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Abstract

Pathologic conditions impair bone homeostasis. The transcription factor NF-kB regulates bone homeostasis and is central to
bone pathologies. Whereas contribution of NF-kB to heightened osteoclast activity is well-documented, the mechanisms
underlying NF-kB impact on chondrocytes and osteoblasts are scarce. In this study, we examined the effect of constitutively
active IKK2 (IKK2ca) on chondrogenic and osteogenic differentiation. We show that retroviral IKK2ca but not GFP, IKK2WT, or
the inactive IKK2 forms IKK2KM and IKK2SSAA, strongly suppressed osteogenesis and chondrogenesis, in vitro. In order to
explore the effect of constitutive NF-kB activation on bone formation in vivo, we activated this pathway in a conditional
fashion. Specifically, we crossed the R26StopIKK2ca mice with mice carrying the Col2-cre in order to express IKK2ca in
osteoblasts and chondrocytes. Both chondrocytes and osteoblasts derived from Col2Cre/IKK2ca expressed IKK2ca. Mice
were born alive yet died shortly thereafter. Histologically, newborn Col2Cre+/RosaIKK2ca heterozygotes (Cre+IKK2ca_w/f
(het)) and homozygotes (Cre+IKK2ca_f/f (KI)) showed smaller skeleton, deformed vertebrate and reduced or missing digit
ossification. The width of neural arches, as well as ossification in vertebral bodies of Cre+IKK2ca_w/f and Cre+IKK2ca_f/f, was
reduced or diminished. H&E staining of proximal tibia from new born pups revealed that Cre+IKK2ca_f/f displayed
disorganized hypertrophic zones within the smaller epiphysis. Micro-CT analysis indicated that 4-wk old Cre+IKK2ca_w/f has
abnormal trabecular bone in proximal tibia compared to WT littermates. Mechanistically, ex-vivo experiments showed that
expression of differentiation markers in calvarial osteoblasts derived from newborn IKK2ca knock-in mice was diminished
compared to WT-derived cells. In situ hybridization studies demonstrated that the hypertrophic chondrocyte marker type-X
collagen, the pre-hypertrophic chondrocyte markers Indian hedgehog and alkaline phosphatase, and the early markers
Aggrecan and type-II collagen were reduced in Cre+IKK2ca_w/f and Cre+IKK2ca_f/f mice. Altogether, the in-vitro, in vivo
and ex-vivo evidence suggest that IKK2ca perturbs osteoblast and chondrocyte maturation and impairs skeletal
development.
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Introduction

Bone is constantly remodeled temporally and spatially by

precise regulatory mechanisms that coordinate bone formation

and bone resorption [1–3]. Accrual of bone mass is determined by

net balance between bone formation and bone resorption.

Conversely, imbalance between bone resorption and bone

formation leads to skeletal deformities such as bone loss (all forms

of osteoporosis, osteopenia, etc) or excessive bone formation often

non-remodelled as evident in various forms of osteopetrosis [4]. At

the cellular level, mesenchyme-derived osteoblasts lay down

matrix and hematopoietic-derived osteoclast resorb and remodel

the formed bone tissue. Numerous paracrine and autocrine factors

and systems regulate this process [3].

The effect of inflammatory responses on bone health has been

widely described [5–11] and in fact, osteoporosis has been

considered as a co-morbidity in patients suffering from chronic

inflammatory diseases such as rheumatoid arthritis, inflammatory

bowel disease (IBD), colitis, etc. [5–11], which typically present

increased fracture risk. At the cellular level, inflammatory

mediators target the entire milieu of the bone tissue; they promote

differentiation of myeloid cells into osteoclasts to exacerbate bone

resorption and negatively impact bone formation by targeting

mesenchymal and osteoblast cells. The former effect on osteoclasts

has been widely detailed [6,12]. However, the mechanism

underpinning inhibition of bone formation remains vague. In this

regard, numerous clinical case reports correlated high circulating

levels of inflammatory cytokines including TNF, IL-1b, IL-17, IL-

4, IL-6 and others, with the bone phenotype of the subjects [13–

15]. In other studies, elevated levels of the WNT pathway

antagonists sclerostin and DKK1 were reported in animal models

of rheumatoid arthritis [16]. Expression of sclerostin and DKK1

was elevated in synovial tissue from rheumatoid arthritis patients

compared to controls and bone repair was often delayed or

repressed in patients with systemic inflammatory background [17–

19].

