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Abstract

Chinook salmon (Oncorhynchus tshawytscha) populations have experienced widespread

declines in abundance and abrupt shifts toward younger and smaller adults returning to

spawn in rivers. The causal agents underpinning these shifts are largely unknown. Here we

investigate the potential role of late-stage marine mortality, defined as occurring after the

first winter at sea, in driving this species’ changing age structure. Simulations using a stage-

based life cycle model that included additional mortality during after the first winter at sea

better reflected observed changes in the age structure of a well-studied and representative

population of Chinook salmon from the Yukon River drainage, compared with a model esti-

mating environmentally-driven variation in age-specific survival alone. Although the specific

agents of late-stage mortality are not known, our finding is consistent with work reporting

predation by salmon sharks (Lamna ditropis) and marine mammals including killer whales

(Orcinus orca). Taken as a whole, this work suggests that Pacific salmon mortality after the

first winter at sea is likely to be higher than previously thought and highlights the need to

investigate selective sources of mortality, such as predation, as major contributors to rapidly

changing age structure of spawning adult Chinook salmon.

Introduction

Changes in age structure have been well documented in exploited species such as fish popula-

tions experiencing top-down pressure from fisheries or natural predators [1]. The ecological

consequences of age structure changes, such as reduced egg and offspring quality, have been

hypothesized to reduce productivity of populations, which is concerning for imperiled species

that are failing to recover despite reduction in fishing mortality or the implementation of fish-

ery closures [2, 3]. Evidence that demographic changes can be the result of top-down control

has also been revealed from controlled experiments [4]. For example, guppy (Poecilia reticu-
lata) populations that live in high predation environments display age structure truncation [5].
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Therefore, identifying the causes of demographic changes is a crucial step toward understand-

ing the lack of recovery by imperiled fish stocks [1, 6].

Chinook salmon (Oncorhynchus tshawytscha) is an anadromous and semelparous spe-

cies, and the largest-bodied of the Pacific salmonids. Marked variation among populations

notwithstanding, adult Chinook salmon typically spawn in rivers during the summer or fall,

after which the embryos hatch during the winter and emerge as free-swimming individuals

the following spring. In the northern portion of their range, the young typically spend one

full year in freshwater before transitioning to smolts and migrating to sea. The majority of

lifetime growth of Chinook salmon occurs in the North Pacific Ocean. Chinook salmon

spend between two and five years feeding on both invertebrate and fish prey, before return-

ing to natal river systems for reproduction and death. Chinook salmon have decreased in

abundance, and size- and age-at-maturity throughout the Pacific basin, though the magni-

tude of the trends varies regionally [7, 8]. Probability of maturity in salmonids is thought to

be related to size-at-age, such that, smaller size-at-age is predicted to result in increased

age-at-maturity [9, 10]. In Chinook salmon, both size-at-age and age-at-maturity have

decreased [11], the opposite of what is expected if maturation is simply plastic with respect

to growth [7, 8]. The decrease in age-at-maturity has resulted in the truncation of the older

component of the age structure in many populations. The most pronounced shifts in age

structure have occurred in Alaska, the northern-most part of the species’ range [8], where

the oldest returning spawners (ocean-age 5 and older) have become very rare or have disap-

peared altogether. The loss of older adults has direct ecological and demographic conse-

quences for Chinook salmon populations, and economic and social consequences for the

humans that rely on this resource.

The basin-wide extent of this age structure change suggests exposure to shared marine driv-

ers is likely responsible. Currently, it is widely assumed that the risk of mortality decreases dra-

matically after the first winter in the ocean, the marine environment is relatively safe

thereafter, and that effects in this ‘late’ marine stage have minimal impacts on population char-

acteristics, including age structure [12]. An alternative hypothesis to explain the changes

observed in Chinook salmon age structure is that late-stage mortality, defined hereafter as

occurring after the first winter at-sea, is common [11]. Under this hypothesis, the period of

Chinook salmon life history thought to define population characteristics is expanded beyond

the known critical periods of ocean entry and the first ocean winter [11].

