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Abstract In recent years, research into the role of
complement in the immunopathogenesis of renal disease
has broadened our understanding of the fragile balance
between the protective and harmful functions of the
complement system. Interventions into the complement
system in various models of immune-mediated renal
disease have resulted in both favourable and unfavourable
effects and will allow us to precisely define the level of the
complement cascade at which a therapeutic intervention
will result in an optimal effect. The discovery of mutations
of complement regulatory molecules has established a role
of complement in the haemolytic uremic syndrome and
membranoproliferative glomerulonephritis, and genotyping
for mutations of the complement system are already leaving
the research laboratory and have entered clinical practice.
These clinical discoveries have resulted in the creation of
relevant animal models which may provide crucial infor-
mation for the development of highly specific therapeutic
agents. Research into the role of complement in proteinuria
has helped to understand pathways of inflammation which
ultimately lead to renal failure irrespective of the underly-
ing renal disease and is of major importance for the
majority of renal patients. Complement science is a highly
exciting area of translational research and hopefully will
result in meaningful therapeutic advances in the near future.
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Introduction

The complement system involves approximately 30 plas-
ma- and membrane-bound proteins (reviewed in [1, 2]).
These proteins play an important role in anti-microbial
defence and the clearance of immune complexes and
apoptotic and necrotic cells. The role of complement is
not restricted to the innate immune system but includes
important functions in the regulation of the adaptive
immune response. Although complement undoubtedly
contributes to tissue damage in numerous forms of
glomerulonephritis, we will also see that complement
protects against immune-mediated tissue damage in a
number of settings.

In the following, we will first give an introduction to the
pathways of complement activation and their regulation.
This will be followed by a review of glomerular renal
diseases in which complement plays a prominent role. The
role of complement in non-glomerular renal disease entities
such as transplantation and ischaemia/reperfusion damage
falls outside the scope of this study and is reviewed in
references [3] and [4].

Overview of the complement pathways

The complement system consists of three different path-
ways that all converge in the activation of the central
complement molecule C3 (Fig. 1). Sufficient activation of
C3 will then lead to the formation of the membrane attack
complex.

The first component in the activation of the classical
pathway is C1. Binding of at least two bindings sites of
C1q to antigen-bound IgG or IgM, acute phase proteins
such as CRP or dead cells leads to conformational changes
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that result in the activation of the associated serine
proteases C1r and C1s. Activated C1s cleaves C4 into
C4a and C4b. C4b then covalently binds to nearby
structures. The bound C4b then binds C2 whereupon the
smaller C2b fragment is cleaved off, resulting in the
formation of the C4bC2a complex, which is the classical
pathway C3 convertase.

The lectin pathway is related to the classical pathway
and uses the same C3 convertase, C4bC2a. The initiation
molecules of the lectin pathway, mannose-binding lectin
(MBL) and the ficolins, recognise carbohydrate ligands
present on a wide range of microorganisms in a pattern-like
fashion. The interaction of MBL with its ligand leads to the
activation of the MBL-associated serine proteases (MASP-
1, MASP-2 and MASP-3). MASP-2 then cleaves C4 and
subsequently C2 leading to the formation of the C3
convertase which is identical to the classical route C3
convertase, C4bC2a.

MBL consists of up to six trimeric subunits which are
arranged in a structure similar to C1q. Frequently occurring
single nucleotide polymorphisms within exon 1 of the
MBL-2 gene and polymorphisms of the promoter region
explain the up to 1,000-fold inter-individual variation in
MBL plasma levels.

The activation of the alternative route of complement
depends on spontaneous activation of the C3 molecule by
hydrolysis of the internal thioester bond of C3. This results
in the formation of the C3b-like molecule C3(H2O).
Hydrolysed C3 then binds to factor B. This interaction
renders factor B susceptible to cleavage by factor D

resulting in the release of the Ba fragment and the
formation of the C3 convertase C3(H2O)Bb. This initial
convertase constantly cleaves C3 at a low rate generating
C3b. This constant low rate generation of C3b is referred to
as the “tick over” of the alternative pathway. The generated
C3b can interact with factor B to form the more active
alternative pathway C3 convertase C3bBb.

The majority of the generated C3b is rapidly inactivated
by circulating factor I together with its co-factors, factor H
(fH) and membrane co-factor protein (MCP). However, if
C3b binds to an activator surface (e.g. a bacterial wall or
damaged tissue), the molecule is protected against inacti-
vation and further amplification of the alternative route will
occur. Properdin is an important positive regulator of the
alternative route. Binding of properdin leads to stabilisation
of the labile C3 convertase and promotes the assembly of a
complement-activating lattice by further binding factor B
and C3b molecules [5–7].

