experiments; Talko Dijkhuis analyzed the
data; Frank Blaauw developed the Web application. All authors have participated in writing the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. WHO. Global Action Plan for the Prevention and Control of Noncommunicable Diseases 2013–2020; World Health
Organization: Genève, Switzerland, 2013; p. 102.

2. Min-Lee, I.; Shiroma, E.J.; Lobelo, F.; Puska, P.; Blair, S.N.; Katzmarzyk, P.T.; Alkandari, J.R.; Andersen, L.B.;
Bauman, A.E.; Brownson, R.C.; et al. Effect of physical inactivity on major non-communicable diseases
worldwide: An analysis of burden of disease and life expectancy. Lancet 2012, 380, 219–229.

3. Ekelund, U.; Steene-Johannessen, J.; Brown, W.J.; Fagerland, M.W.; Owen, N.; Powell, K.E.; Bauman, A.;
Lee, I.M. Does physical activity attenuate, or even eliminate, the detrimental association of sitting time with
mortality? A harmonised meta-analysis of data from more than 1 million men and women. Lancet 2016, 388,
1302–1310. [PubMed]

4. Losina, E.; Yang, H.Y.; Deshpande, B.R.; Katz, J.N.; Collins, J.E. Physical activity and unplanned illness-related
work absenteeism: Data from an employee wellness program. PLoS ONE 2017, 12, e0176872. [CrossRef]
[PubMed]

5. Matthews, C.E.; Hebert, J.R.; Freedson, P.S.; Iii, E.J.S.; Merriam, P.A.; Cara, B.; Ockene, I.S. Sources of Variance
in Daily Physical Activity Levels in the Seasonal Variation of Blood Cholesterol Study. Am. J. Epidemiol. 2001,
153, 987–995. [CrossRef] [PubMed]

6. Tudor-Locke, C.; Burkett, L.; Reis, J.P.; Ainsworth, B.E.; Macera, C.A.; Wilson, D.K. How many days of
pedometer monitoring predict weekly physical activity in adults. Prev. Med. (Baltim.) 2005, 40, 293–298.
[CrossRef] [PubMed]

7. Gardner, B.; Smith, L.; Lorencatto, F.; Hamer, M.; Biddle, S.J. How to reduce sitting time? A review
of behaviour change strategies used in sedentary behaviour reduction interventions among adults.
Health Psychol. Rev. 2016, 10, 89–112. [PubMed]

8. Baker, P.R.A.; Francis, D.P.; Soares, J.; Weightman, A.L.; Foster, C. Community wide interventions for
increasing physical activity. Sao Paulo Med. J. 2011, 129, 436–437. [CrossRef]

9. Conroy, D.E.; Hedeker, D.; McFadden, H.G.; Pellegrini, C.A.; Pfammatter, A.F.; Phillips, S.M.; Siddique, J.;
Spring, B. Lifestyle intervention effects on the frequency and duration of daily moderate-vigorous physical
activity and leisure screen time. Heal. Psychol. 2017, 36, 299–308. [CrossRef] [PubMed]

10. Ng, L.W.C.; Mackney, J.; Jenkins, S.; Hill, K. Does exercise training change physical activity in people with
COPD? A systematic review and meta-analysis. Chron. Respir. Dis. 2012, 9, 17–26.

11. Cleland, V.; Squibb, K.; Stephens, L.; Dalby, J.; Timperio, A.; Winzenberg, T.; Ball, K.; Dollman, J. Effectiveness
of interventions to promote physical activity and/or decrease sedentary behaviour among rural adults: A
systematic review and meta-analysis. Obes. Rev. 2017, 18, 727–741. [CrossRef] [PubMed]

