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Introduction: Advancing industrial-scale manufacture of cells as therapeutic products is an example of
the wide applications of regenerative medicine. However, one bottleneck in establishing stable and
efficient cell manufacture is quality control. Owing to the lack of effective in-process measurement
technology, analyzing the time-consuming and complex cell culture process that essentially determines
cellular quality is difficult and only performed by manual microscopic observation. Our group has been
applying advanced image-processing and machine-learning modeling techniques to construct prediction
models that support quality evaluations during cell culture. In this study, as a model of errors during the
cell culture process, intentional errors were compared to the standard culture and analyzed based only
on the time-course morphological information of the cells.
Methods: Twenty-one lots of human mesenchymal stem cells (MSCs), including both bone-marrow-
derived MSCs and adipose-derived MSCs, were cultured under 5 conditions (one standard and 4 types
of intentional errors, such as clear failure of handlings and machinery malfunctions). Using time-course
microscopic images, cell morphological profiles were quantitatively measured and utilized for visuali-
zation and prediction modeling. For visualization, modified principal component analysis (PCA) was
used. For prediction modeling, linear regression analysis and the MT method were applied.
Results: By modified PCA visualization, the differences in cellular lots and culture conditions were
illustrated as traits on a morphological transition line plot and found to be effective descriptors for
discriminating the deviated samples in a real-time manner. In prediction modeling, both the cell growth
rate and error condition discrimination showed high accuracy (>80%), which required only 2 days of
culture. Moreover, we demonstrated the applicability of different concepts of machine learning using the
MT method, which is effective for manufacture processes that mostly collect standard data but not a
large amount of failure data.
Conclusions: Morphological information that can be quantitatively acquired during cell culture has great
potential as an in-process measurement tool for quality control in cell manufacturing processes.
© 2018, The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Human-derived mesenchymal stem cells (MSCs) are among the
most promising cell sources for clinical applications of cell
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therapies in regenerative medicine. MSCs, which can be harvested
relatively easily from patients, are widely studied somatic stem
cells, and have been successfully used in clinical applications,
leading to the introduction of commercial cellular products in the
market [1e6].

Industrial-scale manufacture technologies for producing MSCs
are required to widely distribute established cell therapies [7e11].
However, one of the most difficult tasks in cell manufacture is
controlling cell quality [7e9]. Numerous patient-derived variations
exist inMSCs; these variations can trigger unexpected alterations in
cell quality during their manufacture.
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In contrast to other industrial product manufacturing processes,
technological difficulties affect cell quality control in cell
manufacturing processes. One of the most important issues is the
lack of effective in-process measurement methods for monitoring
the transition of cellular states during the long and complex cell
culture processes. Therefore, the detailed culture process is not
completely understood, and little information is available for un-
derstanding the “on-going” status of cultured cells. This can impact
cell manufacturing facilities in two ways. The first is the possibility
of failure of a large culture after a long and costly culture process.
Because partial testing by sampling may not indicate the status of
the total cellular population, the lack of an in-process measurement
for monitoring the entire sample can result in unexpected quality
alterations at the end of culture; particularly, the impact of an
unexpected yield of cells following stablemanufacture is costly. The
other is the difficulty in providing feedback for troubleshooting of
the process. Understanding the essential points of the process
based on feedback information from in-process monitoring data is
one of the most common and effective approaches to improving
manufacturing processes. However, such data-driven process
improvement is currently difficult for MSC culture.

Monitoring of cellular morphology has long been the most
practical and effective in-process evaluation technique for cell
culture. Determining irregularities in cellular morphology is an
important quality criterion in cell culture and clinically applied cell
culture protocols. However, cell morphology is typically evaluated
in a non-quantitative manner; therefore, special training and skill is
required for cell culture experts to stably control the cell culture.
Although such expert manual skills are essential, there is an
increasing need to mechanize the process using advancing tech-
nologies. Image processing and analysis by computational tech-
nology have attracted attention, and an increasing number of
reports has described the successful application of such technology
for cellular evaluations [1,12e18]. Our group proposed using
computational analysis techniques to quantitatively utilize infor-
mation obtained from phase-contrast microscopic images as
“morphology-based prediction techniques” for non-invasive cell
quality evaluation in regenerative medicine [19e24]. We suggested
using a combination of advanced imaging instruments, image-
processing, and the multiple parametric machine-learning tech-
nique based on morphological parameters to construct models for
predicting the experimentally defined quality data using only
images.

