
RESEARCH ARTICLE

Laboratory-based and free-living algorithms

for energy expenditure estimation in

preschool children: A free-living evaluation

Matthew N. Ahmadi1,2, Alok Chowdhury1,2, Toby Pavey2, Stewart G. TrostID
1,2*

1 Institute of Health and Biomedical Innovation at Queensland Centre for Children’s Health Research,

Queensland University of Technology, South Brisbane, Australia, 2 Faculty of Health, School of Exercise and

Nutrition Sciences, Queensland University of Technology, Brisbane, Australia

* s.trost@qut.edu.au

Abstract

Machine learning models to predict energy expenditure (EE) from accelerometer data have

traditionally been trained on data from laboratory-based activity trials. However, accuracy is

typically attenuated when implemented in free-living scenarios. Currently, no studies involv-

ing preschool children have evaluated the accuracy of EE prediction models trained on labo-

ratory (LAB) under free-living conditions.

Purpose

To evaluate the accuracy of LAB EE prediction models in preschool children completing a

free-living active play session. Performance was benchmarked against EE prediction mod-

els trained on free living (FL) data.

Methods

25 children (mean age = 4.1±1.0 y) completed a 20-minute active play session while wear-

ing a portable indirect calorimeter and ActiGraph GT3X+ accelerometers on their right hip

and non-dominant wrist. EE was predicted using LAB models which included Random For-

est (RF) and Support Vector Machine (SVM) models for the wrist, and RF and Artificial Neu-

ral Network (ANN) models for the hip. Two variations of the LAB models were evaluated; 1)

an “off the shelf” model without additional training; 2) models retrained on free-living data,

replicating the methodology used in the original calibration study (retrained LAB). Prediction

errors were evaluated in a hold-out sample of 10 children.

Results

Root mean square error (RMSE) for the FL and retrained LAB models ranged from 0.63–

0.67 kcals/min. In the hold out sample, RMSE’s for the hip LAB (0.62–0.71), retrained LAB

(0.58–0.62) and FL models (0.61–0.65) were similar. For the wrist placement, FL SVM had

a significantly higher RMSE (0.73 ± 0.29 kcals/min) than the retrained LAB SVM (0.63 ±
0.30 kcals/min) and LAB SVM (0.64 ± 0.18 kcals/min). The LAB (0.64 ± 0.28), retrained LAB

(0.64 ± 0.25), and FL (0.62 ± 0.26) RF exhibited comparable accuracy.
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Conclusion

Machine learning EE prediction models trained on LAB and FL data had similar accuracy

under free-living conditions.

Introduction

Accelerometer based-motion sensors are the most widely recognized and preferred device to

objectively measure physical activity in young children [1, 2]. To date, most applications of

accelerometry to predict physical activity intensity and/or energy expenditure (EE) have relied

on simple linear regression using proprietary activity counts or other representations of accel-

eration magnitude as the only independent variable [3–6]. Although this approach provides

predictions with moderate-to-strong positive correlations with measured EE [7–10], the accu-

racy of linear regression methods at the individual level of measurement is typically low, with

coefficient of variation statistics ranging between 20% to 99% [9, 11]. Further, intensity related

cut-points derived from simple linear regression models or receiver operating characteristic

(ROC) curves have significant measurement error. Validation studies involving independent

samples of children indicate that cut-point approaches misclassify the true intensity of physical

activity 35% to 45% of the time [9, 12].

One approach to accelerometer data reduction that has potential to significantly improve

device-based measurement of physical activity and sedentary behaviour is pattern recognition

or machine learning [13, 14]. Pattern recognition is a branch of artificial intelligence con-

cerned with classifying or describing observations. Widely used in business, robotics, medi-

cine, and engineering, the goal of pattern recognition is to predict future outcomes based on

previous knowledge or recognizable features in the raw data [15–17]. State-of-the-art super-

vised learning algorithms, such as random forest (RF), support vector machine (SVM), and

artificial neural networks (ANN) have been shown to be more accurate than traditional simple

linear regression approaches at the group and individual level [18–20]. The EE prediction

errors associated with these models are 25% to 50% smaller in magnitude than those obtained

with regression-based cut-point methods [12].