Here we investigate the importance of late-stage marine mortality in driving changes in age

structure of Chinook salmon by examining at which ocean ages mortality that was unac-

counted for in previous research must be applied to replicate observed changes in age structure

of a representative Chinook salmon population in the Yukon River watershed [13]. Specifi-

cally, we use simulation analysis to test the hypothesis that frequent late-stage marine mortality

could better explain observed patterns in the age structure of return adult salmon at matura-

tion, compared with the influence of environmentally-driven survival variation alone. To sim-

ulate the outcomes of several scenarios for late-stage marine mortality, we utilized results from

a stage-structured estimation model parameterized to the life cycle of Yukon River Chinook

salmon [13] that controls for known natural and anthropogenic drivers of variation in survival

across life-history stages, including environmental factors, and both directed and incidental

fisheries removals. The unamended model systematically under-represented the proportion of

ocean-age 2 returns and over-represented the proportion of ocean-age 3 adults returning to

the Salcha River [13]. Here, we investigate under what combination of intensity and ocean-age

selectivity could marine mortality be added to the original model to more accurately replicate

observed patterns in adult age composition.
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Methods

Study system and design

We simulated the impact of late-stage marine mortality on the spawning population age struc-

ture of Chinook salmon from the Salcha River, a tributary to the Yukon River, under alterna-

tive scenarios describing the intensity and selectivity of additional mortality in the ocean after

the first winter at-sea. The Salcha River represents an optimal indicator for the Yukon River

watershed as it is the largest single producer of Chinook salmon in the drainage [14]. Addi-

tionally, this population has a breadth of data available and has been the focus of previous eval-

uations of Yukon River Chinook salmon population dynamics, including the life-cycle model

[13] upon which we base our simulations. This life-cycle estimation model attempted to

explain past variation in age-specific Chinook salmon abundance between 1987 and 2010 [13,

15] based on a suite of natural and anthropogenic factors, by fitting a broad array of abun-

dance, age composition, catch, and survey information.

To understand changes in the age structure at a finer temporal scale than previous research

(e.g., [7]), we examined the age structure of adult returns to the Salcha River from 2006 to

2016 (Fig 1 and S1 File) as reported by the Joint Technical Committee of the U.S./Canada

Yukon River Panel [16–26]. The time series from the Joint Technical Committee and life cycle

model [13] differ in length, but 2006 through 2010 are included in both. Thus, the spawning

age composition from years 2006 to 2010 was used as a comparison period with simulations

based on the life-cycle model.

Simulation model structure

Our simulation framework was built upon a previous Bayesian stage-structured life-cycle

model that tracks cohorts of Chinook salmon from specific brood years (i.e., all the individuals

Fig 1. The age composition of Chinook salmon adult returns to the Salcha River, 2006–2016 [16–26].

https://doi.org/10.1371/journal.pone.0247370.g001
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whose life cycle started as eggs in the same year) through sequential life stages culminating in

spawning adults returning to the Salcha River and is fully described by [13]. In brief, the esti-

mated maturation schedule, stage-specific survival rates and capacities, and age-specific fecun-

dities estimated by the stage-structured population dynamics model fit to this population,

along with the uncertainty in those estimated model parameters, were used to parameterize

our simulations [13]. Parameter values for the simulations were drawn from the joint posterior

distribution of the fitted model to propagate estimation uncertainty through simulations while

maintaining the correlation structure among model parameters. Cunningham et al. [13] fit

this model accounting for the environmental and anthropogenic factors. The model was used

as the base operating model for the simulation analysis described in this paper; we performed

no additional fitting.

Survival (SRy,s) of a Chinook salmon cohort from a specific brood year (y) through a spe-

cific life stage (s) was approximated by a Beverton-Holt transition function [27]:

SRy;s ¼
py;s

1þ py;sNy;s� 1=ks

; ð1Þ

where N was abundance from that brood year (y) during the previous life stage (s-1). Produc-

tivity (py,s) was the maximum survival rate to the next life stage and was represented by a linear

time-varying function of average productivity [13] and environmental covariates. Capacity

(ks) was the total rearing potential of that stage; one capacity parameter was estimated for all

freshwater stages and another for all marine stages. Capacities were assumed constant among

brood years. Basal productivity, or average survival before the additive effects of environmental

covariates, was estimated by Cunningham et al. [13] to increase linearly (in logit space) across

ocean stages. Model stages were associated with distinct periods in the life cycle and could be

directly related to ocean ages, or the number of years a cohort of salmon had spent in the

ocean.

The environmental drivers of Chinook salmon survival found by Cunningham et al. [13] to

be most strongly supported were ice-out date on the Yukon River, winter temperature in the

Pribilof Islands, and Japanese hatchery chum abundance. Environmental covariates were

included or excluded at each stage using Bayesian model selection methods. However, the

model systematically under represented the proportion of ocean-age 2 returns and over repre-

sented the proportion of ocean-age 3 adults returning to the Salcha River [13]. For additional

details on the estimation model used as the basis for simulations, see Cunningham et al. [13].