Although an increasing number of image-based analysis re-
ports has reported the applicability of image-based analysis in
non-invasive cell quality evaluations, few studies have focused
on detecting “practical and trivial errors” that can occur during
the actual cell culture process. In the actual cell manufacture
process, the culture protocol is carefully determined and
designed to reproduce an identical cellular status during culture.
Application failure of such protocols are mostly caused by un-
expected errors and are trivial. Therefore, it is more important
that the performance of image-based analysis for in-process
measurements be investigated under conditions where such
variations (such as differences that can occur in the same me-
dium) commonly occur rather than under conditions where the
variations are too distinct (such as differences between
completely different types of media). However, most culture
error is considered as “immatureness” of the experiment and
their actual differences from the normal state or their difficulty
of detection has not been examined.

Therefore, we compared the differences caused by errors under
standard culture conditions that have not been quantitatively
examined and investigated the performance of “morphology-based
image analysis” as an example of in-process measurement for
monitoring cellular status. Practically, conditions under which
intentional errors occur were designed and compared with the
standard condition: Condition A, normal medium containing 2%
dimethyl sulfoxide (DMSO), assuming insufficient removal of
DMSO in a cryopreserved cell stock containing 10% DMSO; Condi-
tion B, damaged medium that had been repeatedly warmed to
represent repeated mishandling; Condition C, normal medium
culture under 0% CO2, assuming unexpected errors in the sensors
and air supply in the incubator; and Condition D, normal medium
culture under 10% CO2, also assuming incubator malfunction
(Table S1). Most of these designed errors were exaggerated from
the aspect of matured researchers; we consider it meaningful to
quantitatively determine the detection performance of these er-
rors. “Logically abnormal” conditions are rarely quantitatively
examined and presented; therefore, it is unknown how extensively
morphological features respond under such conditions. Under-
standing the limit of measurement data is important for designing
measurement equipment, such as image-based monitoring soft-
ware. Additionally, to advance cell manufacture, various factors
cannot be judged based on the experience of the researcher. When
manual processes are carried out using robotics, mis-operation or
mis-programming in panel operation is difficult to eliminate. Thus,
an automated detection process is needed. Moreover, in industrial
manufacturing in which higher production requires increased hu-
man resources at a lower cost, not all operators are sensitive to
errors. To advance cell manufacture, we determined the effective-
ness of quantitative morphological analysis using in-process image
data by comparing different conditions (Fig. 1). With visualization
and prediction model construction, the intentionally designed
“errors in the culture” were quantitatively compared. We found
that continuous label-free quantification of morphological param-
eters effectively described the in-process measurements, support-
ing the cell manufacture processes for regenerative medicine
products.

2. Materials and methods

2.1. Cells and culture

Nine lots of human bone-marrow derived MSCs were purchased
from Lonza Japan, Ltd. (Tokyo, Japan) and 1 lot was purchased from
Lifeline Cell Technology (Frederick, MD, USA). Nine lots of human
adipose derived stem cells (ADSCs) were purchased from Lonza
Japan, Ltd. and 1 lot was purchased from KURABO (Osaka, Japan).
Cells were maintained in MSCGM (Lonza Japan, Ltd.) supplemented
with BulletKit (Lonza Japan, Ltd.) under conditions of 37 �C and 5%
CO2 according to the companies’ protocols; these were designated
as the “Standard” conditions. The antibiotics penicillin (100 U/mL)
and streptomycin (0.1 g/mL) were added. The medium was stored
at 4 �C protected from light for the Standard condition. Four
irregular conditions mimicking the “errors” that can occur in
standard conditions were prepared: (Condition A: 2% DMSO) The
cells were cultured at 37 �C and 5% CO2, with a final concentration
of 2% (v/v) DMSO added to the medium. This condition represented
a situation inwhich DMSO in the cryopreservation stock (using 10%
DMSO)was not sufficiently removed from the culture. (Condition B:
Damagedmedium) The cells were cultured at 37 �C and 5% CO2, but
the used mediumwas warmed for 10 cycles of (37 �C for 2 h) before
use. This condition was an exaggerated condition designed to as-
sume that the pre-warming period of the medium was conducted
in error. (Condition C: 0% CO2) The cells were cultured at 37 �C in an
incubator with no CO2 supply. This condition was designed to
mimic a malfunction of both the CO2 monitoring sensor and gas
supply bulb. Because the CO2 supply is one of the most essential
conditions for maintaining the medium pH, this condition was