The transcription factor NF-kB has been implicated as crucial

mediator of immune/inflammatory responses and required for

skeletal development [20–25]. In this regard, it has been shown

that NF-kB signaling regulates osteoclastogenesis and mediates
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inflammatory bone diseases [26]. IKK2, also known as IKKb, is

required for activation of the classical NF-kB pathway and

mediates the vast majority of inflammatory responses [24,27–30].

Constitutively active IKK2 (in which the activation loop serines

are substituted with glutamic acid) sustains heightened NF-kB

activity and intrinsically recapitulates the inflammatory response

[31–33]. In this regard, we have shown that knock-in of this

constitutively active form of IKK2 in the myeloid lineage in mice

induced systemic osteolysis owing to elevated endogenous

osteoclastogenesis [31]. However, given the ubiquitous expression

of IKK2 in all tissues of mammals, the effect of IKK2 on other

crucial skeletal components/processes such as osteogenesis and

chondrogenesis remains elusive. Few studies suggest that cross-talk

between NF-kB signaling and osteogenesis indeed exists. In fact, a

recent study utilizing dominant negative approach suggests that

IKK2 is a repressor of osteogenesis [34]. Another recent report has

shown that NF-kB inhibits osteogenesis by promoting degradation

of b-catenin, a downstream mediator of WNT signaling [35]. In

other systems, it has been suggested that NF-kB activates Notch

and blocks WNT signaling pathways [36–38]. Despite these

studies, the mechanisms underlying NF-kB regulation of osteo-

genesis remain scant. To gain better appreciation of the

developmental role of IKK2 in skeletal homeostasis and its

osteo-inflammatory role, we examined the effect of constitutively

active IKK2 (resembling sustained inflammatory response) during

mesenchymal and chondrogenic development.

Methods

Mice
Coll2-cre and pROSA-IKK2ca mice have been described

[33,39]. Briefly, the pRosa26-IKK2ca transgenic mice harbor a

cDNA encoding IKK2 containing two serine to glutamate

substitutions in the activation loop of the kinase domain (SSREE),

preceded by a loxP-flanked STOP cassette, into the ubiquitously

expressed ROSA26 locus. We crossed mice carrying this allele to

the Col2-cre mice in order to express IKK2ca in osteoblasts and

chondrocytes. For in vitro studies, a retrovirus expressing IKK2ca

was used to transduce primary osteoblasts and transformed OB/

stromal cells.

Skeletal Analysis and Histology
For skeletal staining, newborn pups were isolated, de-skinned,

eviscerated, and fixed in 95% ethanol overnight. The skeletons

were then stained for 3 days with 0.3% Alcian Blue and 0.3%

Alizarin Red dissolved in 75% ethanol–20% glacial acetic acid.

Thereafter, the skeletons were rinsed with 95% Ethanol for 2 hrs.

Samples were cleared in 1% KOH for 4 days. The skeletons were

subsequently transferred to decreasing concentrations of KOH

(1.6, 1.2, 0.8, and 0.4%) mixed with increasing amounts of glycerol

(20, 40, 60, and 80%) at 1-day intervals. For histology, limbs were

fixed in formalin, decalcified, and embedded in paraffin. Sections

were cut every 6 um and stained with hematoxylin and eosin.

In situ Hybridization
Embryonic tissues were fixed in 10% formalin overnight at

room temperature, then decalcified and embedded in paraffin

prior to sectioning at 6 mm. In situ hybridization was performed by

using digoxigenin-labeled riboprobes as previously described [40].