Simulation design

To simulate additional mortality and identify under what combination of selectivity and inten-

sity this additional mortality can best describe observed trends in adult Chinook salmon age

structure, we added a term representing ocean-age specific instantaneous mortality (λa) to sev-

eral of the state equations [13]. Chinook salmon abundance was represented by Ny, s or the

number of individuals from brood year y, surviving to the end of stage s,

Ny;s ¼ Ny;s� 1

� �
e� ðSa�FtþlaþMy;sÞð1 � �aÞ: ð2Þ

Where the additional instantaneous mortality rate for Chinook salmon during their a-th

year in the ocean is λa, Sa is bycatch selectivity by ocean age a, Ft is the annual bycatch fishing

mortality rate in year t, and ϕa is the ocean-age specific probability of maturing. Maturation

probabilities at ocean age (ϕa) were assumed to follow a logistic function, the parameters of

which were directly estimated from the data. Calendar year, t, is offset from brood year, y,

PLOS ONE Simulating Chinook salmon demographics under changing marine mortality

PLOS ONE | https://doi.org/10.1371/journal.pone.0247370 February 19, 2021 4 / 14

https://doi.org/10.1371/journal.pone.0247370


based on the timing of each marine stage, and likewise ocean age a was appropriately indexed

to each model stage s, as a = s– 2.

Additional mortality was also included in calculations for the number of Chinook salmon

surviving to return to freshwater spawning grounds [13]:

Rt;a ¼ ðNy;s� 1Þe
� ðSa�FtþlaþMy;sÞð�aÞð1 � UtÞ: ð3Þ

The number of individuals returning to spawn, Rt,a, of ocean age a in calendar year t, is the

number of surviving individuals, less those caught in terminal commercial, recreational, and

subsistence fisheries where Ut is the observed annual harvest rate.

The number of fish removed by additional mortality from each ocean age class and year

was calculated using a modified Baranov catch equation [28], with our additional mortality

substituted for catch:

Pt;a ¼
la

Sa�Ft þ la þMy;s

 !

� ðNy;s� 1Þ � ð1 � e� ðSa�FtþlaþMy;sÞÞ: ð4Þ

Additional late-stage mortality by year and ocean age are given by Pt,a. The first term on the

right side of Eq 4 is the proportion of total mortality (denominator) due to the additional mor-

tality explored in simulations (numerator), the second term is number of fish entering that

stage, and the final (third) term describes the overall mortality rate.

A range of values for λa, describing additional age-specific marine mortality, were proposed

and used to simulate Chinook salmon abundance in return years 1987 through 2010. In each

year of the simulation, spawning abundance and proportion of females on the spawning

grounds in the previous year were used to calculate total egg deposition. Fish advanced from

one model stage to the next depending on the survival rate described by Eq 1. For each ocean

stage in a given calendar year, the number of fish removed from the population due to the

additional mortality, returning to the river, escaping terminal freshwater harvest, and pre-

dicted to arrive on the spawning grounds was recorded. The annual age composition of adult

spawning salmon was calculated by dividing the return abundance of each age class in a given

calendar year, by the sum of all returning salmon in that year. The simulation was repeated

100 times for each value of λa with random draws for demographic parameters from the joint

posterior for parameters as estimated in Cunningham et al. [13].

Marine mortality scenarios

Scenarios (λa) describe the additional instantaneous late-stage mortality imposed on Chinook

salmon of each ocean age (i.e. ocean-ages 1 through 5). Additional mortality was apportioned

among age classes using a vector of proportions termed a “selectivity suite” (qa), which was

then multiplied by a scalar that quantified the total intensity (I) of simulated mortality. Each

selectivity suite summed to one so the value of a given age can be viewed as the proportion of

additional mortality allocated to that age class.

la ¼ I � qa; where a ¼ 1 : 5: ð5Þ

Scenarios were identified by their selectivity suite number, a dash, and the overall intensity.