Fig. 1. Schematic illustration of morphology-based analysis in this study. The analysis step consists of (1) Image acquisition, (2) Image processing and morphology measurement,
and (3) Visualization, or (4) Prediction modeling. In visualization, we used the modified PCA plot. In prediction modeling, we constructed a growth rate prediction regression model,
culture condition discriminant regression model, and discriminant scoring model using the MT method.
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designed to induce fatal biological effects. (Condition D: 10% CO2)
The cells were cultured at 37 �C with 10% CO2 to mimic a mal-
function in the incubator. Compared to condition C, a higher CO2
level canmaintain the pH ofmedium and thereforewas expected to
have minimal biological effects. These four conditions were
designed to be over-exaggerated compared to normal cell culture
conditions. However, for detecting “unexpected errors” that
include mis-operation/mis-programming in the automatic cell
culture or oversights by inexperienced operators, such error should
be automatically detected for risk control.

2.2. Image acquisition

Phase-contrast microscopic images of MSCs were obtained in 6-
well plates using the BioStation CT (Nikon Corporation, Tokyo,
Japan) as described previously with some modifications [22]. Each
condition was evaluated in three wells. For all conditions, images
were acquired at 4� magnification (8 � 8 tiling per well, covering
16 mm2, 1000 pixels2/image). Time intervals were set to 6 h, which
started at 12 h after seeding. Time points were designated as Time 1
(0.5 days/12 h after seeding) to Time 22 (5.5 days/132 h after
seeding). For Conditions C and D, several wells contained non-
cellular objects as noise in the image which were eliminated
manually.

2.3. Image processing

All images were processed and quantified using CL-Quant soft-
ware (Nikon Corporation) as previously described with some
modifications [19,22]. Five original filter processes were designed:
(1) background adjustment, (2) enhancement of texture, (3) cell
recognition, (4) noise removal, and (5) filling the blank regions in
cell objects (Fig. S1). After recognizing the cellular areas through
image processing, cell numbers were measured as recognized ob-
jects. Therefore, the cell growth ratio in this study was calculated
using the following formula: Cell growth ratio ¼ object number in
Time 22/object number at time 1. For morphological profiling, 14
parameters (Table S2) were measured from each recognized
cellular object and their statistical profiles were calculated by col-
lecting all measured parameter profiles from 1000 to 3000 cells in
the tiling image per well. The morphological parameters were
summarized as the statistical values average and standard devia-
tion. Therefore, each condition (¼ 1well) was represented by a total
of 28 parameters (¼ 14 parameters � (mean/standard deviation)).
The practical morphological parameters used for further analysis
are illustrated in Figs. S2eS4.

2.4. Morphological transition analysis

The morphological profiles and their time-course transitions
were visualized by principal component analysis (PCA) (Fig. S2).
First, all samples covering all time-course data with their total
morphological parameters were analyzed by PCA. Next, using two
determined axes representing PC1 and PC2, data (individual data
separated into each time points) were plotted and connected as
traits represented as color gradation, indicating their changes over
time. All analyses and visualizations were performed using R
(version 3.4.1) (R Development Core Team, https://www.r-
project.org/).

2.5. Construction of prediction models

Two individual prediction models were constructed: growth
rate prediction model and culture condition discrimination model.
In the former model, all morphological parameters recorded at the
time points served as inputs and the image-based growth rate was

https://www.r-project
https://www.r-project
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determined and used as the teacher signals; the linear regression
model was applied to analyze this data. A total of 63 samples (21
lots� 3 wells) weremodeled. In the latter model, all morphological
parameters recorded at all time points served as the inputs, and 5
labels for the culture conditions (Standard and Conditions AeD)
were used as teacher labels, to which the linear discriminant model
was applied. A total of 315 samples (21 lots � 3 wells � 5 condi-
tions) were modeled. All predictive performance of the models was
evaluated by leave-lot-out cross-validation. The morphological
parameters of both models were examined to reduce the earlier
prediction model, and their time-course window effects were
evaluated by plotting model performance (Fig. S3). All calculations
were performed using R (version 3.4.1).

