
REVIEW
published: 17 May 2022

doi: 10.3389/fvets.2022.898295

Frontiers in Veterinary Science | www.frontiersin.org 1 May 2022 | Volume 9 | Article 898295

Edited by:

Xuezhao Sun,

Jilin Agricultural Science and

Technology University, China

Reviewed by:

Lorenzo Fraile,

Universitat de Lleida, Spain

Ramon Armengol,

Universitat de Lleida, Spain

*Correspondence:

Zhijun Cao

caozhijun@cau.edu.cn

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Animal Nutrition and Metabolism,

a section of the journal

Frontiers in Veterinary Science

Received: 20 March 2022

Accepted: 19 April 2022

Published: 17 May 2022

Citation:

Ma Y, Khan MZ, Xiao J, Alugongo GM,

Chen X, Li S, Wang Y and Cao Z

(2022) An Overview of Waste Milk

Feeding Effect on Growth

Performance, Metabolism, Antioxidant

Status and Immunity of Dairy Calves.

Front. Vet. Sci. 9:898295.

doi: 10.3389/fvets.2022.898295

An Overview of Waste Milk Feeding
Effect on Growth Performance,
Metabolism, Antioxidant Status and
Immunity of Dairy Calves
Yulin Ma 1†, Muhammad Zahoor Khan 1,2†, Jianxin Xiao 1, Gibson Maswayi Alugongo 1,

Xu Chen 1, Shengli Li 1, Yajing Wang 1 and Zhijun Cao 1*

1 State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing,

China, 2University of Agriculture, Dera Ismail Khan, Khyber Pakhtunkhwa, Pakistan

Waste milk (WM) is a part of the milk produced on dairy farms, which is usually unsuitable

for human consumption. The WM contains transition milk, mastitis milk, colostrum, milk

with somatic cells, blood (Hemolactia), harmful pathogens, pathogenic and antibiotic

residues. Due to the high cost of milk replacer (MR), dairy farmers prefer raw WM to

feed their calves. It has been well established that WM has a greater nutritive value

than MR. Hence WM can contribute to improved growth, rumen development, and

immune-associated parameters when fed to dairy calves. However, feeding raw WM

before weaning has continuously raised some critical concerns. The pathogenic load

and antibiotic residues in raw WM may increase the risk of diseases and antibacterial

resistance in calves. Thus, pasteurization has been recommended as an effective

method to decrease the risk of diseases in calves by killing/inhibiting the pathogenic

microorganisms in the raw WM. Altogether, the current review provides a brief overview

of the interplay between the positive role of raw WM in the overall performance of dairy

calves, limitations of rawWM as a feed source and how to overcome these issues arising

from feeding raw WM.

Keywords: waste milk, microbiota, antibiotic residues, pasteurization, growth performance, rumen fermentation

INTRODUCTION

The productive efficiency of dairy farms is determined by many factors, including good
management of dairy calves. There are no returns for the dairy farm in the first 2 years of rearing
heifers, with average costs for raising a Holstein heifer estimated at $1,225 in the US (1, 2). It has
been suggested that these costs are much higher in China, with estimates projected to be almost
1.34 times those of the US (3).

On most Chinese dairy farms, calves are weaned at least 2–3 months after birth (4). A calf is
most likely to have consumed ∼350–500 kg of standard milk (SM) or milk replacer (MR) during
that period. Therefore, in production systems that rely solely on feeding raw SM, the rearing costs
might be greater because of the opportunity cost involved; SM is the sole income source. Hence,
several feeding techniques have been explored in the past few decades to minimize calf rearing costs
and ultimately reduce farm costs during the non-productive period.
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Waste milk (WM) has gotten considerable attention among
dairy farmers because of its perceived low cost and desirable
nutritive value. All non-saleable milk, including colostrum,
transition milk, mastitis milk, colostrum, milk with somatic
cells, blood (Hemolactia), harmful pathogens and pathogenic and
antibiotic residues, is usually graded as raw WM (5). Mei et al.
(6) reported that the raw WM accounts for about 2–4 percent of
China’s total milk production, equating to 0.8–1.6 million tons
of milk produced annually in China. These significant amounts
of milk represent a loss of income for the dairy farm and can
also be an environmental hazard. However, since some dairy
farms can have a significant amount of raw WM with a nutrient
profile as good as that of salable raw SM, farms dispose of the
milk by feeding it to dairy calves (7). For example, a study from
the United States reported that raw WM was the main dietary
liquid feed fed to 40.1%, while MR was fed to slightly <35.0% of
calves surveyed (8). Although feedingWM to calves is considered
cost-effective, its use on dairy farms remains controversial (9).

Raw WM contains a high concentration of viable bacteria
and antibiotic residues (10), which are linked to an increased
incidence of diarrhea in calves (11). It has been reported that
Salmonella spp. and Mycoplasma spp. in raw WM are among
the major pathogenic bacteria that pose a threat to calf health
(12). Consequently, some studies have documented that feeding
raw WM might contribute to the development of antimicrobial-
resistant bacteria in the gut of calves (13, 14). Indeed, a shift
in the prevalence of antimicrobial resistance has been observed
in calves fed raw WM (15, 16). Furthermore, the bovine viral
diarrhea virus (BVDV) is an important global pathogen in the
livestock industry (17). It was recently reported that feeding
calves with milk from lactating cows carrying BVDV resulted
in serious health issues (18). Proper treatment of raw WM
is highly recommended to overcome these health challenges.
Pasteurization has been promoted as a viable option for treating
WM and reducing levels of harmful bacteria in milk to acceptable
limits (19). It is plausible that feeding calves with pasteurized
raw WM could cost ($0.69/day) less to raise than those fed
commercial MR, even when the cost of purchasing a pasteurizer
is included (9). Moreover, calves fed pasteurized waste milk
(PWM) showed increased growth and had lower morbidity
and mortality during the pre-weaning period (9). Alternatively,
organic acids could be used to acidify WM (AWM) and reduce
the health risk of feeding raw WM to the calves (20). The
effect of raw WM on overall calf performance is summarized
in Figure 1. The current review discusses the drawbacks of
utilizing raw WM to feed dairy calves. In addition, the impact
of pasteurization in reducing bacterial load in milk has also been
explored in depth.