For example, scenario “1–0.5” was selectivity suite 1 multiplied by an instantaneous mortality

rate of I = 0.5. Because the additional mortality resulted in varying numbers of fish removed

from the population depending on the number of fish in each ocean age class, we tracked the

additional fish removed in a calendar year and calculated percentage of fish removed and total

additional realized mortality rate post hoc.
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Alternative scenarios that varied in both intensity and allocation of that mortality across

age classes (selectivity) were explored iteratively. All selectivity suites were simulated with total

intensities of I = 0–2, in increments of 0.2, meaning that the minimum additional instanta-

neous mortality rate in a given age class is 0 and the maximum is 2. An intensity of 0 adds no

additional mortality and allows for comparison to the baseline lifecycle model. All selectivity

suites, prior to scaling by total intensity, are compared in Table 1.

Instantaneous mortality rates were converted to annual percent mortality rates, while

accounting for the fact that additional late-stage mortality takes place simultaneously with fish-

ing mortality and the natural mortality predicted by environmental covariates. Therefore, to

understand the effect of the additional late-stage mortality in all scenarios, we calculated the

ratio of additional mortality to total marine mortality at a given age and year (Eq 6).

AMy;að%Þ ¼
la

la þ Sa�Ft þMy;s
� ð1 � e� ðlaþSa�FtþMy;sÞÞ ð6Þ

The median additional mortality rate was taken over the simulation period to facilitate the

comparison of scenarios. The minimum non-zero and maximum additional mortality rate for

each ocean age and selectivity suite are found in Table 2.

The combination of selectivity suites and intensities resulted in a total of 143 scenarios of

late-stage marine mortality for Chinook salmon, each of which were simulated independently.

We calculated the log-likelihood of the simulated return age structure from 2006 until 2010,

given the observed age composition in those years to assess their similarity. The likelihood was

given by (Eq 7):

Lðpy;ajny; zy;aÞ ¼
ny

zy;a

 !
Y4

a¼2
pzy;a
y;a ð7Þ

where ny is the true sample size used to generate the observed age structure from year y
(n = 509, 308, 303, 458, 419 for 2006 through 2010, respectively [16–20]), py,a is the proportion

of adult salmon returning at ocean age a in year y predicted from simulations, and zy,i is the

Table 1. Selectivity suites (qa) determine how additional late-stage mortality is apportioned among ocean age classes (a), which are then scaled by different intensi-

ties (I) of 0–2.0 to form mortality scenarios (λa).

Se
le
ct
iv
ity

Su
ite

(q
)

Selectivity (qa)

Ocean Ages

1 2 3 4 5

1 0.20 0.20 0.20 0.20 0.20

2 0.00 0.05 0.05 0.45 0.45

3 0.07 0.13 0.20 0.27 0.33

4 0.33 0.27 0.20 0.13 0.07

5 0.04 0.04 0.43 0.43 0.04

6 0.03 0.10 0.17 0.34 0.34

7 0.00 0.08 0.42 0.42 0.08

8 0.00 0.16 0.26 0.05 0.53

9 0.00 0.00 0.91 0.09 0.00

10 0.00 0.00 1.00 0.00 0.00

11 0.00 0.00 0.90 0.10 0.00

12 0.00 0.00 0.80 0.20 0.00

13 0.00 0.00 0.70 0.30 0.00

https://doi.org/10.1371/journal.pone.0247370.t001
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observed count of adult salmon of ocean age class a returning in year y. We initially included

rarely observed ocean-age 1 and 5 returns in the scenarios, but their near zero proportion had

a strong influence on the likelihood calculations while not impacting the overall age structure.

To eliminate this statistical artifact, we removed these rare ages from likelihood calculations.

As such, we quantified the likelihood of each marine mortality scenario, given the annual age

composition data for the predominant age classes observed for Yukon River Chinook salmon.

The sum of the log-likelihoods for the comparison time series (2006 through 2010) was com-

puted to calculate the overall log-likelihood of a given mortality scenario. Additionally, because

the intensity of late-stage mortality is highly uncertain, we calculated the total log-likelihood of

each selectivity suite across all levels of intensity by summing the log-likelihood of each sce-

nario from a given selectivity suite. By doing so, we were able to assess which selectivity suite

was most likely to represent the observed age composition while assuming nothing about the

total intensity.

The simulated total number of returning adults under the leading scenario was plotted

against the original estimation model [13] to qualitatively compare the effect of the scenario

on overall population abundance. We noted if the spawning adult abundance generated in

simulation scenarios was within the 95% Bayesian credible interval of the spawning adult

abundance from the original fitted model. Finally, to test whether inter-annual variation in the

age composition of returning adults could be obscuring changes over time, we compared the

simulated and observed time-series using the same methods after reducing them to smoothed

trends using multinomial regression [29] (S2 File).