2.6. Mahalanobis-Taguchi (MT) method

The MT method is a machine-learning algorithm that is only
trained using positive data, yielding the formula of the “standard
state data” as the unit space and scores the newly applied data by
measuring the Mahalanobis distance from the unit space (Fig. S4).
Therefore, the MT method does not require both “regular” and
“irregular” conventional machine-learning algorithms and pro-
vides a discriminative score by measuring the similarity to the
regular samples based on information distance. For the unit space
data, one-third of the data from Standard samples (sample number;
m) were randomly selected for training, while the remaining
Standard data and data for Conditions AeD (sample number; n’)
were evaluated as test data (Fig. S4). To train the unit data, the
“centering data matrix (C)” and its “distributed covariance matrix
(
P

)” were obtained from the test data. From the test data, the
centering data matrix (C0) was calculated. Scores indicating the rate
of “irregularity” were obtained using the following formula;
(Score) ¼ C

P�1C/m, or C0P�1C0/n). For statistical evaluation, Stu-
dent t-test with Bonferroni correction was applied.

3. Results

3.1. Morphology transition analysis for visualizing differences in lot
performance

In the first analysis, we quantitatively compared cell growth
performance between different cell lots (Fig. 2A) based on their
morphological information, as low growth performance is a
common failure encountered in cell culture. To visualize
morphological transitions, time-course morphological profiles
were separately plotted as time-course points in the PCA plot. A
single plot of the morphological profile expresses the overall
morphological character (Fig. S2), practically described using 28
parameters per image in this analysis, and their trails express their
morphological transitions. Among the 21 lots, we observed a wide
variety of cell growth rates and morphologies (Fig. S5), but it is
difficult to quantitatively assess the morphological profile differ-
ences. However, when Lot 6 (which showed the highest growth
rate) and Lot 5 (which showed the lowest growth rate) were
compared, their traits in the PCA plot showed large differences
(Fig. 2B). The direction and speed of their morphological transi-
tions demonstrated that low-growth lots had relatively different
morphological profiles and transitions compared to high-yield
lots (Fig. S6). Such characteristics of traits were shared between
Group A (high-growth lots) and Group B (low-growth lots)
(Fig. 2C). Therefore, compared to manually evaluating differences
in morphological characteristics, our visualization of their real-
time morphological transition provides quantitative recordable
data for monitoring the in-process cellular status, with the results
reflecting cellular quality.
3.2. Prediction of future yield from early morphological information

Because non-invasively obtainedmorphological parameters and
their time-course transition profiles were shown to be useful de-
scriptors, we further examined their applicability for supporting
the cell culture process. By modifying previously reported concepts
of morphology-based prediction models, we predicted the future
growth rate of cells (Fig. 2D). “Morphological parameters” were
used as explanatory variables, while “its experimentally deter-
mined final biological data” were used as objective variables as the
dataset for training. When all morphological parameters (0.5e5.5
days) were collected during culture, the prediction accuracy of the
growth rate on the last day was 100%. Although such prediction
accuracy was achievable only within themorphological parameters
containing no data on cell numbers, this approach cannot be used
in culture processes because cell number prediction is conducted
after harvest for the next process. To fix the errors and failures in
the culture process, it is important to examine how early the pre-
diction can be obtained. By comparing different types of prediction
models by reducing the number of morphological parameters with
a shorter window (Fig. S3), more than 80% accuracy was stably
obtained in certain periods of time (Fig. 2D). Prediction accuracy
was not stable when the morphological parameters were collected
within only 2 days (48 h). However, prediction accuracy become
stable and high when the time for morphological parameter
accumulation exceeded 54 h. This result indicates that the in-
process-measured morphology can detect errors occurring in
future cultures at a very early stage. Additionally, high accuracy was
achievable even for the variation of 21 lots, including hBMSC and
hADSC cultures. This performance indicates that growth rate pre-
diction based on morphological information can be applied
robustly for culturing MSCs.

3.3. Morphology transition analysis for visualization of errors in cell
culture

To further examine the applicability of morphological informa-
tion to support error detection during the culture process, we
investigated whether morphological profiles reveal the differences
between “standard” and “deviation” culture statuses. Four devia-
tion conditions with intentionally designed errors added to the
standard culture were examined and visualized as time-course
traits in the PCA plot (Fig. 3). Although some morphological char-
acters were indicated in their images (Fig. 3A), their differences
were compared quantitatively based on the type of trait (Fig. 3B). At
12 h after seeding, Conditions A, B, and D slightly differed from the
Standard. However, Conditions B (damaged medium) and D (CO2
10%) gradually followed the traits of the Standard as culturing was
continued, indicating the recovery of cell morphology. The
morphological traits in Condition A (DMSO 2%) completely differed
compared to those of the Standard. Initially, cells cultured under
Condition C (CO2 0%) showed morphological similarities to the
Standard (12 h); however, the traits gradually changed and differed
from those of the Standard. Therefore, Conditions A and C represent
examples of errors that accumulated over time and lead to de-
viations in cellular quality. As a result, visualization of morpho-
logical transition can be used to monitor unexpected errors that
may occur during the culture process.