Type-I a1, type-II and type-X collagen cRNA anti-sense probes

were derived by in vitro transcription.

Retroviral Infection
Retrovirus was generated by transfection of pMX-IKK2ca into

Plat-E packaging cells with Fugene 6. After retroviral infection for

12–24 hours and puromycin selection for 2 days, ST2 cells or

ATDC5 cells were cultured in regular complete medium for an

additional 1 day before harvesting for differentiation assay.

Primary cOB Culture
Calvaria were harvested from neonatal mice pups. Briefly,

calvaria were surgically removed from the skull, sutures were

removed, and adherent tissue material was cleaned by gentle

scrapping using a scalpel, followed by chopping to very small

fragments. Pooled calvaria were subjected to sequential digestions

(15 minutes/digestion) with 0.1% dispase and 0.1% collagenase P

to release cells. After discarding the cells from the first digestion

(heterogeneous population), cells from the next four digestions

were pooled and cultured in a ascorbic acid free-modified essential

medium (a-MEM) containing 10% FBS [41].

ST2 Cell Culture, AP Staining and von Kossa Staining
ST-2 mouse bone marrow stromal cell line (Riken Cell Bank,

Tsukuba, Japan) were cultured in Dulbecco’s modified Eagle’s

medium (DMEM) supplemented with 10% heat-inactivated fetal

bovine serum (Invitrogen) and antibiotics. ST2 were cultured with

Wnt3a conditioned medium for 2–5 days for osteoblast differen-

tiation. For alkaline phosphatase and von Kossa stainings, cells

were fixed with 10% formalin for 10 min and washed three times

with 10 mM Tris?HCl, pH 7.2. Fixed cells were subjected to

staining for alkaline phosphatase and von Kossa staining. Alkaline

phosphatase was stained with naphthol AS-MX phosphate and

fast blue BB salt (Sigma kit# 85L-2). The von Kossa staining for

calcium was performed as follows. Fixed cells were incubated with

5% silver nitrate for 5 min in daylight, washed twice with H2O,

and then treated with 5% sodium thiosulfate. Mineralized nodules

were counted under a microscope.

ATDC5 Cell Culture and Alcian Blue Staining
ATDC5 cells [42] (Riken Cell Bank, Tsukuba, Japan), derived

from mouse embryonal carcinoma, were cultured in a 1:1 mixture

of Dulbecco’s modified Eagle’s medium and Ham’s F-12

(Cambrex Bio Science Inc, Walkersville, MD) supplemented with

5% fetal bovine serum (Invitrogen), 10 ug/ml human transferrin

(Sigma-Aldrich), 3 X10–8 M sodium selenite (Sigma-Aldrich) at

37uC under 5% CO2. Upon reaching confluence, the cells were

stimulated with 10 ug/ml of bovine insulin (Sigma-Aldrich), and

the medium was changed every other day. Alcian blue (Sigma-

Aldrich), which stains cartilage-like extracellular matrix produced

by mature chondrocytes, was used to evaluate expression of

extracellular matrix by ATDC5 cells. The staining was done after

the cells were rinsed with phosphate-buffered saline, incubated

with 0.1% Alcian blue solution in 0.1 N HCl (pH 1.0) overnight,

and washed three times with phosphate-buffered saline before

macroscopic examination.

Reverse Transcription-polymerase Chain Reaction
Analysis of Osteoblast, Chondrocyte Differentiation

ST2 cells and ATDC5 cells treated for Wnt3a or insulin for the

indicated periods were subjected to RT-PCR with the specific

primers. Osteocalcin (OSC) and aggrecan are osteoblast-specific

secretory protein and extracellular matrix protein in cartilage

respectively. GAPDH was used as internal control.