To date, few investigators have implemented machine learning approaches to derive accel-

erometer-based EE prediction models for children under five. Due to developmental differ-

ences in movement competence and the energy cost of physical activities [21], accelerometer-

based EE prediction models developed for adults and school-aged children are not generaliz-

able to preschool-aged children [22]. Zakeri et al. [23] derived accelerometer EE prediction

models for preschool-aged children using cross-sectional times-series (CSTS) and multivariate

adaptive regression splines (MARS). When evaluated in a whole room calorimeter during the

waking hours, root mean square error (RMSE) ranged from 0.05 to 0.10 kcals/min, with the

MARS model providing lower prediction errors than the CSTS model. Both prediction models

were subsequently cross-validated in an independent sample of 109 children under free-living

conditions using doubly labelled water as a criterion measure [24]. RMSE for the CSTS and

MARS models was 105 kcals/day (mean percent error = 4.1%) and 139 kcals/day (mean per-

cent error = 7.5%), respectively. Although the models performed well under free-living condi-

tions, they were trained on proprietary activity counts from the ActiGraph accelerometer

which cannot be generalized to other makes and models of accelerometers [25].

EE prediction models trained on features in the raw acceleration signal allows for generaliz-

ability across different monitor brands and provides greater flexibility for models to map
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dependencies and nonlinearities in the data [22, 26, 27]. To date, two studies have developed

machine learning models to predict EE from raw acceleration features in preschool-aged chil-

dren. Chowdhury et al. [19] used features in the raw acceleration signal to train multiple linear

regression (MLR), ANN, and SVM EE prediction models. Nineteen children completed 10

activity trials encompassing sedentary to vigorous activities while wearing accelerometers on

both wrists and the right hip. The RMSE for the best performing wrist (SVM) and hip (ANN)

models was 0.63 and 0.55 kcals/min, respectively. More recently, Steenbock et al. [28] trained

and evaluated a number of machine learning EE prediction models in a sample of 41 pre-

school-aged children. Participants completed nine structured activity trials (five preselected,

and four chosen by the child) while wearing accelerometers on both wrists, right and left hip,

and right thigh, as well as a portable calorimeter. The investigators evaluated mixed-model lin-

ear regression, MLR, RF, and ANN prediction models. RMSE ranged from 0.61 to 0.66 kcals/

min, with the RF wrist model exhibiting the smallest prediction error.

Although the aforementioned studies show that machine learning EE prediction models

are feasible and provide accurate estimates of EE, it is important to note that the models were

trained using accelerometer data from laboratory-based activity trials. Previous studies have

demonstrated that machine learning models trained on laboratory-based activity trials do not

perform well when deployed in free living environments [29, 30]. Therefore, to progress

research on the application of machine learning approaches for accelerometer-based physical

activity assessment, it is imperative to evaluate the prediction accuracy of laboratory trained

EE prediction models under free-living conditions and benchmark performance against EE

prediction models trained on true free-living data. However, to our knowledge, no previous

studies have developed and tested machine learning EE prediction models for preschool-aged

children trained on free-living data. To address this gap in the research literature, the purpose

of the current study was to: 1) develop and test machine learning EE prediction models for

preschool-aged children trained on features in free-living accelerometer data; and 2) compare

the performance of these models against EE prediction models trained on laboratory-based

activity trials.

Methods

Participants and setting

Twenty-five children between the ages of 3–5 years (mean = 4.1 ± 1.0 y) completed a 20-minute

active free play session at a location chosen by the parent or guardian. Children were recruited

through a University email list-serve, local media, and word of mouth. The locations of the

active free play session included the family home, community parks, and local green spaces.

The research team provided age-appropriate toys and play equipment; however, children were

free to engage in any activity they desired. This allowed for natural activity behaviour, transi-

tions, and engagement with peers and the environment. The sample was evenly distributed

across the age range (36% 3 y, 28% 4 y, and 36% 5 y) and comprised 5 girls and 20 boys. Prior to

participation, parental written consent was obtained. The study was approved by the Queens-

land University of Technology’s Human Research Ethics Committee (1700000423).