EFFECT OF WM FEEDING ON CALF
PERFORMANCE

Effect on Calf Growth Performance
From birth to weaning, dairy calves endure numerous challenges
and stressors, including greatermorbidity rates (21), whichmight
affect their growth performance. The nutritional and health

characteristics of these calves, if not effectively controlled, will
lead to increased production costs and environmental hazards.
A range of factors such as the quantity and quality of liquid feed,
environmental changes, feeding methods, and solid feed intake
are critical to calf growth and health (22).

Calves fed raw WM had greater average daily gain and serum
total protein, albumin, total cholesterol, high-density lipoprotein,
triglycerides, growth hormone, immunoglobulin (Ig) A and
IgM concentrations compared to raw SM (23), which could
be attributed to the high amount of milk fat and solid non-
fat percentages, or presence of antibiotic residues in raw WM
(5). Similar studies showed that calves fed raw WM gained
more body weight than calves fed MR or SM (5, 23–25). One
probablemechanism is the growth-promoting effects of rawWM,
whereby the antibiotic residues present in the raw WM alters
the intestinal flora resulting in a healthy intestinal environment
(26). Subsequently, the calves direct the extra energy available
toward growth rather than fueling the immune function while
trying to counteract the pathogen and antigens in the gut
lumen (27).

The range of penicillin concentrations utilized in a dose-
regulated experiment was determined using the concentration
of β-lactam antibiotic residues discovered in milk from treated
cows (13). In addition, they also reported that the resistance of
gut bacteria to antibiotics increased with the supplementation of
raw WM in calves having higher concentrations of penicillin in
the milk (13).

The effect of substituting PWM with raw SM for 3 weeks
on dairy calves’ growth and health performance has been well
documented (28). It has consistently been reported that calves fed
PWM gained more BW than those fed raw SM during the post-
weaning and overall periods. In the pre-weaning, post-weaning,
and overall periods, calves fed PWM had higher average daily
gains than those fed raw SM.Moreover, feed efficiency and health
were improved with feeding the PWM during all the studied
periods. A study reported that calves fed PSM improved daily
gain (29).

Unlike raw SM, the effect of MR on calf growth performance
depends on its composition. Hence, studies that have compared
raw SM or PWM and MR have shown inconsistent results. It
is well established that source of protein in milk replacer can
interfere with growth, with some early studies reporting that
calves fed milk-derived protein MR performed better than those
fed soybean protein concentrate as the main protein source
(30). On the contrary, calves fed raw SM and MR had similar
growth performance, though the MR contained plant protein
(31). Additionally, an optimal protein level in MR is critical
to support growth and reduce environmental pollution. Calves
fed an MR containing 22% crude protein had better growth
performance and nutrient utilization than animals fed either 18
or 26% of crude protein on a DM basis (32).

Alternatively, AWM could be fed to promote calf growth
(33). Adding an organic acid to milk decreases the WM pH and
diarrhea and increases the daily gain in dairy calves (23). The
AWM might have an improved flavor, which promotes appetite
in calves (34). Presently economic considerations generally
hinder the use of raw SM on dairy farms. Partial replacement
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FIGURE 1 | Raw waste milk (WM) refers to milk that cannot be sold to the market for human consumption. The milk is obtained mainly from fresh cows and diseased

cows under treatment with antibiotics or whose antibiotic withdrawal period has not elapsed, resulting in very low concentrations of these antibiotics being passed

through milk. Pasteurization is often performed before feeding WM to reduce health risks in calves. Pasteurized WM reduces the number of harmful bacteria, IL-8 and

increases the concentration of beneficial metabolites and volatile fatty acids (VFA). Finally, the growth performance, rumen fermentation and immune system of the

calves are improved.

of raw SM with raw WM is recommended in dairy calves
at an early stage of life to maintain a maximum growth rate
and health benefits (9). A summary of the effects of raw
WM and PWM on calf growth performance is shown in
Table 1.

Effect on Rumen Fermentation in Dairy
Calves
Rumen development relies on the pre-weaning colonization of
the gastrointestinal tract with bacteria, which results in the
physiological changes and transition from a non-ruminant to a
ruminant (40). On the other hand, dietary changes may result in
long-term changes in the composition of rumen bacteria (41–43).

Pasteurized waste milk substantially altered the gut microbial
composition in pre-weaning calves, especially Bacteroidetes spp.
and Firmicutes spp. (44) which significantly increased in calves
fed PWM compared to raw SM. In a different study, calves fed
rawWM exhibited a richer rumen microbiota than those fed raw
SM (35). The raw WM contains greater milk protein content
entering the rumen than raw SM (45) due to its substantial
amount of transition milk. The rumen of raw WM-fed calves
tends to have a higher concentration of isovalerate, a true
reflection of the high protein content in the rawWM. The higher
concentration of isovalerate has been associated with increased
numbers of Butyrivibrio fibrisolvens in calves (46).