This study was carried out in strict accordance with the

recommendations in the guide for the Care and Use of Laboratory
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Animals of the National Institute of Health. All animals are housed

in the facility at Washington University under the care of trained

technicians and veterinarians. Animals experiencing pain or

discomfort following procedures are treated with analgesics per

approved protocol. Euthanasia is performed by inhalation of

gaseous CO2 in a closed chamber. This method is approved by

the AVMA. All animal work was pre-approved by the animal

committee of Washington University and conducted according to

AVMA guidelines.

Statistical Analysis
Data are expressed as mean 6 SEM unless otherwise indicated.

The data obtained in experiments with multiple treatments were

analyzed using one-way ANOVA followed by post hoc Newman-

Keuls test of significance or student t-test. Qualitative observations

have been represented following triple blind assessments. All

experiments were repeated at least three times and quantitative

data for in vivo data were collected from groups of at least 6 mice

per group.

Results

Constitutive Activation of NF-kB in Osteoblasts,
Chondrocytes and Stromal Cells Inhibits their
Differentiation

Osteoblasts and chondrocytes are derived from mesenchymal

precursor cells and are the principal bone and cartilage forming

cells, respectively. Persistent NF-kB activation is central to

inflammatory responses that impact all components of bone

development. To mimic the impact of inflammatory responses on

osteoblasts, we virally expressed IKK2ca (FLAG-tagged) in

calvarial osteoblasts and demonstrated its expression and activity

(fig. 1A–B) as evident by significant phosphorylation of the

substrate IkB by IKK2ca compared to minimal or absence of IkB

phosphorylation (pIkB) by wild type (WT) or kinase-dead (KD)

IKK2, respectively (1B). Note that IkB phosphorylation coincides

with its degradation (Fig. 1B; lane 2).

To examine the effect of NF-kB activation on their differen-

tiation and maturation, the bone marrow stromal cell line ST2

cells and the chondrogenic cell line ATDC5 were infected with

viral particles expressing constitutively active IKK2 (referred to as

‘‘ca’’), control GFP, wild type IKK2 (WT), kinase dead (KD)

IKK2, and phospho-deficient (SSAA) IKK2. The results indicate

that expression of the stromal cell differentiation marker alkaline

phosphatase and the chondrocyte differentiation marker Alcian

blue are significantly blunted by IKK2ca (ca) (fig. 1C–D). In

contrast, no change was observed with GFP, WT, or SSAA

transduction. Consistently, mRNA expression of alkaline phos-

phatase in ST2 cells and chondrocyte markers (Sox9, Col2A1,

aggrecan) in ATDC were reduced in IKK2ca-infected cells

compared with GFP or IKK2WT-infected cells (Fig. S1).

Mice Expressing IKK2ca Exhibit Abnormal Skeletal
Development

In order to explore the role of constitutive NF-kB activation

during bone formation in vivo, we decided to activate this

pathway in a conditional fashion. We employed the R26Sto-

pIKK2ca mice in which a cDNA encoding IKK2 containing two

serine to glutamate substitutions in the activation loop of the

kinase domain, preceded by a loxP-flanked STOP cassette, was

cloned into the ubiquitously expressed ROSA26 locus [33]. We

crossed mice carrying this allele to the Col2-cre mice in order to

express IKK2ca in chondrocytes, as well as osteoblasts. Both

chondrocytes (not shown) and osteoblasts (fig. 2A) derived from

Cre+IKK2ca_w/f or Cre+IKK2ca_f/f express Flag-tagged

IKK2ca detected by Western blot. Histologically, newborn Cre+
IKK2ca_w/f heterozygotes Cre+IKK2ca_f/f and homozygotes

showed smaller skeleton and deformed vertebrates. Examination

of the appendicular and axial skeleton revealed reduced or missing

digit ossification (arrows and asterisks) in heterozygotes and

homozygotes, respectively (fig. 2C–D). Compared to WT litter-

mates, the width of neural arches as well as ossification in vertebral

bodies of IKK2ca heterozygotes and homozygotes were reduced

or diminished (fig. 2E; arrows). Sternum with ribs showed wider

xiphoid process with two well-separated ossification centers in

newborn IKK2ca heterozygotes and homozygotes (not shown).