The early activation steps of the classical, lectin and
alternative route of complement activation converge in a
common terminal pathway. The addition of a further C3b
molecule to the C3 convertase complex leads to the
formation of C3bBbC3b in the case of the alternative
pathway and to the formation of C4bC2aC3b in the case of
both the classical and lectin pathways. These C5 con-
vertases then initiate the assembly of the membrane attack
complex by cleavage of C5 to C5a and C5b. C5a can then
function as a potent anaphylotoxin. The newly formed C5b
forms a tri-molecular complex by binding C6 and C7. After
inserting into a cell membrane, this complex binds C8 and
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multiple C9 molecules. This results in the completion of the
pore-forming membrane attack complex (C5b-9). This
complex can lead to cell lysis and, in the absence of
complete lysis, to cell activation.

Regulation of complement activation

The complement system consists of numerous regulatory
molecules that protect the host from uncontrolled tissue
destruction and activation by the complement system.
Recently, defective complement regulation has been shown
to play an important role in the pathogenesis of some forms
of the haemolytic uremic syndrome (HUS) and membra-
noproliferative glomerulonephritis (MPGN). The role of
complement in these diseases will be discussed in more
detail below.

C1-inhibitor is a powerful inhibitor of the classical
pathway of complement activation. It binds to activated C1r
and C1s and causes dissociation of these inactivated
enzymes from C1q. Recent data shows that C1 inhibitor
also inhibits the activation of the lectin pathway by
inactivation of MASP-2 and, at higher concentrations, fluid
phase activation of the alternative pathway [8].

Factor I is a circulating serine protease that proteolyti-
cally degrades C3b and C4b in the presence of the co-
factors fH and C4-binding protein (C4bp). Next to its
function as a co-factor, fH also inhibits activation of the
alternative pathway by binding to C3b and displacing Bb
from the C3 convertase complex. Similarly, C4bp regulates
activation of the classical and lectin pathway by displacing
C2a from C4b. Both fH and C4bp promote the degradation
of the C3 and C5 convertases of the respective pathways.

Cell-membrane-bound inhibitors of complement activa-
tion also contribute to the defence against inappropriate
tissue damage by homologous complement. Decay-acceler-
ating factor (CD55) exerts its effect early in the comple-
ment cascade by inhibiting the activation of C3 by
preventing the formation and accelerating the decay of
both the alternative and classical pathway C3 and C5
convertases. Membrane co-factor protein (MCP, CD46)
serves as a co-factor for the cleavage of C3b and C4b by
factor I. CD59 interacts with the final section of the
complement activation pathway by inhibiting the formation
of C5b-9.

Complement receptor 1 (CD35, CR1) also functions as a
complement regulator by accelerating the decay of the C3
convertases. A functionally intact soluble form of CR1 can
be detected in plasma [9]. Recently, a new complement
receptor, the human complement receptor of the immuno-
globulin superfamily (CRIg), has been described [10].
CRIg is present on macrophages in both humans and mice
and plays a role in pathogen clearance. It binds to C3b and

selectively inhibits the C3 and C5 convertases of the
alternative pathway. A recombinant soluble form of CRIg
suppressed inflammation in two murine models of arthritis
[11].

Immune-complex-mediated glomerulonephritis

Immune complex glomerulonephritis is a good example for
the dual role of the complement system. Immune com-
plexes can either be deposited in the glomerulus by passive
deposition from the circulation or by in situ formation via
binding of antibody to local antigens. Alternatively, local
formation of immune complexes may occur when a
circulation antigen is recognised by antibodies after
deposition in the glomerulus (planted antigen). Subepithe-
lial complement deposition as found in membranous
nephropathy leads to a non-inflammatory complement-
mediated damage because the anaphylotoxins produced
during the local activation do not reach circulating
leucocytes. Subendothelial deposition of complement
factors is associated with a brisk inflammatory response
because the produced anaphylotoxins easily come into
contact with circulating cells. Subendothelial immune
complex deposition is typical of proliferative lupus
nephritis.