Ethics statement: Because we relied solely on data previously collected by other organiza-

tions for simulations in this study, no permits or animal care assurances were required.

Results

The simulated late-stage mortality scenarios that most closely replicated observations of shifted

age structure concentrated mortality on ocean-age 3 Chinook salmon. These scenarios gener-

ated an increase in the proportion of ocean-age 2 returns while not driving the ocean-age 4

Table 2. The range of annual mortality rates (%) produced by all scenarios, excluding those which added zero additional mortality when environmentally driven

and bycatch mortality are accounted for. Selectivity suites (qa) determine how additional late-stage mortality is applied to each ocean age class, and the range describes

the simulated mortality across values of different intensities (I).

Se
le
ct
iv
ity

Su
ite
s
(q
)

Additional Mortality Rate (AM, %)

Ocean Ages

1 2 3 4 5

1 0.03–0.21 0.03–0.25 0.03–0.28 0.03–0.29 0.04–0.31

2 0.00 0.01–0.07 0.01–0.07 0.08–0.54 0.08–0.56

3 0.01–0.08 0.02–0.18 0.03–0.28 0.05–0.37 0.06–0.45

4 0.04–0.33 0.04–0.32 0.03–0.28 0.02–0.21 0.01–0.12

5 0.01–0.05 0.01–0.06 0.07–0.49 0.07–0.52 0.01–0.08

6 0.01–0.04 0.02–0.14 0.03–0.24 0.06–0.45 0.06–0.46

7 0.00 0.01–0.12 0.07–0.48 0.07–0.51 0.02–0.14

8 0.00 0.02–0.21 0.04–0.34 0.01–0.09 0.09–0.61

9 0.00 0.00 0.14–0.73 0.02–0.15 0.00

10 0.00 0.00 0.15–0.75 0.00 0.00

11 0.00 0.00 0.14–0.73 0.02–0.16 0.00

12 0.00 0.00 0.12–0.69 0.03–0.29 0.00

13 0.00 0.00 0.11–0.65 0.05–0.40 0.00

https://doi.org/10.1371/journal.pone.0247370.t002
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returns to unrealistically low levels. Of the 143 scenarios, 90 of them were more likely than the

scenarios with no additional mortality (log-likelihood > -170; Table A in S3 File). The top 10

scenarios all selectively removed ocean-age 3 fish and were generated using selectivity suites

8–12 (Fig 2). The age structure and log-likelihood for all scenarios are included in Table A in

S3 File. The scenario that produced the final age structure that most closely matched the

observed age structure from the Salcha River was 11–0.8 (log-likelihood = -124.97; Table A in

S3 File), which divided additional mortality between ocean-age 3 and 4 fish at proportions of

0.9 and 0.1, respectively. This scenario translated to median additional mortality rates of 43%

at ocean-age 3 and 6.8% ocean-age 4 on fish entering their third and fourth years at sea. The

expected age composition of Chinook salmon returning to the Salcha River under this scenario

was: 2.9% ocean-age 1, 17% ocean-age 2, 40% ocean-age 3, 36% ocean-age 4, and 3.8% ocean-

age 5. Scenario 11–0.8 resulted in a predicted decrease in adult returns below the lower bound

of the 95% Bayesian credible interval from the estimation model fit (Fig 3; [13]). Selectivity

suite eight had the greatest cumulative log-likelihood (Fig 2), which distributed 16%, 26%, 5%,

and 53% of additional mortality on ocean-ages 2, 3, 4, and 5, respectively.

After using multinomial regression to smooth time series, the scenario that produced the

final age structure that most closely matched the age structure for the smoothed 2006–2010

age proportions from the Salcha River was 10–0.6 (log-likelihood = -40.486), which removed

only ocean-age 3 fish at an intensity of I = 0.6. This scenario translates to a median additional

mortality rate of 38% on fish entering their third year at sea. The expected age composition of

Chinook salmon returning to the Salcha River under scenario 10–0.6 was: 2.5% ocean-age 1,

15% ocean-age 2, 39% ocean-age 3, 39% ocean-age 4, and 4.1% ocean-age 5. Suite eight still

had the greatest cumulative log-likelihood over all intensity levels (Fig B in S2 File).

