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OCTA reveals remodeling 
of the peripheral capillary free 
zones in normal aging
Edmund Arthur1,2,3*, Jessica Alber1,2,3, Louisa I. Thompson3,4, Stuart Sinoff5 & 
Peter J. Snyder1,2

The retinal neurovascular unit consists of blood vessel endothelial cells, pericytes, neurons, 
astrocytes, and Müller cells that form the inner retinal blood barrier. A peripheral capillary free zone 
(pCFZ) represents the distance that oxygen and nutrients must diffuse to reach the neural retina, and 
serves as a metric of retinal tissue oxygenation. The pCFZs are formed based on oxygen saturation 
in the retinal arterioles and venules. Because retinal arterioles contain a larger concentration of 
oxygenated blood than venules, there is a reduced need for capillaries to exist closely to arterioles 
compared to venules. Therefore, in a healthy individual, larger periarteriole CFZs are expected 
compared to perivenule CFZs. With normal aging, there is atrophy of the inner retinal neurons, and 
consequently reduced extraction of oxygen and nutrients from the retinal vessels (i.e., increased 
oxygen saturation). Therefore, we hypothesized that the peripheral CFZ will remodel with normal 
aging. Using Optical Coherence Tomography Angiography, we showed that the pCFZs do remodel in 
normal aging with large (perivenule: η2

p = 0.56) and moderate (periarteriole: η2
p = 0.12) effect sizes, 

opening the possibility that such changes may be further increased by neurodegenerative diseases 
that adversely impact the health of the retinal neural cell layers.

Aging is the strongest risk factor for many neurodegenerative diseases1. While it is hypothesized that there is an 
increase in the area of the foveal avascular zone (FAZ) in normal aging2–5, some studies have shown no difference 
in the FAZ area in younger and older adults6–8. There is also atrophy of the inner retinal neurons; specifically, 
the retinal nerve fiber layer (RNFL) and retinal ganglion cell (RGC) layer in normal aging9–11. The atrophy of 
the RNFL and RGC layer consequently lead to reduced oxygen extraction and a paradoxical increased oxygen 
saturation in the arterioles and venules in the retina, which has been measured using traditional retinal oximetry 
methods12,13. Optical Coherence Tomography Angiography (OCTA) has shown reduced vessel density in older 
adults compared to younger adults4,14.

Larger FAZ area has been shown in the retina of older adults compared to younger adults using Fluorescein 
Angiography (FA)2,3 and OCTA​4,5. However, there is large individual variability in the size of the FAZ (co-efficient 
of variation ~ 50%)15,16, which may account for disparate results in studies examining the FAZ area in normal 
aging6–8. In studies showing larger FAZ areas in cognitively unimpaired older adults, individual FAZ values in the 
cognitively unimpaired older group may not exist outside the one-tailed 95% confidence interval of the younger 
group, thus limiting the sensitivity of the use of the FAZ area as a metric to detect subtle retinal vascular changes 
in normal aging17. Traditional retinal oximetry methods are highly variable18,19, and vessel density computation 
in OCTA images can be affected by noise in the image along with variable anatomical features such as vessel 
diameter20. Hence, finding a biomarker that is not limited to the fovea, and less likely to be affected by noise in 
the image, as well as a distance metric that is less variable compared to traditional retinal oximetry methods, 
may prove useful in detecting subtle peripheral retinal changes in normal aging.