Study design

Fifteen children were randomly assigned to the training sample to develop and evaluate the

free-living EE prediction models. The remaining 10 children served as a hold-out test sample

to independently evaluate the prediction accuracy of the new free-living EE prediction models

and benchmark their performance against previously published laboratory-based EE predic-

tion models for preschool-aged children.
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Instrumentation. During each active free play session, participants wore a MetaMax 3B

portable indirect calorimetry unit (Cortex Biophysical Gmbh; Leipzig, Germany) and an Acti-

Graph GT3X+ accelerometer (ActiGraph Corporation; Pensacola, FL, USA) on their right hip

and non-dominant wrist. During each session, a member of the research team used a Go-Pro

Hero 5 (GoPro, Inc, San Mateo, CA) camera to video record participants for subsequent direct

observation coding of activity type.

Indirect calorimetry. The Metamax 3B portable calorimeter was fitted using a flexible

face mask and chest harness, which was appropriately tightened using adjustable straps. The

device and chest harness had a total weight of 1.1 kg, making it feasible for use with young chil-

dren. Following calibration according to manufacturer specifications, respiratory rate, oxygen

consumption (VO2) and carbon dioxide production (VCO2) were measured breath-by-breath

using a Triple-V-Turbine, an electrochemical cell and an infrared analyser, respectively.

Breath-by-breath VO2 data was averaged over a 10 s window and then smoothed using a 60 s

moving average [31, 32]. VO2 was converted to units of EE (kcal.min-1) using the Weir equa-

tion [33]. To address any confounding related to differences in resting metabolic rate, energy

expenditure was also expressed as Metabolic equivalents (METs). METs were calculated by

dividing measured energy expenditure by predicted resting energy expenditure, where resting

energy expenditure was estimated from the participant’s sex, height, and body mass using

Schofield’s equation for children aged 3 to 10 y [34].

Accelerometer. The ActiGraph GT3X+ is a small and lightweight activity monitor that

measures acceleration along three orthogonal axes with a dynamic range between +/- 8 g and a

sampling frequency between 30–100 Hz. For the current study, the sampling frequency was set

to 100 Hz. For the hip location, the accelerometer was positioned on the right mid-axilla line

at the level of the iliac crest. For the wrist location, the accelerometer was positioned on the

posterior side of the arm, between the radial and ulnar styloid processes.

Development and evaluation of free-living EE models. There were three steps involved

in developing the free-living (FL) EE prediction models: 1) data pre-processing and feature

extraction, 2) feature selection, and 3) model training and testing.

Data pre-processing and feature extraction. The tri-axial accelerometer signal was con-

verted into a single-dimension vector magnitude (VM) and segmented into 10s non-overlapping

sliding windows. Time and frequency domain features found to have utility in previous studies

[35, 36] were then extracted from each window for each axis and VM, and included: mean, stan-

dard deviation, coefficient of variation, percentiles (10th, 25th, 50th, 75th, 90th), skewness, kurtosis,

maximum, minimum, peak-to-peak, median crossings, zero crossings, sum, mean absolute devia-

tion, power, lag-1 autocorrelation, log energy, inter-quartile range, variance, active samples, num-

ber of activations, mean activation interval duration, activation interval duration variability,

cross-axis correlations, dominant frequency (0.25 to 5.0 Hz), and dominant magnitude (0.25 to

5.0 Hz). In addition, mean orientation angles for tilt, roll, and pitch were calculated. The resultant

feature dataset was synchronized with the measured EE values by aligning date-time stamps.

Feature selection. Minimum Redundancy Maximum Relevance (mRMR) feature selec-

tion was used to identify features with high discriminative ability [37]. Minimum redundancy

favours features that have low dependency to other features without considering how impor-

tant they are to the outcome variable, whereas maximum relevance selects features that are the

most predictive of the outcome variable. The mRMR selection process is based on a balance

between these two algorithms, selecting features that derive high relevance and low redun-

dancy. Feature selection was constrained to the 10, 15, and 20 best features.