Various studies have underscored the role of complement
in immune-complex-mediated glomerulonephritis. Comple-
ment depletion by treating rats with aggregated human IgG
resulted in a marked decrease of neutrophil influx and renal
damage in a nephrotoxic serum model of acute glomerulo-
nephritis [12]. Later studies demonstrating a beneficial
effect of complement depletion in the non-inflammatory
Heymann nephritis model of membranous nephropathy
showed that complement-mediated damage is not depen-
dent on the influx of inflammatory cells [13].

The contribution of terminal pathway of complement-
mediated injury was established in various glomerulone-
phritis models in C6-depleted or C6-deficient rats. Renal
damage is ameliorated in both the anti-Thy-1 and the
passive Heymann nephritis models in the absence of C6
[14, 15]. As a follow-up to these findings, soluble CR1 was
successfully used to treat the disease in both models [16]. A
recent paper pointed towards an important role of the
alternative pathway of complement activation in mouse
models of type I and type II cryoglobulinemia [17]. The
glomerular influx of neutrophils was significantly less in
mice deficient for C3, factor B and C5, whereas C1q
deficiency had no protective effect, suggesting involvement
of the alternative pathway or lectin pathway.

It is interesting to note that many of the complement-
deficient models of renal disease show spontaneous or
worsened renal disease. This is compatible with the
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observation that the complement system plays an important
role in the clearance of immune complexes from the
circulation and in the solubilisation of deposited immune
complexes. Immune complexes are rapidly opsonised with
C4b and C3b. These complement components mediate the
binding of the immune complexes to CR1 on erythrocytes.
The complexes are then stripped off the erythrocytes when
they pass through the liver or spleen. Thus, CR1-mediated
clearance plays an important role in the handling of
immune complexes and in keeping soluble immune com-
plexes away from the endothelial surface thereby prevent-
ing vascular injury.

Numerous animal models of immune-complex-mediated
renal disease demonstrate a protective role of complement.
C3 deficiency did not protect mice from the formation of
immune complexes and proteinuria in a planted antigen
model of immune complex nephritis [18]. This can be
explained by the role of Fc-receptor-mediated activation of
either resident or infiltrating cells at the site of injury. In the
complete absence of complement activation, deposition of
immune complexes can still lead to renal damage via Fc-
receptor-mediated cell activation [19, 20].

An interesting recent study demonstrated that factor-D-
deficient mice spontaneously develop immune complex
glomerulonephritis with mesangial deposition of IgM and
C3 [21]. Apparently, amplification of C3 activation is
necessary for the processing or dissociation of IgM-
containing immune complexes in the kidney.

The important role of the complement system in immune
complex clearance is underscored by the finding that
humans with complement deficiency are prone to im-
mune-complex-mediated disease. Systemic lupus erythema-
tosus (SLE) is a highly relevant example for this dual role
of the complement system as will be discussed in the next
section.

Role of complement in lupus nephritis

The degree of peripheral complement consumption and the
heavy glomerular deposition of complement in SLE
nephritis point towards an important role of complement
in lupus nephritis. Various approaches at inhibiting com-
plement activation have been successful in treating exper-
imental lupus nephritis. Wang et al. prevented the
development of glomerulonephritis with an anti-C5 anti-
body in lupus-prone NZB/W mice. Both treatments with
the soluble rodent complement inhibitor rCrry and trans-
genic expression of this CR1-like molecule limited renal
damage in the MLR/lpr mouse model of SLE [22, 23].

However, in humans, deficiencies of the early comple-
ment proteins C1q, C2 and C4 are associated with an
increased risk of developing SLE [24]. Similarly, mice with

C1q or C4 deficiency develop an autoimmune disease
which resembles SLE [25–27].

Next to the loss of clearance of immune complexes,
complement deficiency may also lead to auto-immune
phenomena due to defective clearance of apoptotic cells.
C1q binds to apoptotic cells [28] and C1q-deficient mice
are impaired in their capacity to clear these cells [29].
Defective clearance of this rich source of auto-antigens may
contribute to the emergence of auto-immunity in patients
with SLE.

Taken together, it seems that, in lupus, the early
components of the classical pathway of complement
activation are beneficial due to their role in the clearance
of immune complexes and apoptotic cells. Probably, the
damage caused by Fc-receptor-mediated mechanisms in the
presence of an increased deposition of immune complexes
overrides the benefit of complement inhibition in these
models. However, the inhibition of complement activation
downstream of C3 may be a promising therapeutic
approach.