We have previously characterized and quantified metrics of retinal tissue oxygenation termed the peripheral 
capillary free zones (pCFZs) in cognitively unimpaired young adults using two non-invasive retinal imaging 
modalities; OCTA and Adaptive Optics Scanning Laser Ophthalmoscope (AOSLO)17. We quantified and charac-
terized two types of pCFZs; the periarteriole CFZ (defined as the linear distance from an arteriole to the middle 
of the nearest capillary) and the perivenule CFZ (defined as the linear distance from a venule to the middle of 
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the nearest capillary)17. Periarteriole CFZs develop as a result of vaso-inhibitory effects of oxygen diffusing out 
of the retinal arterioles21. The higher oxygen concentration in the retinal arterioles results in reduced need for 
retinal capillaries to exist closely to the arterioles to supply the retinal neurons, and hence large periarteriole 
CFZs21–25. The retinal venules contain a lower concentration of oxygenated blood, creating an increased need for 
retinal capillaries to exist closely to the venules to supply the retinal neurons, and therefore narrower pCFZs exist 
around the venules (perivenule CFZs) than the arterioles17,23,25. We found the periarteriole CFZ to be significantly 
larger than the perivenule CFZ17. The perivenule CFZ was also found to be significantly positively associated 
with vessel distance from the fovea, and vessel diameter indicating consistency of the perivenule CFZ17. We also 
provided confidence limits for the pCFZs in cognitively unimpaired young adults (22–30 years)17.

The loss of retinal vessel density4,14 and atrophy of the inner retinal neurons9–11, concomitant with reduced 
oxygen extraction (increased oxygen saturation) from the arterioles and venules in normal aging12,13 suggests 
the possibility of increasing size of the pCFZ width in normal aging. The pCFZ is less likely to be affected by 
signal noise compared to the computation of vessel density in OCTA images because these dark areas around 
arterioles and venules on OCTA are readily discernible17. The pCFZ is not limited to the fovea and therefore can 
detect more subtle peripheral retinal changes in normal aging17. It is also a distance metric and hence likely less 
variable than traditional retinal oximetry methods17.

In this study, we investigate three novel questions in normal aging:1) Does the pCFZ remodel or increase in 
size?; 2) Beyond group means, do individual differences exist for the perivenule CFZ?; and 3) Is the mean differ-
ence in the periarteriole and perivenule CFZ size in cognitively unimpaired older adults significantly different 
from what was found in cognitively unimpaired younger adults? This current study builds on our previous work 
characterizing the pCFZ in cognitively unimpaired young adults by characterizing and quantifying the pCFZ 
as a biomarker of normal aging.

Methods
Study participants.  20 cognitively unimpaired young adults (mean age: 26 ± 3  years; age range: 
22–30 years; 10 males and 10 females) and 20 cognitively unimpaired older adults (mean age: 64 ± 6 years; age 
range: 55–74 years; 8 males and 12 females) were involved in this current study. All participants had refractive 
errors of ≤  ± 5.00 DS (spherical equivalent; equivalent axial length of ~ 21–26 mm) to prevent significant dif-
ferences in retinal magnification in the OCTA images as noted by Bennett’s formula26. Characteristics of the 
cognitively unimpaired young adults have been reported previously17. Cognitively unimpaired older adults were 
recruited at Butler Hospital, Providence, RI, as part of the Atlas of Retinal Imaging in Alzheimer’s Study (ARIAS, 
NCT03862222) and had best corrected visual acuity of at least 20/30 (LogMAR ~ 0.18), Montreal Cognitive 
Assessment (MoCA) scores of ≥ 2627,28, and Repeatable Battery for the Assessment of Neuropsychological Status 
Update (RBANS-U) Delayed Memory Index (DMI) scores of ≥ 8529,30. For all participants, further inclusion 
criteria involved: 1) absence of systemic diseases such as diabetes, hypertension, cancer or history of cancer; 2) 
absence of ophthalmic diseases such as diabetic retinopathy, retinal ischemic conditions, glaucoma, and age-
related macular degeneration; and 3) absence of usage of retinotoxic drugs such as chloroquine, hydroxychlo-
roquine, and oncologic therapeutics31. The estimated sample size of 20 per group (N = 40) was computed with 
a GPower 3.1 calculator32 using the following input parameters; effect size (partial eta squared) of 0.28, α of 
0.05, power of 0.80, 3 independent variables (sex, vessel type, distance from fovea), and two levels for sex (male, 
female) and vessel type (arteriole, venule) as done previously17. The study adhered to the tenets of the Declara-
tion of Helsinki, and informed consent was obtained from all subjects. This study is part of the Atlas of Retinal 
Imaging in Alzheimer’s Study (ARIAS; authors P.J.S. & S.S. Co-PI’s) and was approved by the BayCare Institu-
tional Review Board (IRB).