Model training and testing. To replicate the methodology used in previously published

laboratory-based (LAB) EE models for preschool-age children, the supervised learning algo-

rithms used in this study were RF and ANN for the hip; and RF and SVM for the wrist. The
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models were implemented using the “randomForest” [38], “kernlab” [39], “nnet” [40] and

“caret” [41] packages within R Software [42]. During the training process each model was opti-

mized using RMSE as the optimization criterion. The hip and wrist RF models were set to 500

trees and the number of features randomly sampled at each node was optimized at three; the

hip ANN used a single hidden layer and was optimized at 11 neurons and a weight decay of

0.1; the wrist SVM was configured with a radial basis kernel function and optimized with a

cost parameter and gamma estimation of 6.0 and 0.1, respectively. Predictive accuracy was

evaluated using leave-one-subject- out cross-validation (LOSO-CV). The performance metrics

were the Root Mean Square Error (RMSE) and the Mean Absolute Percent Error (MAPE).

MAPE is calculated as the average absolute percent error for predicted EE minus actual mea-

sured EE divided by measured EE; and provides an indication of the magnitude of prediction

error relative to observed EE.

Table 1. Features selected for free-living models.

Feature (axis) RF SVM ANN

Wrist Hip Wrist Hip

10th percentile (x) ✓

10th percentile (z) ✓ ✓

25th percentile (x) ✓ ✓

25th percentile (z) ✓ ✓

50th percentile (vm) ✓ ✓

90th percentile (x) ✓ ✓

activation interval duration variability (z)� ✓ ✓

coefficient of variation (x) ✓ ✓

coefficient of variation (y) ✓ ✓

coefficient of variation (z) ✓ ✓ ✓ ✓

cross-correlation (xz)

cross-correlation (yz) ✓ ✓

dominant frequency (y) ✓ ✓ ✓ ✓

dominant frequency (vm) ✓ ✓

magnitude of dominant frequency (z) ✓

maximum (x) ✓ ✓

mean absolute deviation (x) ✓ ✓

minimum (vm) ✓ ✓ ✓ ✓

minimum (x) ✓ ✓ ✓ ✓

minimum (y) ✓ ✓ ✓ ✓

number of activations (vm)� ✓ ✓

number of activations (x)� ✓

peak to peak (x) ✓

power (z) ✓ ✓

skewness (y) ✓ ✓

skewness (z) ✓

standard deviation (vm) ✓ ✓

standard deviation (z) ✓ ✓

zero crossings (x) ✓ ✓ ✓ ✓

zero crossings (z) ✓ ✓

�Activation interval duration variability and number of activations features were extracted by using the rectified

signal with a 4th order Butterworth filter 5Hz lowpass cut off. [43]

https://doi.org/10.1371/journal.pone.0233229.t001
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Comparison with laboratory-based EE models. The accuracy of the newly derived free-

living EE prediction models were compared to the LAB Hip RF and Wrist RF EE prediction

models developed by Steenbock et al. [28], and the Hip ANN and Wrist SVM EE prediction

models developed by Chowdhury et al. [19]. Two variations of the laboratory-based models

were evaluated; one in which the models were implemented as an “off the shelf” model without

additional training, and one in which the models were retrained on the free-living data, repli-

cating the methodology used in the original calibration study (retrained LAB). The perfor-

mance metrics were RMSE and MAPE.

Statistical analysis

Differences in RMSE statistics between the LAB, retrained LAB, and FL models were tested for

statistical significance using a one-way repeated measures ANOVA. Statistical significance was

set at an alpha level of 0.05. When the ANOVA F-ratio was significant, the Fisher LSD proce-

dure was used to determine the locations of significant pairwise differences. Additionally,

Bland-Altman plots were created to examine mean bias and 95% limits of agreement (LOA)

for total EE expended during the free-living activity session.

Results

On average, participants expended 33.7 ± 12.2 kcals during the free play session. Based on the

direct observation coding of the video files, participants completed a wide range of activities,

engaging in energetic play, walking, and running for an average of 11.7 ± 4.0, 2.8 ± 1.9, and

2.4 ± 1.1 min, respectively. The average duration of seated activities was 4.3 ± 2.3 min.

LOSO cross-validation

The FL prediction models with the best LOSO-CV performance were tested in the hold-out

sample. The best performing Hip RF model had 20 features, while the best performing Hip

ANN model had 15 features. The best performing Wrist RF and Wrist SVM models both had

15 features. The features selected for the FL models are reported in Table 1. The final FL mod-

els along with sample data and R code for implementation can be found in the following link:

https://github.com/MA-QUT/Preschool_EE_Models_PLOS_One.