Reduced length of scapula in newborn IKK2ca heterozygotes

(2665%) and homozygotes (3964%) was also noted (fig. 2C;

horizontal lines). In addition, sutures and fontanelles were widened

in IKK2ca homozygotes (fig. 2B; arrows, 2D; arrow heads).

IKK2ca homozygote mice died shortly after birth, while

heterozygote mice survived to maturity.

IKK2ca Expression in vivo Dampens Expression of
Chondrogenic and Osteogenic Markers

In order to further characterize the molecular mechanism

underlying the effect of constitutively active IKK2 in the

regulation of osteogenesis and chondrogenesis, we performed in

situ hybridization of several markers for either chondrogenesis or

osteogenesis in new born transgenic mice and control littermates.

Hematoxylin and eosin (H&E) staining of proximal tibia from new

born pups showed that Cre+/RosaIKK2ca homozygotes dis-

played disorganized hypertrophic zones within the smaller

epiphysis (columnar zone) compared to WT littermates (fig. 3A,B;

arrows). We found that the hypertrophic chondrocyte marker

type-X collagen (Col X) was reduced or diminished in IKK2ca

heterozygote or homozygote, compared to WT control (fig. 3A).

The pre-hypertrophic chondrocyte markers Indian hedgehog (Ihh)

and alkaline phosphatase were also significantly reduced or lost in

IKK2ca heterozygote or homozygotes. The early differentiation

markers such as Aggrecan and type-II collagen (Col II) were

reduced, while Sox9 only slightly reduced in IKK2ca homozygote

mice, compared to WT controls (fig. 3A). In all these

circumstance, HE staining showed that there is no obvious cell

loss in cartilage, suggesting that IKK2 suppresses chondrocyte

differentiation. Although Type-I a1(Col I) mRNA remained

unchanged, AP mRNA signal was diminished in osteoblast

derived from IKK2ca homozygote compared to WT controls

(fig. 3A).

Based on the in vivo observation of the widened sutures/

fontanelles, which is not dependent of chondrogenesis, and

diminished AP expression in Col2Cre+/RosaIKK2ca homozy-

gotes, it is possible that constitutive active IKK2 also suppresses

osteoblast differentiation. To address this point, primary osteo-

blasts were isolated from new born IKK2ca transgenic and control

counterparts and cultured them in osteogenic media. Similar to

cultures of ST2 cells retrovirally infected with constitutive active

IKK2, the kinase strongly suppresses primary osteoblast differen-

tiation as shown by alkaline phosphatase staining of cells

stimulated with osteogenic factor Wnt3a (fig. 3C). Real-time

PCR also showed that IKK2ca downregulate Runx2 osteocalcin

(OCN), osteoprotegerin (OPG) and alkaline phosphatase (AP)

mRNA expression in IKK2ca-derived OBs (fig. 3D). In addition,

IKK2ca expression led to increased expression of WNT antago-

nists; sclerostin (SOST) and DKK1, and increased expression of

RANKL (fig. 3D). Both ex vivo and in vitro data demonstrate that

NF-kB Regulates Osteogenesis
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constitutive active IKKb suppresses osteoblast differentiation and

skew RANKL/OPG ratio toward enhanced osteoclastogenesis.