In the rumen, microorganisms produce branched-chain
volatile fatty acids (VFAs) through decarboxylation of

branched-chain amino acids and peroxide deamination
(45). The VFAs, especially butyrate, stimulate the growth of
the rumen papilla and epithelium and are considered the
most critical elements influencing rumen development (47).
Calves fed MR plus four antibiotics (0.024 mg/L penicillin,
0.025 mg/L streptomycins, 0.1 mg/L tetracyclines, and 0.33
mg/L ceftiofur) had a reduced and higher richness of Prevotella
spp. and Acetitomaculum spp., respectively, at the genus level.
As a result, residual antibiotics administered to raw WM
calves enhanced rumen fermentation, ruminal papillae growth,
and increased rumen acetic acid production (2). The relative
abundance of Prevotella spp., one of the most diverse and
core flora at the genus level (48), was reduced by antibiotic
residues, possibly due to their sensitivity to a penicillin (49)
and tetracycline (50) antibiotics. Antibiotics such as monensin,
gentamicin, virginithromycin, ampicillin, ceftriazine, penicillin,
and oxytetracycline are routinely used to treat mastitis in dairy
cows. Chlortetracycline, oxytetracycline, tylosin, and monensin
have been demonstrated to prevent rumen bacteria from
breaking down cellulose and producing VFA in vivo (51). In
addition, ampicillin, ceftriazine, penicillin and oxytetracycline
inclusion in calf milk can affect the fecal microbial population
composition (35, 52). A recent study supported the idea that
gentamicin inhibits Prevotella intermedia (53). The abundance
of Prevotella spp. was likewise reduced in calves given raw
WM with concentrations of 0.024 mg/L penicillin, 0.025 mg/L
streptomycins, 0.10 mg/L tetracycline, and 0.33 mg/L ceftiofur
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TABLE 1 | Effect of feeding raw WM and PWM on the growth performance of calves.

Feed type Types/amount of antibiotics Feeding groups Data Growth performance References

WM 0.025 mg/L of streptomycin, 0.1 mg/L of

tetracycline,

0.024 mg/L of penicillin, and

0.33 mg/L of ceftiofur

PWM and raw WM Raw WM: 733 g/d

PWM:798 g/d

No adverse effect on

average daily gain.

(28)

WM Chlortetracycline, oxytetracycline, tylosin, and

monensin

Raw WM and MR MR: 450 g/d

PWM: 650 g/d

Increased average daily gain

of calves

(35)

WM ND; Milk from cows treated with veterinary

drugs due to mastitis or other diseases

Raw SM and WM Raw SM: 258 g/d Raw

WM: 525 g/d

Increased average daily gain

of calves

(23)

WM Amoxicillin/ clavulanic acid, enrofloxacin,

cefquinome, ceftiofur, tylosin, oxytetracycline

and penethamate hydroio dide.

Raw SM and WM Raw WM: 587 g/d

Raw SM: 538 g/d

There was no unusual effect

on average daily gain.

(5)

WM ND; Milk from cows treated with veterinary

drugs due to diseases

Raw SM and WM Raw SM: 690 g/d

Raw WM: 730 g/d

No negative effect was on

average daily gain.

(36)

WM ND; Milk from cows with clinical mastitis,

placental retention, metritis, or foot infections

Raw SM and WM Raw SM: 670 g/d

Raw WM: 710 g/d

There is no adverse effect

on average daily gain.

(37)

PWM Mainly cephalosporins and lincosamides PWM and Raw WM PWM: 780 g/d Raw

WM: 670 g/d

Increased average daily gain

of calves

(38)

PWM ND; Milk from cows treated with veterinary

drugs due to mastitis or other diseases

PWM and Raw SM PWM: 454 g/d

Raw WM: 258 g/d

Improved the average daily

gain of calves

(23)

PWM Per 1ml contains 100,000U.I. penicillin G

procaine, 100,000U.I. penicillin G benzathine,

120mg dihidroestreptomycin sulfate, and

0.2mg dexamethasone sodium phosphate

PWM and NMR PWM: 543 g/d

Raw WM: 515 g/d

There was no negative

average daily gain.

(39)

PWM Amoxicillin/clavulanic acid, enrofloxacin,

cefquinome, ceftiofur, tylosin, oxytetracycline

and penethamate hydroio dide.

PWM and Raw SM PWM: 584 g/d

Raw SM: 538 g/d

There was no undesirable

effect on average daily gain.

(5)

PWM ND; Milk from cows with clinical mastitis,

placental retention, metritis, or foot infections

PWM, Raw SM and

raw WM

PWM: 345 g/d

Raw SM: 375 g/d

Raw WM: 392 g/d

There was no adverse effect

on average daily gain.

(37)

Pasteurized waste milk (PWM); Waste milk (WM); non-medicated milk replacer containing sodium butyrate and active probiotic Bacillus amyloliquefaciens (NMR); In cases where the

antibiotics were not determined (ND), the composition of milk used is stated.

(2). Feeding raw SM has an important effect on calf rumen
development. A study reported lower acetate and propionate
levels in the rumen of calves fed raw SM compared to PWM (37).
A study found that feeding acidified SM to calves within 14 weeks
of age was helpful for rumen development (54). Calf rumen
pH is an important indicator for assessing rumen development.
The optimal pH of calf rumen should be between 5.8 and 6.4
pH units under good feeding practice (55). A study reported
that the addition of inulin to raw SM can influence the pH
of the rumen by making it more alkaline, and can accelerate
postnatal rumen development and improve its functionality
(56), and adding 12 g of inulin to raw SM when feeding calves
could improve rumen papillae development, as seen from
increased length and width of the papilla, especially in the
Saccus ventralis region. A study in our research group tried to
improve rumen development by adding butyrate to raw SM
(57). However, raw SM with butyrate had no significant effect on
rumen development (57). A study reported that PSM reduced
the calf diarrhea rates and improved health compared to SM
(58). Likewise, MR can positively affect calf rumen development
(59). Interestingly, most studies have focused on the effects of
combining milk replacer with other beneficial supplements,
such as probiotics and milk replacer, on the calf rumen (60, 61).

Indeed, a study found that adding probiotics to MR improved
rumen development (61).

Effect on Intestinal Villi Development
Injury to the intestinal mucosa disrupts the intestinal epithelial
barrier function resulting in enteritis and diarrhea in dairy calves
(62). Calves fed both raw WM and PWM had uniform villi in
the ileum, while those fed raw SM were irregular (23). However,
pasteurization seems to further improve the villi distribution
and conformity in calves fed PWM compared to raw WM. The
high concentration of growth factors and bioactive peptides in
PWM might partially explain the superior developed intestinal
villi compared to rawWM (63, 64).