Table 2. Leave one subject out cross-validation results for the free-living models and retrained lab model.

Prediction Model RMSE MAPE

Kcals/min METs %

Hip

Free-Living RF 0.63 (0.42) 0.96 (0.59) 28.1 (12.0)

ANN 0.63 (0.43) 0.96 (0.61) 27.1 (11.1)

Retrained Lab RF Lab 0.67 (0.41) 1.02 (0.57) 28.3 (12.7)

ANN Lab 0.65 (0.44) 0.99 (0.62) 28.4 (11.8)

Wrist

Free-Living RF 0.63 (0.47) 0.96 (0.67) 27.4 (14.0)

SVM 0.64 (0.51) 0.99 (0.73) 25.4 (12.2)

Retrained Lab RF Lab 0.66 (0.47) 1.01 (0.67) 28.3 (15.0)

SVM Lab 0.65 (0.54) 0.99 (0.77) 26.0 (12.6)

Numbers represent: Mean (SD); RF: Random Forest; ANN: Artificial Neural Network; SVM: Support Vector Machine

https://doi.org/10.1371/journal.pone.0233229.t002
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RMSE and MAPE statistics for the FL and retrained LAB models are reported in Table 2.

The RMSE for the FL Hip RF and ANN models was 0.63 kcals/min (0.96 METs) and MAPE

ranged from 27.1% to 28.1%. The retrained LAB Hip RF and ANN models exhibited compara-

ble performance to the FL models with slightly higher RMSE’s (0.65–0.67 kcals/min, 0.99–1.02

METs) and MAPE statistics (28.4%). The FL Wrist RF and SVM models exhibited RMSE’s of

0.63 (0.96 METs) and 0.64 kcals/min (0.99 METs), respectively; with MAPE statistics between

25.4% - 27.4%. The retrained LAB Wrist RF and SVM models exhibited comparable perfor-

mance to the FL models with RMSE’s of 0.65–0.66 kcals/min (0.99–1.01 METs) and MAPE

statistics ranging from 26.0% to 28.3%.

Evaluation in hold-out sample

RMSE and MAPE statistics for the off the shelf LAB, retrained LAB, and FL models in the

hold-out sample are displayed in Figs 1 and 2. For the hip placement (Fig 1), RMSE’s ranged

from 0.58 (0.92 METs) for the retrained LAB ANN to 0.71 kcals/min (1.1 METs) for LAB RF.

MAPE’s ranged from 25.8% to 36.4%. RMSE’s for the FL and retrained LAB models were simi-

lar to their LOSO results and differed by less than 0.06 kcals/min. There were no significant

differences in the RMSE’s for the off the shelf LAB, retrained LAB, and FL prediction models

(F5,45 = 0.85, p = 0.53).

For the wrist placement (Fig 2), RMSE’s ranged from 0.62 for the FL RF model to 0.73

kcals/min (0.96–1.15 METs) for the FL SVM model. MAPE’s ranged from 26.4% to 33.1%.

RMSE’s for the FL and retrained LAB were similar to their LOSO results and differed by less

than 0.06 kcals/min, with the exception of the FL SVM model which differed by 0.09 kcals/

min. RMSE was significantly different across EE prediction models (F5,45 = 2.36, p = .05).

Fig 1. Results for the free-living, retrained laboratory, and off the shelf laboratory models for the hip placement in the hold-out validation sample. Error bars

represent standard error.

https://doi.org/10.1371/journal.pone.0233229.g001
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Post-hoc analysis showed that the RMSE for the FL SVM model (0.73 kcals/min) was signifi-

cantly higher than the off the shelf LAB SVM (0.64 kcals/min) and retrained LAB SVM models

(0.63 kcals/min). No other significant differences were detected.

Prediction of free play total EE

Bland-Altman plots depicting the agreement between predicted and observed total EE during

the free play session are displayed in Figs 3 and 4. For the hip placement (Fig 3), all six predic-

tion models exhibited evidence of positive proportional bias (r = 0.81 to 0.89) in which EE was

overestimated during play sessions with low total EE and underestimated during play sessions

with high total EE. With the exception of the LAB Hip RF, the mean bias was not significantly

different from zero and predicted EE estimates were within ± 6% of directly measured EE.