Discussion

Our simulations of additional late-stage marine mortality were able to replicate observed age

structure truncation of the Salcha River Chinook salmon population. Specifically, a selective

scenario that added an additional 43% mortality during the third year at sea and 6.8% during

the fourth year best matched the observed trends in age structure compared to a scenario with-

out additional late-stage mortality. All of the most likely scenarios concentrated late-stage

mortality during the third year at sea to best replicate the observed age structure in adult

Fig 2. (Left Panel) Total likelihood for each selectivity suite summed over all mortality intensities. (Right Panel) Heat map of the log-likelihoods of all mortality

scenarios by selectivity suite (qa) and overall intensity (I).

https://doi.org/10.1371/journal.pone.0247370.g002
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returns. As such, the third year at sea may be an underappreciated bottleneck and another crit-

ical period in the life of Chinook salmon. Regardless of the specific agents or mechanisms of

mortality, the resulting effects could alter the age and possibly sex structure on the spawning

grounds and result in further decreases in productivity. Given the imperiled nature of many of

these populations, a critical reexamination of possible drivers or agents of mortality after the

first year at sea is needed to gain a better understanding of demographic dynamics.

Some potential and non-mutually exclusive causes of marine mortality include changing

environmental conditions that affect prey fields, size-selective harvest in directed fisheries,

competition with hatchery-derived Pacific salmon, bycatch in marine fisheries and top down

forcing by apex predators [30]. Recently emerging evidence suggests that predation is a stron-

ger driver of late–stage marine mortality than selective human harvest and is a primary agent

of changes in the age structure of Chinook salmon [31]. Under the assumption that predation

is a strong driver of late-stage mortality of Chinook salmon, our top simulation scenarios sug-

gest that the reduction in abundance of the oldest fish on the spawning grounds is not due to

predation during those latest ocean years (e.g., ocean-ages 4 and 5), but due to a lack of survival

to these ages, particularly through ocean-age 3. We hypothesize that at ocean-age 3 individuals

become larger than the average individuals of other prey species, including other highly abun-

dant salmonids (60 cm fork length and greater) [32] and thus may become more conspicuous

to visual predators that may select for Pacific salmon. Prior to the third year at sea, these abun-

dant Pacific salmon species such as pink salmon (O. gorbuscha), chum salmon (O. keta), and

sockeye salmon (O. nerka) [33] may serve as a predation buffer to growing Chinook salmon,

reducing the individual risk of being consumed by a predator, but thereafter individuals may

be vulnerable to hyperpredation pressure.

Recent studies have explored the potential impact of recovering marine mammal popula-

tions on their Chinook salmon prey [31, 34] and drawn associations between killer whale

(Orcinus orca) consumption and declines in body size of Chinook salmon across the North

Pacific [31]. While killer whales and Chinook salmon are undoubtedly ecologically connected

in the coastal waters of British Columbia and Washington State through selective foraging

[35], evidence of a killer whale diet preference for Chinook salmon in much of its range,

Fig 3. Simulated abundance of adult Chinook salmon returns in the Salcha River indicator stock plotted with

(scenario 11–0.8) and without (base) additional mortality. Note how the scenario causes the adult return to fall

outside of the 95% Bayesian credible interval (shaded area) of the original model fit.

https://doi.org/10.1371/journal.pone.0247370.g003
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including the Western Pacific Ocean and Bering Sea does not exist. In contrast, direct evidence

through satellite tagging of large Chinook salmon has documented substantial predation on

ocean age-3 individuals by salmon sharks (Lamna ditropis) [36]. Combined, these observations

suggest that apex predators frequently consume Chinook salmon, and therefore could act as

ecological agents of changing demographics of this species. The corroboration of our simula-

tion exercise and multiple in situ predation observations strengthens the inference that Chi-

nook salmon could be facing relatively intense and/or selective mortality in the ocean that

could contribute to the change in observed age structure.

Despite proposing a variety of scenarios, the level of late-stage marine mortality necessary

to reproduce the observed shift in the age structure did not reproduce estimated abundance.

This could be due to an aspect of Chinook salmon population biology that was not included in

the model, specifically the heritability of age-at-maturity and how that age can respond to

selective pressure. We used a time-invariant probability of maturation to test the numeric

removal of individuals alone to aid in the comparison of additional mortality scenarios and

because we would not expect the probability of maturation to change significantly over the

study period due to evolution. Given a smaller proportion of older-maturing individuals

returning to spawn (i.e., ocean-age 4), the lifetime reproductive success of individuals exhibit-

ing this phenotype would be reduced. This would select for earlier maturing individuals,

which ultimately could result in a genetic change in the maturation schedule of these popula-

tions, to the extent that age at maturity is a heritable trait. Earlier maturation would require

the removal of fewer individuals in this simulation framework to observe the same shift in age

structure.