EFFECT OF WM ON INTESTINAL
MICROBIOTA AND MICROBIOLOGY IN
THE INTESTINAL TRACT

Effect on Intestinal Microbiota in Calves
Shortly after birth, different bacteria colonize the calf ’s
gastrointestinal system (27, 65). The composition and activity
of these microbiotas can have an impact on dairy calves’
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growth and development (65, 66). The gut microbiota exists
symbiotically with the host by stimulating the immune system
and intestinal tissue development while obtaining energy from
the host’s diet (67). Calves’ health depends on a healthy
intestinal microbiota, which contributes to a stable intestinal
environment (17) that promotes epithelial cell growth and
development (68).

Pre-weaning calves get most of their energy and protein
from partially digested and absorbed food elements in the small
intestines (69). Diet has a significant impact on the development
of intestinal microbiota (65, 70) and is regarded as one of the
most essential elements in gutmicrobial structure regulation (71–
73). This is especially important later in life, as the early intestinal
microbiota improves health and productivity (43). As a result,
low incidences of illnesses in calves fed PWM compared to raw
SM (1, 74) could be attributed to the intestinal microbiota being
regulated prior to weaning (52). However, the long-term effects
of feeding raw WM on calf health and performance are yet to be
elucidated. Interestingly, there were no differences in the alpha
diversity of colon and caecum digesta in calves fed raw WM,
PWM and raw SM as determined by Chao 1 and Shannon indices
(75). However, there were differences in the dominantmicrobiota
in the colon and caecum digesta. In caecum digesta samples,
the dominant bacterial phyla in raw WM and PWM-fed calf
were Bacteroidetes spp. and Firmicutes spp., while the dominant
bacterial phylum in raw SM calf was Fusobacteria spp. In colon
digesta samples, Bacteroidetes spp. and Firmicutes spp. were the
dominant phyla in the PWM calves, whereas Proteobacteria
spp was the most abundant phyla in the raw WM and SM
calves. Meanwhile, the study also indicated that feeding calves
PWM elevated the relative abundance of Ruminococcus spp.,
Megamonas spp., and Oxalobacter spp. in the caecum. Notably,
Ruminococcus spp. produce short-chain fatty acids, which are
important sources of energy for ruminants (76). These findings
implied that feeding calves PWM may exert beneficial effects on
calf health by elevating the abundance of beneficial bacteria in the
caecum. Calves fed SM increased the relative abundance of the
genusComamonas spp. in the colon (76), which is associated with
the degradation of steroids and various aromatic acids (77). This
means that the hydrolytic and fermentative functions of raw SM
in the colon may have been enhanced. The combination of MR
and butyric acid can increase the abundance of Prevotella spp. in
the colon and cecum (78). Prevotella spp. has been established
as an important member of the mammalian gut ecosystem,
comprising species capable of fermenting a wide range of non-
cellulosic plant polysaccharides and protein (79). Studies have
shown a decrease in the relative abundance of Clostridium spp.
and Peptostreptococcus spp. in the gut of ASM and PSM calves
(80). A study reported that adding sodium humate and glutamine
to MR significantly increased the abundance of calves’ intestinal
beneficial microbiota (81). The nutritional composition of MR
affects the calf gut microbiome. A study found that feeding
calves two different commercial MRs had different effects on the
calves’ gut microbiome (82). In addition to the different crude
protein and crude fat content of the two MRs, there were also
differences in their production methods. Among them, MR with
more conjugated milk oligosaccharides significantly increased

the abundance of Bifidobacterium spp. and Faecalibacterium
prausnitzii spp. in the gut of calves (82). Bifidobacterium spp. is
well known to utilize milk oligosaccharides (83).

Effect on Antimicrobial Resistance in Dairy
Calves
Due to the increased attention toward antimicrobial resistance
in recent years, the antimicrobial residues in raw WM have
also attracted interest among animal scientists. Studies have
shown that if raw WM is fed, the antimicrobial residues
in the milk might exert selective pressure on the intestinal
microbiota in calves, which may increase the prevalence of
drug-resistant bacteria in the rumen and intestines (84). Wray
et al. (24) evaluated the effect of antibiotic-containing WM
feeding calves in two trials. Fecal E. coli were monitored for
antibiotic resistance. They used fermented and unfermented
WM in the first trial. According to these researchers, the
geometric mean minimum inhibitory concentration (MIC) for
streptomycin was considerably greater for isolates from calves
given unfermented WM. In the second study, only unfermented
milk was utilized, and no changes in the percentage of resistant
E. coli and Enterococci were found between isolates from calves
fed antibiotic-containing milk and the controls when it came
to identifying the percentage of resistant E. coli and Enterococci
(24). Consistently, it has been reported that fermentation can
reduce the antibiotic content in raw WM, and the high numbers
of bacteria in the raw WM might have presented a disease risk
in these two experiments. Studies that investigated the impact
of feeding raw SM or WM—PWM or not—on calf antibiotic
resistance of specific fecal bacteria, found that the proportion of
resistant E. coli isolates was significantly higher in calves fed raw
WM (inclusive of PWM; most pronounced for cephalosporins)
than in calves receiving raw SM (15). This implies that PWM
represents an acceptable feed for young calves (5). Maynou et al.
(15, 38) studied the antimicrobial resistance patterns in fecal
E. coli, and nasal Pasteurella multocida (P. multocida) isolates
from calves fed either MR or raw WM in 8 commercial dairy
farms (4 farms per feeding program). These authors reported
a greater number of fecal E. coli resistant to enrofloxacin,
florfenicol, and streptomycin. Moreover, multidrug-resistant E.
coli phenotypes were isolated in the feces of calves fed raw
WM than in those fed MR (15). Hence, feeding calves raw
WM fosters resistant bacteria in the lower gut and respiratory
tract of dairy calves. Moreover, feeding raw WM increases the
prevalence of pathogenic microbiota resistant to antimicrobials
and other non-antimicrobial treatments used on farms (15, 38).
Furthermore, feeding raw WM to dairy calves increased the
prevalence of antimicrobial-resistant bacteria on the farms as
well as other antibiotics that had never been used before (5, 14).
Consistently, a study reported that bacterial isolates from human,
animal and environmental sources shared genetically identical
plasmids that mediate resistance to various antimicrobial classes
(85). Although fecal shedding is influenced by a variety of
factors, such as the environment and calf age, feeding milk with
antimicrobial residues contributes significantly to an increased
prevalence of antimicrobial-resistant (AMR) bacteria, such as
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extended-spectrum beta-lactamase (ESBL)-producing E. coli. A
study assessed the impact of feeding raw WM on the prevalence
of these bacteria in the feces of calves and found an increase in
the prevalence of resistant bacteria shedding in the feces (25).
Several other studies have reported that feeding rawWM to calves
could change their microbiome (86). Consequently, feeding raw
WMmight lead to poor health by reducing intestinal microbiota
diversity (87–89).