Expression of IKK2ca Impedes Bone Formation and
Reduces Bone Mineral Density

Inhibition of osteoblast differentiation markers by IKK2ca

suggests that endogenous expression of the kinase in vivo may

negatively impact normal skeletal development. To examine this

possibility, we utilized IKK2ca heterozygous mice, which lived

normally but exhibited moderate ossification defects (fig. 2) at

developmental stages. Micro-CT analysis shows that mature

heterozygous mice exhibited significant low bone mass (BV/

TV), consistent with decreased trabecular thickness (Tb.Th) and

number (Tb.N) and increased trabecular space (Tb.Sp) (fig. 4). To

further establish this phenotype, dynamic bone markers such as

bone formation rate and mineral apposition rate were measured

using bone double labeling approach. The images depicted in

figure 4B show that IKK2ca attenuated bone formation and exerts

its inhibitory effect in an osteoblast-intrinsic fashion. We further

provide preliminary evidence that osteoclast number is elevated in

IKK2ca-expressing mice (Fig. S2), suggesting that bone resorption

by osteoclasts may contribute to this phenotype.

Discussion

Inflammation of bone negatively impacts its integrity and

strength and alters bone-dependent metabolic pathways [21,

43–47]. Therefore, understanding the underlying mechanisms of

this phenomenon in bone cells is critical for establishing

countermeasures. The fact that NF-kB is central mediator of

inflammatory responses positions this family of proteins and

kinases as an attractive target for exploration. NF-kB proteins

regulate numerous physiological and pathological processes,

including the innate- and adaptive-immune responses, cell death

and inflammation. The classical NF-kB pathway is driven by the

activation of IKK2, which stimulates anti-apoptotic, pro-inflam-

matory and proliferative pathways, although pro-apoptotic func-

tions have also been described [23,24]. Furthermore, it has been

reported that IKK2 functions through NF-kB-dependent and

independent pathways. The choice of IKK2ca in our model to

mimic sustained inflammation is based on the fact that activation

of this kinase has been described as the converging point for all

inducers of the canonical NF-kB pathway, which is the principal

pathway that governs inflammatory processes.

In recent studies, we and others have examined the effect of NF-

kB in the myeloid compartment. We demonstrated that consti-

tutive activation of NF-kB led to significant bone loss in mice [31].

In the current study, we turned to examine the effect of active NF-

kB in the mesenchymal compartment. Our results indicate that

constitutive activation of NF-kB pathway using collagen-II cre

knock-in in osteoblasts and chondrocytes perturbed osteogenesis

and chondrogenesis. Considering both facets of NF-kB activation

in myeloid and mesenchymal compartment, this approach nearly

mimics systemic inflammation such as in rheumatoid arthritis

Figure 1. Constitutive activation of NF-kB in osteoblasts, chondrocytes and stromal cells inhibits their differentiation. (A) Calvarial
osteoblasts (cOB) were transduced using retroviral constructs pMX-GFP and pMX-IKK2-ca and incubated for the time points indicated. Western blots
were used to show expression of Flag-tagged IKK2 and b-actin in cOB. (B) Expression of IkB and phospho-IkB in lysates of OBs transduced with pMx-
GFP or the various forms of IKK2 as indicated. (C–D) Calvarial OBs (C), ST2 and ATDC5 cells (D) were infected with GFP, IKK2WT, IKK2ca, IKK2KD, or
IKK2SSAA and incubated for 21 days with 10 ug/ml of bovine insulin (media was changed and supplemented with fresh insulin every 48 hrs). Cells
were then stained with either alkaline phosphatase (ALP) or Alcian blue. Note reduced staining in IKK2ca conditions. Lower left panel (C) depicts
optical density quantification of upper panel. Right panel (D) represents quantification of ST2 cell and ATDC5 staining (not shown) using arbitrary
units expressed as % of control. Experiments were repeated at least three times in triplicate conditions. Asterisk represents p,0.01.
doi:10.1371/journal.pone.0091421.g001
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wherein compromised osteoblast activity and exacerbated osteo-