However, the 95% LOA’s were wide for all models. Based on the line of best fit, the lower and

upper prediction limits for an individual ranged from -92.6% to 6.8% at 10 kcals, -55.8% to

33.5% at 30 kcals, and -26.5% to 67.6% at 50 kcals.

For the wrist placement (Fig 4), all six prediction models displayed a similar pattern with

evidence of proportional bias (r = .75 to .83). Mean bias was not significantly different from

zero and was within ± 6% of directly measured EE. However, for all the models, the 95%

LOA’s were wide. Based on the line of best fit, the lower and upper prediction limits for an

individual ranged from -92.5% to 21.7% at 10 kcals, -52.3% to 42.8% at 30 kcals, and -26.8% to

80.1% at 50 kcals, respectively.

Discussion

Machine learning models for predicting EE in young children have been shown to accurate

when evaluated under laboratory conditions. However, to advance the application of machine

Fig 2. Results for the free-living, retrained laboratory, and off the shelf laboratory models for the wrist placement in the hold-out validation sample. �Significantly

different from the retrained Support Vector Machine (p< 0.05) and off the shelf lab Support Vector Machine (p< 0.05). Error bars represent standard error.

https://doi.org/10.1371/journal.pone.0233229.g002
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learning methods for the assessment of physical activity, EE prediction models trained on data

from laboratory-based activity trials need to be evaluated in independent samples under true

free-living conditions. To our knowledge, this is the first study to evaluate the accuracy of

machine learning EE prediction models for preschool-aged children under true free-living

conditions. Furthermore, this is the first study to benchmark the performance of EE prediction

models trained on free-living data against models trained on laboratory-based activity trials.

The results indicate that EE prediction models trained on laboratory data exhibit comparable

accuracy to models trained on free living data under free-living conditions. The laboratory

trained models exhibited RMSE’s within 0.10 kcals/min of the free-living models. Moreover,

RMSE’s for the hip and wrist laboratory-trained models were within 0.07 kcals/min and 0.03

kcals/min of their laboratory cross-validation performance, respectively.

Our finding that laboratory-based models exhibit similar prediction accuracy to models

trained on free-living data was unexpected and contrary to the results reported in studies eval-

uating laboratory trained activity classification models under free-living conditions [29, 30].

The discrepancy in findings may be attributable, at least in part, to differences in the inherent

variability of the prediction targets. Laboratory trained activity classification models do not

generalise well in free living scenarios because children can perform specific physical activities

in multiple ways, depending on the child’s motor competence and the constraints imposed by

physical and social environment. On the other hand, the resultant energy expenditure of per-

forming physical activities is a physiological response, influenced to a lesser extent by personal

and environmental constraints, making the EE predictions of laboratory trained models more

robust under free living conditions. In support of this concept, walking style or gait differs so

Fig 3. Bland Altman plots depicting regression line and 95% prediction intervals for off the shelf laboratory, retrained laboratory, and free-living models for hip

placement. Y-axis values represent percent error (observed–predicted EE). X-axis values represent observed energy expenditure values (kcals).

https://doi.org/10.1371/journal.pone.0233229.g003
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much between individuals it can be used as a biometric identifier, similar to fingerprinting

and facial recognition [44]. In comparison, the energy cost of self-paced walking varies much

less between individuals, with published MET values for school-aged children ranging from

3.6 to 3.9 METs [45, 46].

With the exception of the LAB Hip RF model, all of the EE prediction models provided

acceptable group level estimates of total EE within ± 6% of measured EE. However, the pre-

diction limits for an individual were wide and all models exhibited strong evidence of pro-

portional bias in which EE was overestimated for play sessions with low total EE and

underestimated for play sessions with high total EE. The systematically larger prediction

errors observed for play sessions with low and high total EE is difficult to explain. However,

given the relatively short duration of the free play sessions, and the pulsatile nature of young

children’s movement behaviours, there may have been insufficient training instances with

low and high physical activity intensity for the models to make accurate predictions across

the full physical activity intensity continuum. Notably, the laboratory-based and free-living

models were trained on data where 75% of the directly measured EE values were between