Raw WM may also contain non-antimicrobial drugs, such as
non-steroidal anti-inflammatory drugs (NSAIDs) used to treat
cows with pain and inflammation (90). In addition to variations
in the level of antimicrobial residues, it should be noted that raw
WM may vary in its composition from one cow to another and
farm to farm. A longitudinal study investigated the presence of E.
coli that produces broad-spectrum-lactamase (ESBL) on a single
farm with 250 Holstein-Friesian cows and 40 un-weaned calves
(25). All calves were fed raw WM from sick dairy cows or freshly
calved cows that had previously received antibiotic dry cow
treatment (DCT). In this study, three rawWM samples contained
cefquinome and cephalexin residues. Two of the three raw WM
samples also contained CTX-M-producing E.coli. Moreover, ten
calves were individually assessed for the excretion of CTX-M
ESBL and found that the excretion time of these AMR pathogens
took as long as 64 days (median of 36 days) after the calf had
been weaned. Meanwhile, the frequency of excretion of resistant
bacteria decreases with time (91). In the first weeks of dairy calves’
life, the excretion of resistant bacteria increases, followed by a
subsequent reduction (92). Furthermore, the development of E.
coli resistance in feces and P. multocida in nasal samples of calves
was documented when fedMR compared to rawWM (15). In the
feces, calves that received raw WM reported a higher occurrence
of resistant andmulti-resistant E. coli bacteria. The group fed raw
WM had a greater proportion of resistant P. multocida to colistin
in nasal swab samples. Overall, it was shown that giving rawWM
to animals increased the prevalence of antimicrobial-resistant
bacteria (15). Much of the antibiotics used on dairy farms are
for disease management in mature cows, and AMR in their fecal
microorganisms is relatively rare. However, the feces from young
dairy calves tend to contain high levels of antimicrobial resistance
genes of E. coli and Salmonella enterica, which may provide dairy
farms with potential hosts for antimicrobial resistance genes
(93). The antimicrobial resistance in calf feces may be mainly
from raw WM feeding. The presence of multidrug-resistant E.
coli in raw WM urges the need for on-farm practices, such as
pasteurization, that reduce the risk of exposure to calves and
dissemination of resistant bacteria into the environment (94).
A study documented that calves were fed raw SM from birth
to weaning, with half of the calves receiving milk spiked with
four antibiotics, and the other half fed the same raw SM but
without the addition of any antimicrobials. The results showed
a significant increase in the proportion of fecal shedding of E.
coli resistant to ceftiofur as well as several multidrug-resistant
bacteria (14). Limited information on antimicrobial resistance to
ASM and PSM is available. The effects of raw WM and PWM
on calf intestinal microbiota and antimicrobial resistance were
summarized in Table 2.

Risks of Feeding Raw WM Having
Pathogenic Microorganisms on Calf Health
Limiting intestinal microbiota diversity leads to poor gut
health (88, 89), which has far-reaching consequences on
the development of the host immune system (87). It has
been documented that an inflammatory reaction might
occur in the jejunum and ileum in calves fed either
untreated or acidified raw WM (75). However, calves fed
raw WM had much higher risks of getting diarrhea than
calves fed treated (i.e., pasteurized or acidified) WM in a
recent study (e.g., body condition score, nasal discharge,
the occurrence of diarrhea) (20). However, some studies
have shown that feeding raw WM to calves can reduce
diarrhea (107).

The effects of feeding MR both with and without
antimicrobials have been well documented in previous studies
(108, 109). A study found that feeding a low cocktail of
antimicrobials in MR led to a shift in the bacterial taxa of
the intestinal microbiome, including a reduction in E. coli,
which might positively affect calf health by reducing the
occurrence of diarrhea in young calves (110). Pereira and
colleagues studied the functional profile of fecal bacteria till 6
weeks of age in calves fed milk with or without antimicrobial
residues (98). After 1 week, the two feeding groups showed
a significant difference in the abundance of genes in fecal
bacteria for stress response, nitrogen metabolism, regulation,
and cell signaling.

It has been reported that adding antibiotics to feed can
alter the composition of certain microbiota, such as E. coli
in calves (111, 112). E. coli is the most common facultative
anaerobe in human and animal gastrointestinal tracts, causing
a number of diseases such as diarrhea (113). Calves fed raw
WM had reduced relative abundance of Clostridium spp. and
Streptococcus spp., resulting in changes at the genus level
(75). This implies that feeding raw WM may reduce calf
diarrhea caused by Clostridium spp. and Streptococcus spp.
The potential effect of feeding raw WM to calves on drug
resistance has not been studied deeply because the selection
of resistant bacteria has traditionally been assumed to occur at
concentrations between the susceptible wild-type population’s
minimal inhibitory (MIC) and the resistant bacteria’s MIC.
Antimicrobial medications at concentrations below the
MIC (sub-MIC) have been shown in other investigations to
increase mutagenesis and recombination, resulting in bacterial
adaptability to diverse stresses, including antimicrobial pressure
(114, 115). An increase in mutagenesis can also result in a
heterogeneous increase in the MIC of the bacteria across a range
of antimicrobials.