12. Prince, S.A.; Saunders, T.J.; Gresty, K.; Reid, R.D. A comparison of the effectiveness of physical activity
and sedentary behaviour interventions in reducing sedentary time in adults: A systematic review and
meta-analysis of controlled trials. Obes. Rev. 2014, 15, 905–919. [CrossRef] [PubMed]

http://www.ncbi.nlm.nih.gov/pubmed/27475271
http://dx.doi.org/10.1371/journal.pone.0176872
http://www.ncbi.nlm.nih.gov/pubmed/28472084
http://dx.doi.org/10.1093/aje/153.10.987
http://www.ncbi.nlm.nih.gov/pubmed/11384955
http://dx.doi.org/10.1016/j.ypmed.2004.06.003
http://www.ncbi.nlm.nih.gov/pubmed/15533542
http://www.ncbi.nlm.nih.gov/pubmed/26315814
http://dx.doi.org/10.1590/S1516-31802011000600013
http://dx.doi.org/10.1037/hea0000418
http://www.ncbi.nlm.nih.gov/pubmed/27642762
http://dx.doi.org/10.1111/obr.12533
http://www.ncbi.nlm.nih.gov/pubmed/28401687
http://dx.doi.org/10.1111/obr.12215
http://www.ncbi.nlm.nih.gov/pubmed/25112481


Sensors 2018, 18, 623 14 of 15

13. Höchsmann, C.; Schüpbach, M.; Schmidt-Trucksäss, A. Effects of Exergaming on Physical Activity in
Overweight Individuals. Sports Med. 2016, 46, 845–860. [CrossRef] [PubMed]

14. Wu, L.; Sun, S.; He, Y.; Jiang, B. The effect of interventions targeting screen time reduction: A systematic
review and meta-analysis. Medicine (Baltimore). 2016, 95, e4029. [CrossRef] [PubMed]

15. Schoeppe, S.; Alley, S.; van Lippevelde, W.; Bray, N.A.; Williams, S.L.; Duncan, M.J.; Vandelanotte, C. Efficacy
of interventions that use apps to improve diet, physical activity and sedentary behaviour: A systematic
review. Int. J. Behav. Nutr. Phys. Act. 2016, 13, 127. [CrossRef] [PubMed]

16. Beishuizen, C.R.L.; Stephan, B.C.M.; van Gool, W.A.; Brayne, C.; Peters, R.J.G.; Andrieu, S.; Kivipelto, M.; Soininen, H.;
Busschers, W.B.; van Charante, E.P.M.; et al. Web-Based Interventions Targeting Cardiovascular Risk Factors in
Middle-Aged and Older People: A Systematic Review and Meta-Analysis. J. Med. Internet Res. 2016, 18, e55.

17. Shrestha, N.; Kt, K.; Jh, V.; Ijaz, S.; Hermans, V.; Bhaumik, S. Workplace interventions for reducing sitting at
work (Review). Cochrane Database Syst. Rev. 2016, 14, 105.

18. Commissaris, D.A.; Huysmans, M.A.; Mathiassen, S.E.; Srinivasan, D.; Koppes, L.L.; Hendriksen, I.J.
Interventions to reduce sedentary behavior and increase physical activity during productive work: A
systematic review. Scand. J. Work. Environ. Health 2016, 42, 181–191. [CrossRef] [PubMed]

19. Mercer, K.; Li, M.; Giangregorio, L.; Burns, C.; Grindrod, K. Behavior Change Techniques Present in Wearable
Activity Trackers: A Critical Analysis. JMIR mHealth uHealth 2016, 4, e40. [CrossRef] [PubMed]

20. Duncan, M.; Murawski, B.; Short, C.E.; Rebar, A.L.; Schoeppe, S.; Alley, S.; Vandelanotte, C.; Kirwan, M.
Activity Trackers Implement Different Behavior Change Techniques for Activity, Sleep, and Sedentary
Behaviors. Interact. J. Med. Res. 2017, 6, e13. [CrossRef] [PubMed]

21. Qiu, S.; Cai, X.; Ju, C.; Sun, Z.; Yin, H.; Zügel, M.; Otto, S.; Steinacker, J.M.; Schumann, U. Step Counter Use
and Sedentary Time in Adults: A Meta-Analysis. Medicine (Baltimore) 2015, 94, e1412. [CrossRef] [PubMed]

22. Stephenson, A.; McDonough, S.M.; Murphy, M.H.; Nugent, C.D.; Mair, J.L. Using computer, mobile and
wearable technology enhanced interventions to reduce sedentary behaviour: A systematic review and
meta-analysis. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 105. [CrossRef] [PubMed]