Recent work on western Alaskan Chinook salmon using growth histories derived from

scale analysis provides evidence that the age threshold for maturation has indeed declined in

recent decades [37]. Additionally, simulation work including the heritability of maturation

showed that Chinook salmon that experience selective exploitation can experience reductions

in the size and age of maturation on the scale of decades [38]. Given the observed decline in

maturation threshold, the history of exploitation of this species, our results, and the limitations

of the model structure we used, we believe that selective mortality through predation may be

playing a part in shaping age structure through sheer removal of individuals. However,

observed changes are likely due to a combination of mortality and evolutionary changes in the

timing of maturation and additional work is needed to understand the nonlinear effects of

these ecological and evolutionary processes.

It is implausible that all observed changes in Chinook salmon demographics are attributable

to one agent of selection such as predation. Many of the challenges that Chinook salmon popu-

lations face apply selective pressure in the same direction and could exert a cumulative evolu-

tionary effect. Chinook salmon have long been subject to harvest and although harvest rates

have been variable through this species’ range and have declined in some areas, harvest is still a

mortality source during the late marine stage. Though the impact of bycatch at sea on its own

is estimated to be minimal and not very selective [13, 39], bycatch is another source of marine

mortality for Chinook salmon after their first year at sea. Additionally, favorable ocean condi-

tions since the 1976/1977 regime shift and hatchery propagation of Pacific salmon has led to

more salmon in the ocean, resulting in apparent density-dependent effects [33]. An increas-

ingly crowded ocean could lead to individual fish risking more predation exposure to procure

prey and thus experiencing increased marine mortality [40], coupled with reduced growth

opportunity. These factors highlight the alignment of several selective pressures in the ocean,

which may be individually insignificant, but could compound to exert directional selection for

younger age of maturation in Chinook salmon.
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The shift in age structure to younger returning adults likely has a further indirect effect by

reducing the intrinsic reproductive potential of Chinook salmon populations. This reduction

may result from smaller fish having smaller eggs, reduced fecundity, slower swimming speeds,

and reduced ability to dig redds, among other fitness consequences [41]. Further compound-

ing these potential ecological effects is the possibility of increasing the skewed sex ratio of adult

returns in this species. Chinook salmon are known to have uneven and sometimes extreme sex

ratio bias with more male returns than females [42, 43], despite even numbers of individuals

going to sea. Presumably due to increased fitness benefits of size-dependent fecundity, female

Chinook salmon mature at a larger size and older ages than males [41] and therefore are

exposed to more mortality risk in the marine environment. Some rivers and tributaries have

experienced low proportions of female returns, which may be reducing the effective popula-

tion productivity for a given spawning abundance. These rivers include: the mainstem Yukon

(33% female, long-term average 42%) and Gisasa rivers (29.6% female), a tributary to the

Yukon River in Alaska [26]; the Tuluksak River (31% female), a tributary to the Kuskokwim

River, AK [44]; and the Killey River, AK (28% female), a tributary to the Kenai River [45].

Selective late-stage marine mortality could lead to even lower proportions of female returns,

which would lead to decreased population fecundity and further reduced population

productivity.

Mortality of Chinook salmon after the first year in the ocean has often been dismissed as

unlikely to have demographic consequences. Our work challenges this assumption as addi-

tional late-stage marine mortality was found to contribute to the best simulation of observed

changes in age structure in an index population. Given these results, the remaining years at sea

should not be dismissed as inconsequential. Taken as a whole, our results call for a critical

reexamination of a longstanding hypothesis in Pacific salmon ecology that the ocean is a gen-

erally safe place after their first year at sea, during which the year class strength is set [12]. We

suggest that while year class strength may indeed be determined during the first year at sea,

population age structure may be determined by selective agents later in the marine stage. Per-

haps not surprising, these effects appear the most pronounced in our study species, Chinook

salmon, that rear in the ocean longer than other Pacific salmon. In light of the continued

depression on Chinook salmon stocks, a critical re-examination of late stage mortality is

needed given its apparent role in determine age structure, which in turn can indirectly act as

an additional bottleneck to productivity.
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