In a controlled study, antibiotics in medicated MR have
reported lower morbidity compared to those fed with non-
medicated MR (11). The pre-weaning modulation of the
intestinal and fecal microbiota may be responsible for this
reduction (14). The utilization of discarded milk as calf feed has
always been a source of contention. Increased environmental
hygiene or WM’s role as a vector for several infections
has been the main concern (43). Since the establishment of
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TABLE 2 | Raw WM and PWM effect on the intestinal microbiota and antimicrobial resistance of calves.

Feeding

type

Intestinal microbiota Antimicrobial resistance References

WM Decreased alpha diversity of pre-weaning calf fecal microbiota and decreased

abundance of beneficial gut bacteria. Increase in potential pathogens such as

Campylobacter spp., Pseudomonas spp., and Chlamydophila spp.

A higher risk of AMR in pathogens (95, 96)

WM Increase of the relative abundance of Acetitomaculum spp. Increased risk of AMR (2, 97)

WM Influence relative abundance of microbial cell functions, especially with genes linked

with stress response, regulation and cell signaling, and nitrogen metabolism.

Increased prevalence of AMR bacteria, such as

ESBL-producing E.coli

(98, 99)

WM Prevotella spp. was the only dominant genus in the WM calves. Feeding WM selects ESBL bacteria in calves,

and the majority of ESBL isolates (93%) were

co-resistant to aminoglycosides

(75, 100)

WM Decreased the abundance of Prevotella spp. Increased risk of AMR (2, 93)

PWM Increased the abundance of Faecalibacterium spp. and Bacteroides spp. The proportion of resistant E. coli isolates was

significantly lower in calves fed PWM than in

calves receiving WM

(5, 101)

PWM Increased the abundance of the Prevotella spp., Faecalibacterium spp., and

Bacteroides spp.

Reduce pathogens (75, 102)

PWM Increased the abundance of Prevotella spp. Reduce resistant E. coli (5, 103)

PWM Increase inhibition of E. coli and Staphylococcus aureus Reduce the risk of AMR (104, 105)

PWM Reduced Salmonella spp. Increases the rate of AMR (95, 106)

Pasteurized waste milk (PWM); Waste milk (WM); Antimicrobial resistance (AMR); Extended-spectrum beta-lactamase (ESBL).

antimicrobial resistance has accelerated in recent years (116),
greater attention has been focused on the antibiotic residue
concentration in rawWM.According to one theory, the intestinal
microbiota of calves given raw WM may be subjected to
selection pressure as a result of such residues. This could
lead to an increase in the predominance of resistant bacteria
in the calf ’s intestines. Although a few studies have looked
into this topic, more results are required for validation. The
main controversy surrounding raw WM feeding has been
around the high load of pathogenic microbiota (10), especially
coliform bacteria that can result in infection in calves (117).
There remain controversies over whether raw WM should be
used in calf feeding programs, especially due to the presence
of pathogenic bacteria (11, 118). High coliform counts in
raw WM could lead to high endotoxin levels, which might
cause harm to neonatal calves (117). Several species such as
Streptococcus spp., Enterobacteriaceae spp., Staphylococcus spp.,
and E. coli have been isolated from raw WM (5). E.coli is a
major risk for diarrhea during calves’ first week of life. Thus
PWM would be the best choice to decrease the risk of these
harmful bacteria in calves. It has been reported that ASM can
inhibit the activity of Salmonella spp. by reducing the pH
value (119).

Although raw WM may contain many harmful pathogens,
however, PWM can kill the harmful bacteria, hence reducing
the risk of spreading infectious diseases through feeding
raw WM. Despite several studies exploring this question,
their results are inconclusive (100). Pasteurization of WM
inactivates bacteria, such as the destruction of Mycobacterium
paratuberculosis, spp. Salmonella spp. and Mycoplasma spp.
(12, 120, 121), most viruses, such as the bovine leukemia
virus (122) and protozoa, such as Cryptosporidium parvum
oocysts (123).

EFFECT ON THE METABOLISM OF CALVES

The profile of serum metabolites is a good indicator of the
health and nutritional performance of the calf. Among the
most important blood parameters, total protein (TP) is a good
indicator of health in the first few weeks of life. Twenty-four
hours after birth, calves are considered to have a failed passive
immunity transfer when their serum TP is less than 5.2 g/dL
(64). Furthermore, the Brix value is another important indicator
for evaluating the passive immunity of calves. It is generally
believed that when the Brix value is lower than 7.8% or 8.4%,
calves have failed the passive transfer immunity (124, 125).
Besides TP, albumin (ALB) and blood urea nitrogen (BUN)
reflect protein utilization (126), while triglycerides (TG) and
total cholesterol (TC) reflect the lipid metabolism (127) in
young calves. The serum TP decreases when calf feed intake is
reduced, there are nutritional imbalances in the diet or failure
of passive immunity (124, 128). A previous study reported that
the serum TP, ALB, high-density lipoprotein cholesterol (HDL-
C), TG and TC concentrations of raw WM fed calves were
higher than those in calves fed raw SM (23). This implies
that raw WM can improve protein and lipid synthesis in dairy
calves (129). In the same study, calves fed raw WM had a
greater concentration of growth hormone and glucocorticoids
(GC) compared to calves fed raw SM (22). This may signify
that calves fed with raw WM had better growth performance
(Figure 2). Some studies reported that the retinol metabolic
pathway of calves in the MR group was significantly up-
regulated compared with the raw SM group (31). Studies have
shown that retinol metabolism is related to feeding efficiency
(130). This suggests that MR may have a positive effect on
calf feeding efficiency. However, it has been reported that
MR down-regulates the fatty acid synthesis pathway (104).
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FIGURE 2 | Raw waste milk improves growth performance by increasing serum metabolites total protein (TP), albumin (ALB), total cholesterol (TC), glucagon (GC),

growth hormone (GH), human epidermal growth factor (h-EGF) and insulin-like growth factor-1 (IGF-1).