1.4 to 2.5 kcals/min (2.2 to 3.8 METs). Therefore, it is possible that the models were less

than adequately fitted to provide accurate EE predictions outside this range. As a result, EE

for a play session tended to be overestimated if physical activity intensity was predomi-

nantly low and underestimated if physical activity intensity was mostly high (see S1 Fig). To

increase the accuracy of EE prediction models, future studies should train models using

datasets with sufficient number of training instances at the low and high end of the physical

Fig 4. Bland Altman plots depicting regression line and 95% prediction intervals for off the shelf laboratory, retrained laboratory, and free-living models for wrist

placement. Y-axis values represent percent error (observed–predicted EE). X-axis values represent observed energy expenditure values (kcals).

https://doi.org/10.1371/journal.pone.0233229.g004
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activity intensity continuum. This could be achieved through increasing the number of par-

ticipants and/or the number of active play sessions which would provide opportunities to

collect data in a greater variety of environmental contexts that are conducive to low and

high physical activity intensity.

The current study had several strengths. Specifically, all models were evaluated in an inde-

pendent hold out sample of children engaging in unconstrained activities in a variety of loca-

tions. Additionally, prediction models for both the hip and wrist were evaluated. The hip and

wrist are the most common wear locations for accelerometers [47]. Therefore, the accuracy of

models for these two locations have the most relevance for researchers and health practition-

ers. It is worth noting that, under free living conditions, the wrist and hip models displayed

comparable accuracy for estimating EE. Third, the laboratory-based Hip RF model was trained

on data collected by a GENEactiv monitor and consistent model accuracy was observed when

applied to data collected by an ActiGraph monitor. Despite reported differences in accelera-

tion values recorded by different monitor brands [48, 49], the consistent accuracy of the model

between monitors is an indication of generalizability between monitor brands and further sup-

ports the use of prediction models trained on raw acceleration data [25, 27].

Offsetting these strengths were several study limitations. First, due to the demands of the

data collection protocol, the active play sessions were restricted to 20 minutes. Although par-

ticipants engaged in a broad range of physical activity behaviours typically performed by pre-

school-aged children, longer play sessions or multiple play sessions for each participant would

have provided the opportunity for more free-living active play evaluations in different environ-

mental contexts which may have allowed for participants to engage in more activities at the

low and high end of the physical activity intensity continuum. Second, the study had a rela-

tively small training and hold-out sample. However, the sample size of 25 children provided

adequate data to both train and test the machine learning models. With 15 children, the

20-minute free living play sessions generated 1,578,000 data points providing 1,578 10-second

windows to train models. With 10 children in the hold-out set, there were 974,000 data points

providing 974 10-second windows to test the models. Third, the free-living models did not use

lag and lead features from adjacent windows. This would have provided more information for

model predictions and/or accounted for the dependence between adjacent windows. However,

in order to make direct comparisons with the laboratory-trained models, the free-living mod-

els used the same feature sets and did not include information from adjacent windows. Fourth,

the study participants were healthy typically developing children. As such, the models evalu-

ated are not generalizable to clinical populations with movement impairments or elevated

energy cost of locomotion.

Conclusions

In summary, when evaluated under true free-living conditions, laboratory-trained accelerome-

ter EE prediction models for preschool-aged children exhibited similar accuracy to models

trained on free-living data. Although the laboratory-based models generalized well to a free-

living environment and exhibited acceptable accuracy at the group level of measurement, the

strong evidence of proportional bias and wide prediction limits exhibited by all the models

suggests that they may be inappropriate for predicting EE in individuals. To improve predic-

tive accuracy, future studies should train models using accelerometer data with enough train-

ing instances of physical activity with low and high EE for accurate prediction over the

complete physical activity intensity continuum. In addition, the inclusion of physiological sen-

sor data such as heart rate or person-level features such as height and weight may improve

accuracy.
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Supporting information

S1 Fig. Density distribution of observed kcals/min for training data and scatter plot of pre-

dicted and observed kcals/min in hold-out data. Orange indicates observed EE between 1.4

and 2.5 kcals/min; Blue indicates observed EE <1.4 and >2.5 kcals/min.
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