23. de Vries, H.J.; Kooiman, T.J.M.; van Ittersum, M.W.; van Brussel, M.; de Groot, M. Do activity monitors
increase physical activity in adults with overweight or obesity? A systematic review and meta-analysis.
Obesity 2016, 24, 2078–2091. [PubMed]

24. Li, L.C.; Sayre, E.C.; Xie, H.; Clayton, C.; Feehan, L.M. A Community-Based Physical Activity Counselling
Program for People With Knee Osteoarthritis: Feasibility and Preliminary Efficacy of the Track-OA Study.
JMIR mHealth uHealth 2017, 5, e86. [CrossRef] [PubMed]

25. Miyauchi, M.; Toyoda, M.; Kaneyama, N.; Miyatake, H.; Tanaka, E.; Kimura, M.; Umezono, T.; Fukagawa, M.
Exercise Therapy for Management of Type 2 Diabetes Mellitus: Superior Efficacy of Activity Monitors over
Pedometers. J. Diabetes Res. 2016, 2016, 1–7. [CrossRef] [PubMed]

26. Cadmus-Bertram, L.A.; Marcus, B.H.; Patterson, R.E.; Parker, B.A.; Morey, B.L. Randomized Trial of a Fitbit-Based
Physical Activity Intervention for Women. Am. J. Prev. Med. 2015, 49, 414–418. [CrossRef] [PubMed]

27. Mansi, S.; Milosavljevic, S.; Tumilty, S.; Hendrick, P.; Higgs, C.; Baxter, D.G. Investigating the effect of a
3-month workplace-based pedometer-driven walking programme on health-related quality of life in meat
processing workers: a feasibility study within a randomized controlled trial. BMC Public Health 2015, 15, 410.
[CrossRef] [PubMed]

28. Lewis, Z.H.; Lyons, E.J.; Jarvis, J.M.; Baillargeon, J. Using an electronic activity monitor system as an
intervention modality: A systematic review. BMC Public Health 2015, 15, 585. [CrossRef] [PubMed]

29. Freak-poli, R.; Cumpston, M.; Peeters, A.; Clemes, S. Workplace pedometer interventions for increasing
physical activity (Review). Cochrane Database Syst. Rev. 2013, 4, CD009209.

30. Compernolle, S.; Vandelanotte, C.; Cardon, G.; de Bourdeaudhuij, I.; de Cocker, K. Effectiveness of
a web-based, computer-tailored, pedometer-based physical activity intervention for adults: a cluster
randomized controlled trial. J. Med. Internet Res. 2015, 17, e38. [CrossRef] [PubMed]

31. Slootmaker, S.M.; Chinapaw, M.J.M.; Schuit, A.J.; Seidell, J.C.; van Mechelen, W. Feasibility and Effectiveness
of Online Physical Activity Advice Based on a Personal Activity Monitor: Randomized Controlled Trial.
J. Med. Internet Res. 2009, 11, e27. [CrossRef] [PubMed]

32. Poirier, J.; Bennett, W.L.; Jerome, G.J.; Shah, N.G.; Lazo, M.; Yeh, H.-C.; Clark, J.M.; Cobb, N.K. Effectiveness
of an Activity Tracker- and Internet-Based Adaptive Walking Program for Adults: A Randomized Controlled
Trial. J. Med. Internet Res. 2016, 18, e34.