Image acquisition with OCTA​.  The OCTA retinal imaging acquisition module used for the cognitively 
unimpaired young adults has been previously reported17. Using OCTA device from the same vendor and similar 
image acquisition module, the cognitively unimpaired older adults were dilated with one drop of Tropicamide 
(Myadricyl 1%) per eye prior to imaging. There was a 15-min wait time from dilation to image acquisition. 
All imaging procedures were completed for both the right and the left eye. We obtained 20 × 20-degree OCTA 
images consisting of 512 b-scans, 512 A-scans per b-scan, 12 micron spacing between the b-scans and 5 frames 
averaged per each b-scan location of the central fovea and of paired arterioles and venules with their surround-
ing capillaries inferior to the fovea (Spectralis HRA + OCT; Eye Explorer version 1.10.4.0; Heidelberg Engineer-
ing, Heidelberg, Germany)31. The signal quality values of all our OCTA images from the vendor software was 
at least 20 to ensure good image quality31. To ensure independence of sampling, only one eye was selected for 
the purpose of image analysis based on image signal quality. In cases, where both eyes had similar image signal 
quality, either eye was randomly selected.

Processing of OCTA images.  As done previously for the cognitively unimpaired young adults17, the 
superficial vascular plexus (SVP) was the vascular layer of interest for the cognitively unimpaired older adults. 
The SVP is defined as the composite retinal vasculature from the inner limiting membrane to the inner plexi-
form layer/inner nuclear layer boundary. The SVP images were then exported as .tiff files into an image editing 
software (Adobe, Inc) and cropped to include only the OCTA images of interest. Images of the central foveal 
region and those of paired arterioles and venules inferior to the fovea were then automatically montaged using 
an image processing software (i2k Retina software) to generate a wider field of view of the paired vessels (Fig. 1a). 
The montaged images were then also exported into a custom programming software (Matlab, Mathworks). First, 
a vesselness filter was applied to the images33 to increase the probability of resolving a vessel at a specific loca-
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tion in the image when it is actually present versus noise or motion artifact (Fig. 1b). Next, Otsu thresholding 
method34 was applied to the resultant image to reduce background noise (Fig. 1c).

Computation of Euclidean distances for pCFZ, vessel distance from fovea, vessel diameter, 
FAZ size, and FAZ effective diameter.  Euclidean distances for the pCFZ, vessel distance from fovea, 
and vessel diameter were computed using similar formulas previously applied for the cognitively unimpaired 
young adults (Eqs. 1–3)17. We computed the pCFZ width in microns as the linear distance from an arteriole 
(periarteriole CFZ) or venule (perivenule CFZ) to the middle of the nearest capillary. The middle of the nearest 
capillary was used instead of the edge of the capillary because OCTA does not have enough lateral resolution 
to truly resolve the edge of a lumen of a capillary compared to other advanced retinal imaging modalities such 
as AOSLO. A custom Matlab program automatically recorded x and y coordinates from points evenly sampled 
perpendicular to an arteriole or venule and the middle of the nearest capillary to an Excel file (Fig. 2). The evenly 
sampled points in Matlab included points perpendicular above and below a paired arteriole or venule as well as 
the center of the fovea.

Equations (1)–(3) were then used to compute the Euclidean distances for the pCFZ (periarteriole and periven-
ule CFZ), vessel distance from the fovea, and vessel diameter respectively using the x and y coordinates written by 
Matlab into Excel. The outcome of each equation produced an Euclidean distance in pixels. For the pCFZ width 
(Eq. 1) and the vessel diameter (Eq. 3), the Euclidean distances in pixels were then converted into microns by 
multiplying them by the micron-to-pixel ratio in the x and y directions, as computed from the vendor software 
fiducial marks (Heidelberg Engineering). For the vessel distance from the fovea (Eq. 2), each Euclidean distance 
in microns was divided by 300 to convert them into degrees (assuming 300 µm =  ~ 1 degree).

where large vessel refers to a paired arteriole or venule and capillary represents the middle of the nearest capil-
lary (Fig. 2).

where vessel top refers to the top of a paired arteriole or venule and fovea represent the middle of the FAZ (Fig. 2).

where vessel top/bottom refers to the top/bottom of a paired arteriole or venule (Fig. 2). The area finding tool 
(lasso tool) of the vendor software was used to delineate and compute the FAZ area in mm2. FAZ effective 
diameter was then computed from the FAZ area values. The FAZ effective diameter in microns was defined as 
the diameter of a circle whose area was equivalent to the known FAZ areas; FAZ effective diameter = (4*FAZ 
area/π)1/217.