clastogenesis is prevalent at inflammatory sites. Consistent with

this notion, it has been reported that expression levels of several

WNT antagonists are elevated in arthritic synovial fluid further

contributing to inhibition of bone formation[17,48–50]. Our

data establish attenuation of osteogenic differentiation markers

Figure 2. Mice expressing IKK2ca exhibit abnormal skeletal development. (A) cOB cells were harvested form newborn mice, lysed and
subjected to Western blot with Flag (IKK2) and beta-actin antibodies. (B) Neurocranium of Newborn WT, Col2Cre+/IKK2ca heterozygotes (het) and
homozygotes (KI). Sutures and fontanelles are widened in Col2Cre+/IKK2ca homozygotes (asterisk). Arrows (bottom) indicate the unfused and smaller
supraoccipital bone in Col2Cre+/IKK2ca heterozygotes and homozygotes, respectively. Shortened snout in homozygous knock-in (large arrow)
compared with hets and WT littermates. (C–D) Newborn pups were stained with Alcian blue/Alizarin red. Bone is stained red and cartilage blue. Limbs
showed reduced length of scapula in newborn Col2Cre+/IKK2ca heterozygotes and homozygotes (D) Smaller skeleton and deformed vertebrate in
newborn Col2Cre+/IKK2ca heterozygotes (wf) and homozygotes (ff). Reduced or missing digit ossification in Col2Cre+/IKK2ca heterozygotes and
homozygotes respectively (arrows and asterisks). Reduced or diminished ossification in vertebral bodies and skull in knock-in mice is apparent (arrow
heads). (E) Dorsoventral view of vertebra showing reduced width of neural arches as well as reduced or diminished degrees of ossification in vertebral
bodies (arrow) of newborn Col2Cre+/IKK2ca heterozygotes and homozygotes respectively compared to WT littermates.
doi:10.1371/journal.pone.0091421.g002

NF-kB Regulates Osteogenesis
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Figure 3. IKK2ca expression in vivo dampens expression of chondrogenic and osteogenic markers. (A) Hematoxylin and eosin (H&E)
staining of proximal tibia from new born pups. Col2Cre+/IKK2ca heterozygotes and homozygotes displayed disorganization of hypertrophic zones
within the smaller epiphysis compared to WT littermates. In situ detection of type-I a1(Col I) type-II (Col II), type-X collagen (Col X), Alkaline
phosphatase (AP), indian hedgehog (Ihh), Sox 9, and Aggrecan (Agc1) mRNAs in growth plates of femur sections prepared from new born Col2Cre+/
IKK2ca homozygotes, heterozygote and control littermates. Reduced Col I, Col-II, AP positive osteoblast and Col X, Sox9 hypertrophic chondrocytes in
Col2Cre+/IKK2ca heterozygote, compared to WT control is noted. (B) Higher magnification of H&E-stained sections for new born wild type and Cre+
IKK2ca homozygotes. Columnar zones are indicated with arrows (C) Alkaline phosphatase staining of cOB isolated from WT and IKK2ca knock-in mice.

NF-kB Regulates Osteogenesis
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consonant with elevated levels of DKK1 and sclerostin (modeled

in Fig. 5). We speculate that NF-kB-induced genes activate sost and

dkk1 genes leading to higher expression of their products, sclerostin

and DKK1, respectively, which inhibit Wnt signaling in osteo-

blasts (Fig. 5). Ongoing studies in our laboratory are now focused

on investigating the molecular mechanisms underpinning NF-kB-

mediated inhibition of WNT signaling. In this regard, strong

supporting evidence was recently described by Chang et al., [51]

suggesting that NF-kB inhibits osteogenesis by promoting b-

catenin degradation. This study, however, utilized the pleiotropic

cytokine TNF to activate NF-kB and as a result cannot account for

NF-kB-independent effects of the cytokine on osteogenesis.