3.4. Prediction of errors in culture based on early morphological
information

Because visualization of the morphological transition involves
only a relative comparison of the data, we further confirmed
whether errors can be evaluated using morphological parameter



Fig. 2. Morphology-based analysis of growth rate performance. (A) Growth rate performance among the 21 lots of MSCs used in this study. (B) Representative phase contrast images
of MSC lots (Lot 6 and 5) and images of morphological transition analysis. Scale bar ¼ 200 mm. All images were prepared with the same scale. (C) Representative image of
morphological transition analysis applied to group A (good growth lots) and group B (bad growth lots). (D) Prediction performance of growth rate-prediction models examining the
time-course window effect.
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information. Five discrimination analysis categories were used to
examine the prediction of “errors” during culture (Fig. 3C). By
comprehensively examining the earliest morphological parameter
combination for such predictions (Fig. S3), we found that images
collected over more than 36 h were sufficient to provide stable and
high discrimination accuracy. Discrimination accuracy was high
(>80%) even for initial results when using only four images at
different times (12, 18, 24, and 30 h). These data indicate the pos-
sibility of detecting unexpected errors that may have escaped
detection when using other methods, and the errors can be
detected in early stages. Additionally, the suspected error type can
be predicted based on morphological profiles.

3.5. Discrimination scoring by MT method to evaluate errors in the
culture

Although computational machine-learning techniques have
been effectively employed in practical industrial settings, two
practical essential points must be considered in cell manufacture.
First, a sufficient amount of data and variation in the data are
lacking. Because cell manufacture is a developing field, there are no
large datasets that can be used for computational training. Second,
when cell manufacture is conducted, carefully designed standard
protocols are typically used to stabilize the process. Therefore,
“failure” occurs at a lower rate compared to “successful” data. Data-
driven machine-learning approaches can fail to detect differences
between the characteristics of “failure,” resulting in less robust
models. Recently, more sophisticated algorithms have been applied
in themachine-learning field for difficult solutions. However, as the
algorithms become more sophisticated, data volume and
calculation costs are increased. To compensate for this, the MT
method has been used in the manufacturing industries, such as in
automobile production, to estimate unexpected deviations. Briefly,
the MT method is one of the simplest machine-learning concepts,
which only trains the model using “standard data” as unit space
and discriminates “irregular data” by measuring the informational
distance of the sample from this unit space. Irregular errors are
commonly caused by a variety of factors, making it difficult to
detect these errors through experiments. In such cases, the MT
method only requires standard data and does not require the
collection of all types of irregular data for training. Moreover, the
MT method uses an extremely simple formula for calculation and
thus has extremely low calculation costs. This is the first application
of the MT method for morphology-based evaluation of cell culture
processes.

We randomly extracted one-third of the Standard samples and
first trained the model as a unit space. The remaining Standard
samples with error conditions (Conditions AeD) were used to
determine the discrimination ability of the MT method (Fig. S4,
Fig. 4). Condition A (2% DMSO) samples showed a large deviation
score from the Standard and this score increased over time. Con-
ditions B (damaged medium) and D (10% CO2) showed some de-
viation; however, most samples showed nearly the same score as
the Standard. Condition C (0% CO2) did not initially show score
deviation. However, its deviation score increased dramatically as
cells started to die because of the lack of CO2. Thus, the MT-method
scoring shows that machine learning can be used to evaluate the
errors rather than using unfit data with standard machine-learning
approaches. Furthermore, morphological information can is a
useful descriptor in such cases.
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Fig. 4. Morphology-based discriminant scoring of error samples using the MT method. (A) Schematic concept of the MT method using morphological information. (B) Time-course
discriminant scoring by the MT method for detecting error samples from the 5 culture conditions. Each dot indicates an image converted into 28 morphological parameters (total 63
images per condition). The Y-axis indicates the discrimination score calculated from the MT method, which reflects the Mahalanobis information distance from the centroid of unit
space to the sample. (C) Bar plot of discriminant scoring by the MT-method. **p < 0.01, ***p < 0.001. The Y-axis indicates the discrimination score calculated from the MT method.
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4. Discussion