TABLE 3 | Effect of raw WM and PWM on the metabolism of calves.

Feeding type Metabolism References

WM Increased the serum TP, ALB, HDL-C, TG

and TC concentrations

(23)

WM Improve protein and lipid synthesis in dairy

calves

(129)

WM Improved the concentration of growth

hormone (GH) and glucocorticoids

(22)

WM Increased the serum urea nitrogen

concentration

(35)

WM Increased the serum GH and insulin-like

growth factor

(131)

PWM No effect on calf serum β-hydroxybutyrate

concentration

(37)

PWM No serum glucose changes were found (37)

PWM Decreased the serum glucose

concentration

(132)

Pasteurized waste milk (PWM); Waste milk (WM); Growth hormone (GH); Total protein

(TP); Albumin (ALB); Total cholesterol (TC); High-density lipoprotein cholesterol (HDL-C);

Triglycerides (TG).

Notably, the nutrient composition of different MRs varies
widely, and more studies are needed to assess the effects of
different nutrient compositions of MRs on calf metabolism.
The research on the effects of raw SM, WM, PWM and MR
on the metabolism of calves is limited, and hence, more in-
depth studies are warranted to determine the impact of raw
WM and PWM on the metabolic performance of calves in
order to provide more practical feeding guidelines. The effects
of raw WM and PWM on calf metabolism were shown in
Table 3.

EFFECT ON ANTIOXIDANT AND
IMMUNITY OF CALVES

Effect on Antioxidant of Calves
The antioxidant system in mammals can protect against the
harmful effects of free oxygen species and their metabolites.
The system is normally in a dynamic state of balance between
free radical generation and clearance, ensuring the animal’s
optimal health. Calves continue to build their antioxidative
defense system after birth (133). Copper and zinc superoxide
dismutase are found inmilk (134, 135). One of the most common
enzymes used to assess oxidative state in animals is superoxide
dismutase (SOD) (136, 137). A study reported no difference in
the concentration of serum SOD between calves fed raw SM, raw
WM and PWM (23). Glutathione peroxidase GSH-px converts
superoxide to water (138). A study reported that the serum GSH-
px concentration of calves fed with raw SM was significantly
higher than calves fed with PWM (38). Furthermore, the level
of serum malondialdehyde (MDA) is used to monitor lipid
peroxidation via reactive oxygen species (139), representing the
degree of lipid peroxidation as well as the degree of free radical
damage. Studies have demonstrated higher MDA in serum from
calves fed raw SM compared to raw WM and PWM (23).
These studies implied that raw SM could activate the antioxidant
mechanisms of SOD and GSH-px, while lowering the oxidation
mechanisms by MDA production. The results further suggested
that high-quality nutrients and microbial activity in raw SM
contributed to establishing antioxidant defense mechanisms in
calves. However, few dairy farms feed calves with SM due to the
associated production costs.

Intrinsic components of the complement system include C3
and C4. Thus the immune system can only function properly
if the levels of C3 and C4 are maintained within given ranges.
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However, compared to raw WM and raw SM, no effect was
noted on the content of C3 and C4 when PWM was fed to
preweaning calves (23). This means that feeding PWM had no
adverse effects on the immune system of the calves. On the
other hand, serum immunoglobulin (Igs) levels can directly
reflect the regulatory mechanism of humoral immunity. For
example, a study showed that the serum IgG content in calves
with diarrhea was significantly lower than that of healthy calves
and the serum IgG concentration was positively correlated with
the incidences of diarrhea (140). A study reported that the IgG
content in the serum of calves fed with WM was lower than that
of calves fed SM (23). More harmful microorganisms might have
caused contributed to the observed results, further buttressing
the assertion that direct feeding of raw WM poses a threat to
the health of the calf. The effects of raw WM and PWM on calf
antioxidant were shown in Table 4.

Regulation of Serum Immune Factors
When the body experiences inflammation, interleukins, types
of immunological factors, are activated and regulate the
immune system. Interleukins including IL-6, IL-8, and IL-10
are inflammatory markers (141, 142). Tumor necrosis factor
(TNF) is engaged in cell-mediated immune responses and plays

a key role in intracellular viral and mycoplasmal resistance and
defense (143, 144). It has been reported that calves fed with raw
WM showed up-regulation of some of the immune factors (e.g.,
serum IL) in serum, jejunal mucosa and mesenteric lymph nodes
(145). This might be linked to the microbial activity of different
microbial species and quantities. A study reported that compared
with ASM, PSM significantly increased calf serum TNF-α, IL-
6 and IL-1β (146). The effects of raw WM and PWM on calf
immunity were shown in Table 4.

RECOMMENDATIONS FOR BETTER USE
OF WM UNDER PRACTICAL CONDITIONS

Effect of Various Raw WM Treatments on
Its Quality
As bacteria can be transmitted directly from cows (cows with
mastitis) to milk, poor hygiene during milking, transportation,
and milk storage often exacerbates contamination. RawWM that
has not been properly treated should be used cautiously to feed
calves, as it has a greater microbial load that can be harmful to
calves. The geometric mean of the cumulative number of bacteria
for rawWM samples was shown to be significantly higher than in
raw SM; Streptococcus spp. and Enterobacteriaceae spp. were the

TABLE 4 | Effect of raw WM and PWM on the antioxidant and immunity parameters in calves.