Lupus nephritis is strongly associated with the presence
of anti-C1q antibodies. These antibodies are present in 30–
40% of SLE patients [30] and correlate with active lupus
nephritis with a sensitivity of 87 to 97% and a specificity of
92% [31, 32]. Antibodies against MBL are also present in
SLE, but no association with disease activity was detected
[33]. The strong association of anti-C1q antibodies with
active lupus nephritis suggests a pathogenic role of these
antibodies. To study this question, our group has generated
homologous mouse anti-mouse C1q antibodies. The ad-
ministration of these antibodies to healthy mice resulted in
deposition of C1q in the glomeruli together with an influx
of granulocytes. However, this was not accompanied by a
reduction of renal function or significant proteinuria [34].
When mice were pre-treated with a sub-nephritogenic dose
of rabbit anti-C1q antibodies, the subsequent administration
of mouse anti-C1q antibodies resulted in an increased
deposition of immunoglobulin. The use of mice deficient
for C3, C4 or for all three Fc gamma receptors showed that
both complement and Fc-gamma-receptor-mediated dam-
age is involved in this model.

IgA nephropathy

Mesangial IgA deposition is the hallmark of IgA nephrop-
athy. Early studies on complement deposition in IgA
nephropathy reported co-deposition of C3 and properdin
[35]. Because C1q and C4 are usually not detected in
kidneys with IgA nephropathy, this complement deposition
was thought to be caused by alternative pathway activation.
Mesangial deposition of C5b-9 is also present and under-
scores the possible pathogenic importance of complement
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activation in this setting [36]. More recent studies suggest a
role of the lectin pathway of complement activation in IgA
nephropathy. Co-deposition of IgA and MBL has been
described by several authors in both IgA nephropathy [37–
39] and the related entity Henoch Schönlein purpura [40].
Hisano et al. found a relation between the presence of MBL
deposition and the severity of the disease [41].

The discovery of MBL-binding properties of IgA has
provided a mechanistic explanation for the link between
IgA and MBL deposition [42]. MBL binds to polymeric
IgA in a calcium-dependent fashion via its lectin domain,
suggesting an interaction with carbohydrates exposed on
the IgA molecule. The binding of MBL to IgA results in
complement deposition and offers an explanation for the
complement deposition found in IgA nephropathy.

A recent publication underscored the potential clinical
importance of MBL deposition in IgA nephropathy [43].
About 75% of the 60 biopsies in this study were negative
for MBL and C4d, indicating that the C3 and C5b-9
deposition in these patients is most probably caused by the
alternative pathway. The 25% of biopsies in which
glomerular MBL deposition was found were positive for
C4d in the absence of Clq, indicating complement
activation via the lectin pathway. MBL deposition in the
glomerulus was associated with both clinical and histolog-
ical markers of more severe renal damage including more
severe proteinuria, renal failure, extracapillary proliferation,
glomerular sclerosis and interstitial fibrosis. The MASP-
associated lectin, L-ficolin, was also present in these
biopsies and may contribute to the activation of the lectin
pathway next to MBL.

Membranoproliferative glomerulonephritis

Complement research has greatly contributed to the
understanding of the pathophysiology of type II membra-
noproliferative glomerulonephritis (dense deposit disease)
[44]. MPGN type II is characterised by deposits within the
glomerular basement membrane together with staining for
C3 along the glomerular basement membrane. In contrast to
MPGN type I, deposition of immunoglobulins is usually
not detected. The glomerular complement deposition is
usually accompanied by decreased circulating C3 levels
and alternative route activity. More than 80% of patients
with MPGN type II are positive for serum C3-nephritic
factor (C3NeF) [45].

C3NeF is an antibody directed against the alternative
pathway C3 convertase. The binding of C3NeF to C3bBb
prolongs the half-life of the C3 convertase by slowing
down the dissociation of Bb form C3b [46]. One of the
mechanisms by which C3NeF increases the half-life of
C3bBb is by inhibition of fH-mediated inactivation of the

convertase [47]. Consistent with complement activation by
stabilisation of alternative pathway convertase activity,
serum complement profiles of patients with MPGN II show
predominant depletion of C3 with no consumption of C1q
and C4. The glomeruli of affected kidneys show marked
deposition of C3 along the glomerular capillary walls
without deposition of C1q, C4 or immunoglobulins. MPGN
II is also associated with acquired partial lipodystrophy.
This entity is also associated with the presence of C3NeF
and marked C3 depletion. In vitro data shows that C3NeF is
capable of inducing alternative-pathway-mediated damage
on adipocytes [48]

The role of a deregulated alternative pathway in MPGN
type II was highlighted by the discovery of FH mutations in
both humans [49] and pigs with MPGN type II. Mice with a
targeted deletion of FH have significantly reduced levels of
C3 and consistently develop MPGN with deposition of C3
in the capillary walls [50]. If fH-deficient mice are also
deficient for factor B, they cannot activate the alternative
pathway and no renal disease develops.