Owing to advances in regenerative medicine and cell culture
technologies, developing methods for supporting industrial-scale
cell manufacture has become very important. To overcome one of
Fig. 3. Morphology-based analysis of errors in cell culture. (A) Representative phase con
intentional errors). Scale bar ¼ 200 mm. All images were prepared with the same scale. (B) R
culture conditions. (C) Prediction performances of culture condition discrimination models
the most critical issues, quality control, in manufacturing cells for
therapy, we proposed analyzing cell morphological information. By
combining image processing technology for measuring several
morphological parameters and computational machine-learning
technology to determine the relationships between morphological
trast images of MSCs under 5 types of culture conditions (Standard and 4 types of
epresentative visualization image of morphological transition analysis applied to the 5
examining the time-course window effect.
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information and cellular quality, non-invasive image-based cell
quality evaluation can be used to predict and evaluate the perfor-
mance of cell culture. However, few studies have evaluated the
applicability of this method to support practical cell manufacture
processes involving unexpected culture error detection. Therefore,
in contrast to othermorphology-based applications described in our
previous reports, we applied two conceptual approaches for image
analysis, PCA-based real-time visualization of morphological
changes and prediction modeling introducing MT method, for
detecting deviations during cell manufacture processes. We also
quantitatively examined the limit of using morphological parame-
ters by evaluating intentionally induced and exaggerated error
conditions, as the limits of the method must be identified to ensure
appropriate software design.

By applying PCA, time-course visualization of morphological
transitions was used to show differences in lots or differences be-
tween standard and irregular samples during culture. Compared to
end-point imaging analysis, such as fluorescent staining imaging,
time-course visualization can indicate and record sample transi-
tions. When intentional error conditions (Conditions AeD) were
compared to Standard conditions, slow changes (Condition C) or
rapid changes (Condition A) were observed. Moreover, change-like
symptoms were observed in the early phase, which recovered
during culture (Condition B and D). Such detailed differences are
important in-process measurement data, not only for quality
evaluation, but also as feedback information for process improve-
ment. Additionally, by comparing the rather exaggerated error
conditions, we determined the maximum value of each axis in our
PCA-based time-course visualization. This was an important step in
PCA visualization, as PCA is designed to maximize data deviation.
The use of exaggerated data which show maximized parameter
values is required, so that PCA can over-expand small differences in
data.

The computational machine-learning approach is a well-
established and widely supported approach for automatic evalu-
ation of the culture process in a data-driven manner. Particularly,
for image data, which includes a massive number of measured
parameters, computational modeling is an effective application.
Therefore, with a sufficient amount of high-quality data, this im-
age analysis technology can be applied to the field of cell evalu-
ation. However, for insufficient amounts or quality of data
amount, the use of machine-learning algorithms considering only
advantages may provide inaccurate results. In practical cell
manufacturing, the accumulated data are not always suitable for
conventional machine-learning strategies. An essential factor that
is often overlooked in image-processing and machine-learning
cell evaluation studies is the variation of data in cell manufac-
ture. For example, if undifferentiation and differentiation media
are compared as counterpart conditions, such conditions can have
a large effect on cells and tend to show large morphological
changes. In a computational training problem, such data with
large differences are an ideal task. However, in practical cell
manufacture processes, irregular data are commonly reported
even in routine work. Therefore, the variation in data can be small.
Moreover, even if the variation is low, the cause of variation can be
completely different and may affect the morphology in a
completely different manner. Therefore, a sophisticated evalua-
tion system that can sensitively detect small differences without
forcing the user to collect all possible failure cases is needed for
cell manufacture processes. We demonstrated the use of both a
conventional machine-learning model (regression model) and
MT-methodmodel, which require only standard data. Detection of
irregular samples was possible using both models and their
visualization plots. Therefore, multiple approaches can be used to
provide a support system to cell manufacturers, which reveal
deviations in the cell manufacture process, and users should
combine the advantages of each technique.

5. Conclusions

In conclusion, we determined both the importance and the
descriptive performance of multiple morphological parameters
extracted from time-course images as in-process data measure-
ment data and demonstrated its practical applicability for detecting
unexpected errors that may impact standard culture operations.
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