(1)pCFZ width =
[

(Xlarge vessel edge − Xcapillary)
2
+ (Ylarge vessel edge − Ycapillary)

2
]1/2

(2)Vessel distance from fovea =
[

(Xvessel top − Xfovea)
2
+ (Yvessel top − Yfovea)

2
]1/2

(3)Vessel diameter =
[

(Xvessel top − Xvessel bottom)
2
+ (Yvessel top − Yvessel bottom)

2
]1/2

Figure 1.   Montaged 20 × 20-degree OCTA images of the central foveal region and paired arterioles and venules 
in the superficial vascular plexus of a 63-year-old cognitively unimpaired male. (a) Raw montaged OCTA image 
before image processing. (b) Vesselness filtered image in Matlab. (c) Vesselness filtered and Otsu thresholded 
image in Matlab. Red “A” and blue “V” represent paired arterioles and venules, respectively. Periarteriole CFZ 
can be seen dark gaps around the arteriole (Red “A”) while the perivenule CFZ can be seen as dark gaps around 
the venule (Blue “V”). Periarteriole CFZ can be seen as larger than the perivenule CFZ.
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Statistical analyses.  All statistical analyses were done using statistical software (IBM SPSS Statistics for 
Windows, Version 26; IBM Corp., Armonk, NY, USA) and Microsoft Excel 365 (Microsoft Corp., Redmond, 
WA, USA) with Real Stats Add-In. All values were presented as mean ± SD. The Shapiro Wilk test of normality 
was used to test the Gaussian distribution of our data. All outcome variables involved in our data analysis did not 
significantly differ on this test, with the exception of the FAZ effective diameter of the cognitively unimpaired 
young participants. We therefore performed the Mann Whitney U test when comparing the FAZ effective diam-
eter between the two groups. For the rest of our data analysis, parametric tests were performed. We previously 
found the perivenule CFZ to be significantly positively associated with vessel distance from the fovea and vessel 
diameter in cognitively unimpaired young adults17. Hence, vessel distance from the fovea, and vessel diameter 
served as covariates when comparing the periarteriole and perivenule CFZ between cognitively unimpaired 
older and younger adults. An independent samples t-test was performed to compare the covariates (Table 1) 
and FAZ area between the two groups. A one-way analysis of covariance (ANCOVA) was then performed to 
compare the pCFZs (perivenule and periarteriole CFZ) between the two groups controlling for the specific 
covariates that came out significant from the t-tests (Table 1). A one-way ANCOVA was performed to compare 
the pCFZ between the two groups while controlling for vessel diameter (Table 1). Partial eta squared (η2

p) served 
as our effect size measure from the ANCOVA analysis. A partial eta squared of 0.01 was considered as small, 
0.09 considered as medium, and 0.25 considered as large. A paired samples t-test was performed to compare the 

Figure 2.   A vesselness filtered and Otsu thresholded montaged 20 × 20-degree OCTA image of the superficial 
vascular plexus in Matlab of a 63-year-old cognitively unimpaired male. The image shows the central fovea 
(FAZ area = 0.27 mm2; FAZ effective diameter = 586 µm) and a paired arteriole (Red “A”) and venule (Blue “V”), 
13.6 and 17.3 degrees, respectively, inferior to the fovea. Evenly sampled points around the arteriole or venule 
showing the periarteriole (70.2 µm) and perivenule (53.5 µm) CFZs are shown. The arteriole diameter = 96.0 µm 
and the venule diameter = 129 µm. Evenly sampled points include coordinates from the center of the fovea 
(green dot), points on the top/bottom edge of an arteriole (red dots) or venule (blue dots), and points from the 
middle of a capillary superior/inferior to an arteriole (red dots) or venule (blue dots).