A chronic serum sickness model of immune complex
disease demonstrated increased deposition if IgG immune
complexes with increased C3 deposition in fH-deficient
mice compared to wild-type mice. The fH-deficient mice
developed diffuse proliferative glomerulonephritis, while
the wild-type mice were protected against glomerular
pathology. These findings indicate a role of fH in process-
ing immune complexes and protecting the glomerulus
against immune-complex-mediated disease.

Patients with MPGN type II develop ocular lesions
which are similar to the drusen that are found in patients
with age-related macular degeneration (AMD). The finding
of a close association of AMD with factor H mutations
suggests that complement is also involved in the pathogen-
esis of this visually disabling disease [51–54].

A recent study into the role of the terminal complement
pathway in MPGN has pointed towards the potential of
therapeutic inhibition of the complement system in MPGN
[55]. Mice deficient for both fH and C5 developed less
severe glomerulonephritis with better renal function, lower
mortality and reduced glomerular cellularity in comparison
to fH-deficient mice with normal C5. It is interesting to
note that C5-deficient mice were not protected against
proteinuria, suggesting that the glomerular C3 activation is
sufficient to disrupt the glomerular permselectivity. The
induction of heterologous nephrotoxic serum nephritis in
fH-deficient mice resulted in markedly increased renal
damage when compared to wild-type mice. The renal
damage was clearly reduced in fH-deficient mice lacking
C5 whereas C6-deficient mice were not protected. These
findings demonstrated that the complement-mediated renal
damage depended on the formation of the anaphylotoxin
C5a but not on the formation of C5b-9. The role of C5 was
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supported by the reduction of proteinuria and glomerular
neutrophil accumulation after treatment with an antibody
against C5.

These observations suggest that anti-C5 treatment could
serve as a treatment option in MPGN type II.

Complement and the atypical haemolytic
uremic syndrome

The haemolytic uremic syndrome is characterised by
microangiopathic haemolytic anemia, consumptive throm-
bocytopaenia and the formation of microvascular thrombi.
The vascular damage is particularly severe in the kidney
and can lead to acute renal failure. Most cases of HUS are
associated with diarrhoea and are caused by the verotoxin-
producing Escherichia coli strain O157:H7. The less
common form that is not associated with diarrhoea is
referred to as atypical HUS (aHUS). Especially in children,
the outcome and prognosis of diarrhoea-associated HUS is
good, whereas atypical HUS is associated with substantial
chronic renal failure and mortality.

The familial occurrence of aHUS [56] and the occasional
finding of complement consumption [57] and deposition
[58] in familial aHUS suggested a hereditary defect in
alternative pathway activation or control. Importantly low
levels of C3 persisted in patients with familial HUS after
remission of the disease and low C3 levels were also
detected in unaffected relatives. The discovery of fH
mutations in families with aHUS confirmed this hypothesis
[59, 60]. Until now, more than more than 100 fH mutations
have been described [61]. These can be searched in an
interactive HUS database (http//:www.FH-HUS.org). The
fH mutation frequency is 38% in familial forms of aHUS
and 20% in sporadic forms [62]. In contrast to the fH
mutations in patients with MPGN type II, patients with
aHUS are usually heterozygous for the fH mutation. The
penetrance is around 60%. Patients usually have normal
levels of circulating fH protein, but reduced C3 levels are
found in about 50% of the aHUS cases with a fH mutation
[62]. Also in contrast with the mutations associated with
MPGN, the fH mutations in patients with aHUS are located
in the C-terminal region which is important for binding to
cellular surfaces [63–65] via an interaction with C3b
deposited in the surface of these cells [66]. Because
mutated fH cannot bind to surface-bound C3b, circulating
factor B can associate with the C3b and C3 convertase is
formed, leading to unopposed complement activation on
the endothelium.

The creation of a transgenic mouse that lacks the exons
encoding for the C-terminal region of fH that is responsible

for the binding to cellular surfaces has resulted in an aHUS
model that is highly similar to the human disease [67].
These mice have a preserved capacity to regulate fluid
phase complement activation and did not develop glomer-
ulonephritis. The absence of systemic complement deple-
tion in the presence of defective endothelial protection
against complement attack led to a typical picture of HUS
including the formation of glomerular microthrombi,
fragmentocytes in peripheral blood and thrombocytopenia.