http://dx.doi.org/10.1007/s40279-015-0455-z
http://www.ncbi.nlm.nih.gov/pubmed/26712512
http://dx.doi.org/10.1097/MD.0000000000004029
http://www.ncbi.nlm.nih.gov/pubmed/27399085
http://dx.doi.org/10.1186/s12966-016-0454-y
http://www.ncbi.nlm.nih.gov/pubmed/27927218
http://dx.doi.org/10.5271/sjweh.3544
http://www.ncbi.nlm.nih.gov/pubmed/26683116
http://dx.doi.org/10.2196/mhealth.4461
http://www.ncbi.nlm.nih.gov/pubmed/27122452
http://dx.doi.org/10.2196/ijmr.6685
http://www.ncbi.nlm.nih.gov/pubmed/28807889
http://dx.doi.org/10.1097/MD.0000000000001412
http://www.ncbi.nlm.nih.gov/pubmed/26334900
http://dx.doi.org/10.1186/s12966-017-0561-4
http://www.ncbi.nlm.nih.gov/pubmed/28800736
http://www.ncbi.nlm.nih.gov/pubmed/27670401
http://dx.doi.org/10.2196/mhealth.7863
http://www.ncbi.nlm.nih.gov/pubmed/28652228
http://dx.doi.org/10.1155/2016/5043964
http://www.ncbi.nlm.nih.gov/pubmed/27761471
http://dx.doi.org/10.1016/j.amepre.2015.01.020
http://www.ncbi.nlm.nih.gov/pubmed/26071863
http://dx.doi.org/10.1186/s12889-015-1736-z
http://www.ncbi.nlm.nih.gov/pubmed/25895747
http://dx.doi.org/10.1186/s12889-015-1947-3
http://www.ncbi.nlm.nih.gov/pubmed/26104189
http://dx.doi.org/10.2196/jmir.3402
http://www.ncbi.nlm.nih.gov/pubmed/25665498
http://dx.doi.org/10.2196/jmir.1139
http://www.ncbi.nlm.nih.gov/pubmed/19674956


Sensors 2018, 18, 623 15 of 15

33. Finkelstein, E.A.; Haaland, B.A.; Bilger, M.; Sahasranaman, A.; Sloan, R.A.; Nang, E.E.K.; Evenson, K.R.
Effectiveness of activity trackers with and without incentives to increase physical activity (TRIPPA): A
randomised controlled trial. Lancet Diabetes Endocrinol. 2016, 4, 983–995. [CrossRef]

34. Mamykina, L.; Lindtner, S.; Lin, J.J.; Mamykina, L.; Lindtner, S.; Delajoux, G.; Strub, H.B. Fish’n’Steps:
Encouraging Physical Activity with an Interactive Computer Game. In Ubicomp 2006: Ubiquitous Computing;
Springer-Verlag: Berlin/Heidelberg, Germany, 2006; Volume 4206.

35. Toscos, T.; Faber, A.; Connelly, K.; Upoma, A.M. Encouraging physical activity in teens. Can technology help
reduce barriers to physical activity in adolescent girls? In Pervasive Computing Technologies for Healthcare,
2008; IEEE: Tampere, Finland, 2008; Volume 3, pp. 218–221.

36. Wang, J.; Chen, R.; Sun, X.; She, M.F.H.; Wu, Y. Recognizing human daily activities from accelerometer signal.
Procedia Eng. 2011, 15, 1780–1786. [CrossRef]

37. Li, X.; Dunn, J.; Salins, D.; Zhou, G.; Zhou, W.; Rose, S.M.S.; Perelman, D.; Colbert, E.; Runge, R.; Rego, S.; et al.
Digital Health: Tracking Physiomes and Activity Using Wearable Biosensors Reveals Useful Health-Related
Information. PLoS Biol. 2017, 15, e2001402. [CrossRef] [PubMed]

38. Catal, C.; Tufekci, S.; Pirmit, E.; Kocabag, G. On the use of ensemble of classifiers for accelerometer-based
activity recognition. Appl. Soft Comput. J. 2015, 37, 1018–1022. [CrossRef]

39. Maman, Z.S.; Yazdi, M.A.A.; Cavuoto, L.A.; Megahed, F.M. A data-driven approach to modeling physical
fatigue in the workplace using wearable sensors. Appl. Ergon. 2017, 65, 515–529. [CrossRef] [PubMed]

40. Mollee, J.S.; Middelweerd, A.; te Velde, S.J.; Klein, M.C.A. Evaluation of a personalized coaching system
for physical activity: User appreciation and adherence. In Proceedings of ACM 11th EAI International
Conference on Pervasive Computing Technologies for Healthcare, Barcelona, Spain, 23–26 May 2017.

41. Gerdes, M.; Martinez, S.; Tjondronegoro, D. Conceptualization of a Personalized eCoach for Wellness
Promotion. In Proceedings of ACM 11th EAI International Conference on Pervasive Computing, Barcelona,
Spain, 23–26 May 2017.