Feeding type Antioxidant Immunity References

WM No effect on calf serum SOD and MDA concentration Decreased the serum IgG concentration and increased the serum

IgA concentration

(23)

WM Decreased the serum MDA concentration No effect on calf serum IL-1β and TNF-α. Increased the jejunal

IL-10 expression

(23)

PWM No effect on calf serum SOD concentration Increased the serum IgM concentration (23)

PWM Decreased the serum GSH-px concentration No effect on calf serum IgM concentration (15, 23)

PWM Decreased the serum MDA concentration Decreased the jejunal IL-10 expression (23)

Pasteurized waste milk (PWM); Waste milk (WM).

TABLE 5 | Pasteurization condition and improvement of raw WM.

Feeding type Pasteurization Condition Improvement References

PWM 72◦C for 15 s Increased the feed efficiency (23)

PWM 72◦C for 15 s The potential benefits of pasteurization in disease prevention outweigh the potential risks of

feeding a non-pasteurized WM

(16)

PWM 73.5◦C for 20–25 s Decreased the Mycobacterium avium subsp of WM (164)

PWM 63◦C for 30min or at 72◦C for 15 s Inactivates bacteria (5)

PWM 72–74◦C for 16 s Not show significant negative effects on the intake, ruminal parameters, blood parameters,

health, or performance of dairy calves.

(37)

PWM 63◦C for 35min Increased the presence of phenotypic resistance to ampicillin, cephalotin, ceftiofur, and

florfenicol in fecal E. coli

(38)

PWM 63◦C for 30min Decreased the total bacteria in waste milk (152)

PWM 62.7◦C for 30min or 71.6◦C for 15 s Pasteurization can be very effective in lowering bacterial contamination of milk (19)

PWM 65.5◦C for 30min Destroy M. paratuberculosis in WM (165)

PWM 65◦C for 10min Destroyed common mastitic mycoplasma such as Mycoplasma bovis, M. californicum, and M.

canadense

(121)

Pasteurized waste milk (PWM).
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predominant bacteria identified, followed by Staphylococcus spp.
(10).Milk pasteurization is currently used onmany dairy farms to
minimize the potential risk of infectious diseases in calves (147).
It has been documented that PWM could reduce the morbidity
and mortality of calves and increase their growth rate compared
to those fed conventional MR (9). Dairy producers and ranchers
use the pasteurization process to kill off a large number of
the pathogenic microorganisms in milk, such as Mycobacterium
avium subsp. paratuberculosis (148–150) and Salmonella spp.
or Mycoplasma spp. (10, 121). Milk pasteurization can be
accomplished by heating the raw WM to 63◦C for 30min (low
temperature, long time) or 72◦C for 15 s (high temperature,
short time) (5). A study reported that pasteurization of raw
WM at 63◦C for 35min could increase phenotypic resistance to
ampicillin, cephalotin, ceftiofur, and florfenicol in fecal E. coli
(38). Although, Grant et al. (151) suggested that pasteurization
of raw WM with a longer holding period was more successful
in inactivating harmful bacteria, more research has shown that
optimal rawWMpasteurization conditions were attained at 63◦C
for 30min (19, 152). Compared with raw WM or MR, feeding
PWM can ensure better growth performance and health status
and obtain higher economic profits (9, 153).

Acidifying WM has also been recognized as a labor-saving,
simple and cost-effective method in calf feeding operations
(154). Consequently, the method can reduce the rapid growth of
pathogens in the digestive tract and decrease the incidences of
infectious bacteria (155).

Although raw WM can be pasteurized to inactivate bacteria
(12, 120, 156), the method might not be effective on spore-
forming bacteria (157), some viruses and protozoan (158).
For example, M. avium spp. cannot completely be inactivated
by pasteurization (159–161). Aust et al. (5) reported the
importance of pasteurization and its link to a decrease in the
threat of transmission of Streptococcus agalactiae,Mycobacterium
paratuberculosis, E. coli and Mycoplasma spp. Notably, certain
bacterial toxins (117) and residual antibiotic concentrations may
not respond to pasteurization (162).

Recommendations for the Use of Raw WM
as a Feed Source in Calves
The health status of the dairy calves should be prioritized when
deciding whether to feed raw WM. Firstly, cows with BVDV or
Johne’s disease can easily spread the diseases to other animals
and calves. Thus, it would be better to avoid feeding milk from
such cows to calves. Secondly, the WM should not be kept at
room temperature for an extended period since this may cause
major changes in microbial load. Thirdly, the milk obtained from
the first milking soon after antibiotic use should be avoided

because this milk is a major source of antibiotic residues (163).
Moreover, Feeding calves raw WM from cows infected with E.
coli or Pasteurella spp. should also be avoided because these
bacteria stay in the milk for a long time and can likely invade the
intestinal barrier, contributing to the calf sickness. Collectively,
it is recommended that the colostrum obtained from cows must
be free from diseases like enzootic bovine leukosis, tuberculosis
and brucellosis. Similarly, colostrum from cows showing any sign
of infectious disease at the time of milking should not be used.
Pasteurization conditions and effects on calf health are shown in
Table 5.

CONCLUSIONS

Altogether, we concluded that raw WM is economical and
contributes positively to the growth and performance of dairy
calves. However, the antibiotic residues and the presence
of some pathogenic bacteria, such as Mycobacterium avium
subsp. Paratuberculosis, Salmonella spp. and Mycoplasma spp.,
may limit the use of raw WM as a feed resource in
calves. Consuming WM results in the shedding of antibiotic-
resistant bacteria in the feces of calves. Feeding properly
pasteurized WM can decrease bacterial load in the milk
and reduce the risk of diseases in calves. However, it is
advisable to avoid feeding raw WM obtained from cows
that have been treated with antibiotics over a long time
during lactation.
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