Next to fH mutations, other mutations in complement
regulatory proteins have been discovered in patients with
aHUS. MCP mutations are found in approximately 14% of
the patients with aHUS [62] and until now 43 mutations
have been reported [61]. The course of the disease is milder
in patients with MCP mutations, and plasma therapy does
not seem to contribute to the outcome.

Factor I mutations are quite rare and are found in about
4.5% of the patients with aHUS. More recently, two factor
B mutations have been discovered [68]. One of these
mutations increases the affinity of factor B for C3b, while
the other increases the half-life of C3bBb. Both mutations
result in an increased activity of the alternative pathway.

Taken together, the clinical and experimental findings
clearly point towards an important role of complement
regulation in the pathogenesis of aHUS. However, until
now, mutations of complement-regulatory proteins are only
found in about 50% of the affected patients and family
members of affected patients can share the mutations
without manifesting aHUS. It seems that both additional
predisposing factors and triggering circumstances, e.g.
infections, are necessary to initiate the full-blown micro-
angiopathy of aHUS.

Nevertheless, it is clinically useful to screen patients
with aHUS for the known mutations because the findings
may influence the prognosis and therapeutic decisions.
Although evidence is lacking, patients with fH deficiency
are usually treated with plasma therapy [69]. On the other
hand, MCP is a membrane-bound protein and there is no
rationale for plasma substitution in patients with MCP
mutations and aHUS. As mentioned above, retrospective
data do not indicate that plasma therapy results in improved
outcomes in these patients [62]. However, patients with
MCP mutations do well after kidney transplantation [70] as
functional MCP is present on the endothelium of the
transplanted kidney whereas patients with fH mutations
have a very high rate of disease recurrence and graft loss
after kidney transplantation [71]. Preemptive plasma ther-
apy may be an option in these patients, but data are lacking
to support this approach. Others have attempted combined
liver and kidney transplantation in children with fH-
associated HUS, but liver transplantation is associated with
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greatly increased risks when compared with kidney
transplantation alone, and this procedure has not been
uniformly successful until now [72–74].

Complement and progressive renal damage

Independent of the underlying renal disease, proteinuria is
associated with tubulointerstitial fibrosis and a progressive
loss of renal function [75–77]. A number of mechanisms by
which proteinuria may cause renal function loss have been
suggested. These include oxidative damage induced by
transferrin, lysosomal rupture caused by overload of the
resorptive capacity for urinary proteins and pro-inflamma-
tory effects of albumin-bound free fatty acids [78–81].

For many years, complement deposition along the brush
border has been noted in proteinuric renal disease [82].
C5b-9 is found in urine from patients with various
proteinuric renal diseases including diabetic nephropathy
[83]. The C5b-9 in the urine is very probably generated
within the tubulular lumen due to an intrinsic complement-
activating property of the tubular cells [84, 85]. The exact
mechanism of tubular complement activation is not under-
stood, but tubular ammonia production [86] and a low
expression of complement regulatory proteins on the apical
cell surface [87] are thought to contribute.

The insertion of sublytic amounts of C5b-9 in the cell
membrane of tubular cells leads to the production of pro-
inflammatory cytokines [88, 89] and collagen. In vivo
evidence for the role of complement in proteinuria-
mediated renal damage has been derived from studies in
C6-deficient rats. Rats with an inherited C6 deficiency were
protected against tubulointerstitial damage in both the
remnant kidney model [90] and the puromycin model of
proteinuric renal disease [91]. A therapeutic intervention
with either the murine complement inhibitor Crry or CD59
targeted to the renal tubulus resulted in improved renal
function and less interstitial damage when compared with
untreated animals [92].

Conclusions

Increasing knowledge about the complement system has
taught us about both the protective and harmful roles of
complement in renal disease. In the course of this review, it
has repeatedly become clear that complement inhibition
early on in both the classical and alternative pathways is
associated with the risk of increased deposition of immune
complexes and the resulting damage may outweigh the
benefit. On the other hand, it seems that complement

inhibition distal of the formation of the C3 convertases is
safe and offers more promising therapeutic options for renal
diseases for which no satisfying treatment has been
established until now.

Independently of these promising therapeutic prospects,
complement has become an invaluable tool in the diagnosis
and monitoring of renal disease and results of complement
studies have a strong impact on day-to-day decision making
in the care of our patients with renal disease.
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