42. den Akker, H.O.; Jones, V.M.; Hermens, H.J. Tailoring real-time physical activity coaching systems: A
literature survey and model. User Model. User-Adapt. Interact. 2014, 24, 351–392. [CrossRef]

43. van, M.W.; Ittersum, H.K.E.O.; de Groot, M. Self-Tracking-Supported Health Promotion: A Randomized
Trial among Dutch Employees. Eur. J. Public Heal. 2017, in press.

44. Wolpert, D.H. The Lack of A Priori Distinctions Between Learning Algorithms. Neural Comput. 1996, 8,
1341–1390. [CrossRef]

45. Raschka, S.; Mirjalili, V. Python Machine Learning; Packt Publishing Ltd.: Birmingham, UK, 2015.
46. Scikit Learn, Choosing the Right Estimator. Available online: http://scikit-learn.org/stable/tutorial/

machine_learning_map/index.html (accessed on 15 February 2018).
47. Machine Learning Algorithm Cheat Sheet for Microsoft Azure Machine Learning Studio. Available online: https:

//docs.microsoft.com/en-us/azure/machine-learning/studio/algorithm-cheat-sheet (accessed on 15 February 2018).
48. scikit-learn v0.18. Available online: http://scikit-learn.org/0.18/documentation.html (accessed on 15 February 2018).
49. Anaconda. Available online: www.anaconda.com (accessed on 15 February 2018).
50. Jupyter Notebooks. Available online: https://jupyter.org (accessed on 15 February 2018).
51. Oracle Express Edition 11g2. Available online: http://www.oracle.com/technetwork/database/database-

technologies/express-edition/overview/index.html (accessed on 15 February 2018).
52. Flask. Available online: http://flask.pocoo.org/ (accessed on 15 February 2018).
53. Chan, C.B.; Ryan, D.A.; Tudor-Locke, C. Relationship between objective measures of physical activity and

weather: a longitudinal study. Int. J. Behav. Nutr. Phys. Act. 2006, 3, 21. [CrossRef] [PubMed]
54. Fogg, B. A behavior model for persuasive design. In Proceedings of the 4th International Conference on

Persuasive Technology (Persuasive ’09), Claremont, CA, USA, 26–29 April 2009; p. 1.
55. Blok, J.; Dol, A.; Dijkhuis, T. Toward a Generic Personalized Virtual Coach for Self-management: A Proposal

for an Architecture. In Proceedings of eTELEMED 2017, the Ninth International Conference on eHealth,
Telemedicine, and Social Medicine, Nice, France, 19–23 March 2017.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/S2213-8587(16)30284-4
http://dx.doi.org/10.1016/j.proeng.2011.08.331
http://dx.doi.org/10.1371/journal.pbio.2001402
http://www.ncbi.nlm.nih.gov/pubmed/28081144
http://dx.doi.org/10.1016/j.asoc.2015.01.025
http://dx.doi.org/10.1016/j.apergo.2017.02.001
http://www.ncbi.nlm.nih.gov/pubmed/28259238
http://dx.doi.org/10.1007/s11257-014-9146-y
http://dx.doi.org/10.1162/neco.1996.8.7.1341
http://scikit-learn.org/stable/tutorial/machine_learning_map/index.html
http://scikit-learn.org/stable/tutorial/machine_learning_map/index.html
https://docs.microsoft.com/en-us/azure/machine-learning/studio/algorithm-cheat-sheet
https://docs.microsoft.com/en-us/azure/machine-learning/studio/algorithm-cheat-sheet
http://scikit-learn.org/0.18/documentation.html
www.anaconda.com
https://jupyter.org
http://www.oracle.com/technetwork/database/database-technologies/express-edition/overview/index.html
http://www.oracle.com/technetwork/database/database-technologies/express-edition/overview/index.html
http://flask.pocoo.org/
http://dx.doi.org/10.1186/1479-5868-3-21
http://www.ncbi.nlm.nih.gov/pubmed/16893452
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Work 
	Materials and Methods 
	Study Design 
	Data Set 
	Data Processing, Transformation, and Performance 
	Evaluation of the Performance of Algorithms and Models 
	Computing the Personalized Predictive Model 
	Proof of Concept 
	Implementation Details 

	Results 
	Accuracy and F1-Score on Group Level 
	Individual Algorithms 
	The Web Application 

	Discussion 
	References