Although activation of NF-kB is normally transient, chronic or

sustained activation of NF-kB as is the case of our model described

in this study leads to the establishment of inflammatory conditions

through expression of a wide range of mediators including

cytokines, radical oxygen species, and cyclo-oxigenases. This

mode of NF-kB activation is associated with aging and has been

(D) IKK2ca affects the mRNA expression of various osteoblast-differentiation associated genes. cOB were cultured in differentiation media for 9 and 12
days, followed by mRNA isolation and qPCR for various osteoblast differentiation associated gene. While, IKK2ca expression decreases the mRNA
expression of ALP, Runx2 and OCN (asterisk indicates p,0.01), it increases the mRNA expression of DKK1 and SOST which negatively regulates Wnt
signaling. It also increases the RANKL/OPG ratio by increasing the expression of RANKL. Asterisks * and ** represent p,0.01 and 0.05, respectively. All
experiments including the histology and qPCR were repeated 3 times (n = 3).
doi:10.1371/journal.pone.0091421.g003

Figure 4. Expression of IKK2ca impedes bone formation and reduces bone mineral density. (A) Micro-CT analysis of four-week old
Col2Cre+/IKK2ca heterozygote (Het) and WT littermate (n = 6/group). Col2Cre+/IKK2ca heterozygote has reduced trabecular bone in proximal tibia
and femur compared to WT littermate. Quantitation of bone volume (BV) over total volume (TV), trabecular number (Tb.N), trabecular thickness
(Tb.Th.) and trabecular separation (Tb.Sp.) is shown. (B) Bone formation rate - 4-week old mice (n = 6/group) were injected with two consecutive
labels (arrows) of calcein (7 days apart) to measure bone formation rate. Asterisk represents p,0.05.
doi:10.1371/journal.pone.0091421.g004

NF-kB Regulates Osteogenesis
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described as a molecular culprit of inflamm-aging [52]. In this

regard, secondary osteoporosis has been described as a co-

morbidity of numerous low grade systemic inflammatory responses

attending aging individuals. More importantly, a credible link

between efficiency of NF-kB signaling and the level of inflamma-

tion has been established and is regulated by SIRT1 and FoxO,

well-established regulators of aging [53,54]. In fact, it is plausible

that Sirt1 augments bone formation by down regulating NF-kB -

induced SOST expression. Future studies will be required to

confirm the molecular details of this proposition using experimen-

tal models of inflammatory-aging bone loss.

The increase in sclerostin and DKK1 expression levels and

coincidental increase in RANKL/OPG ratio in IKK2ca-express-

ing mice (Fig. 5) is also reminiscent of similar expression profiles of

these factors during bone fractures, suggesting that NF-kB plays a

central role during bone injury and repair. Accordingly, during the

initial phase of bone trauma/fracture a robust local inflammatory

response, highlighted by enhanced levels of NF-kB activity [55],

develops and encompasses recruitment of immune cells including

macrophages to the injury site. At the conclusion of this stage, high

levels of NF-kB are expected to subside and a bone reparative

phase and angiogenesis govern the site. In support of this notion, it

has been suggested that bone formation is often repressed in

patients suffering from rheumatoid arthritis and that DKK1 and

sclerostin (inhibitors of bone formation) were detected in serum of

these patients and other inflammatory conditions [18,19,50,

56,57]. Similarly, bacterially contaminated bone fractures fail to

heal [58], suggesting that bacteria-derived lipopolysaccharides

activate NF-kB in various cells, including osteoclasts and

osteoblasts, and impede repair. Therefore, precise control of the

duration and strength of NF-kB activity are crucial for modulating

and resolving inflammatory osteolysis.

Supporting Information

Figure S1 IKK2ca inhibits mRNA expression of ST2 and
ATDC5 differentiation markers. ST2 and ATDC5 cells were

infected with plasmids as indicated. Relative expression of alkaline

phosphatase (from ST2 cell RNA), Sox9, Col2A1, and aggrecan

mRNA (from ATDC5 cells) was measured at the time points

shown.

(TIF)

Figure S2 Histologic analysis of long bones. Tibia from

wild type or IKK2ca heterozygote (Het) were processed for

histology and sections were immunostained with H&E (not shown)

or tartrate-resistant acid phosphatase (TRAP) to detect osteoclasts.

Number of osteoclasts per bone surface area (N.OCs/BS) from

WT and Het sections is depicted.

(TIF)
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