Table 1.   Vessel distance from the fovea and vessel diameter compared between cognitively unimpaired 
younger and older adults. *Covariates controlled for in the analysis of covariance (ANCOVA) comparing the 
pCFZs between the cognitively unimpaired older and young adults.

Covariates
Cognitively unimpaired older adults 
(Mean ± SD)

Cognitively unimpaired young adults 
(Mean ± SD) P-value

Arteriole diameter 90.7 ± 15.2 µm 102 ± 13.4 µm 0.02*

Venule diameter 118 ± 13.4 µm 129 ± 19.3 µm 0.04*

Arteriole distance from fovea 14.6 ± 1.76 degrees 14.2 ± 3.22 degrees 0.70

Venule distance from fovea 14.9 ± 1.56 degrees 14.6 ± 2.39 degrees 0.54
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periarteriole and perivenule CFZ for the cognitively unimpaired older group. We performed a one sample t-test 
comparing the mean difference in the pCFZ width in the cognitively unimpaired older adults to a set value of 
24.5 µm (difference in the pCFZ width in the cognitively unimpaired young adults). Pearson product moment 
correlation was performed to assess the association between the pCFZ and FAZ parameters in the cognitively 
unimpaired older adults only. Microsoft Excel 365 (Microsoft Corp., Redmond, WA, USA) with Real Stats Add-
In was used to compare the co-efficient of variation (CV) of periarteriole CFZ vs. perivenule CFZ, and pCFZ 
vs. FAZ parameters in the cognitively unimpaired older adults only. We computed predicted perivenule CFZs 
and one-tailed 95% CI of the predicted values using the perivenule CFZ regression equation of the cognitively 
unimpaired young adults [29.1 + 0.571 (venule distance from the foveal center) + 0.037 (venule diameter) + 0.259 
(sex)]17 to assess if individual differences in the values of the cognitively unimpaired older adults exist rather 
than just using group means. A p-value of < 0.05 was considered statistically significant.

Results
Characteristics of pCFZ in cognitively unimpaired older adults.  The periarteriole CFZ width 
(78.8 ± 12.3 µm) was significantly larger than the perivenule CFZ width (61.5 ± 11.3 µm), t(19) = 10.1, p < 0.001 
in the cognitively unimpaired older adults (Fig. 3). The mean difference between the periarteriole and periv-
enule CFZ width (17.3 µm) was significantly less than that found in the cognitively unimpaired young adults 
(24.5 µm), t(19) = − 4.16, p = 0.001, indicating that the perivenule CFZ remodeled to a greater extent, on average, 
in normal aging compared to the periarteriole CFZ. The CV of the periarteriole CFZ (0.16) did not significantly 
differ from that of the perivenule CFZ (0.18), z = − 0.69, p = 0.49.

Comparison of the pCFZ and FAZ parameters between cognitively unimpaired older and 
young adults.  The ANCOVA showed that the mean periarteriole CFZ width in the cognitively unimpaired 
older adults (78.8 ± 12.3  µm) was significantly larger than that of the cognitively unimpaired young adults 
(67.2 ± 12.8  µm), F(1,37) = 4.87, p = 0.034, with a medium effect size (η2

p) = 0.12, while controlling for arteriole 
diameter as a covariate (Figs. 3, 4, 5). The mean periarteriole CFZ of the cognitively unimpaired older adults was 
also outside the one-tailed 95% CI of the cognitively unimpaired young adults (68.6 μm). Similarly, the mean 
perivenule CFZ width in the cognitively unimpaired older adults (61.5 ± 11.3 µm) was significantly greater than 
that of the cognitively unimpaired young adults (42.7 ± 5.17 µm), F(1,37) = 46.9, p < 0.001, with a large effect size 
(η2

p) = 0.56, while controlling for venule diameter as a covariate (Figs. 3, 4, 5). The mean perivenule CFZ of the 
older group was outside the one-tailed 95% CI of the younger group (43.5 μm).

Beyond group means, each individual perivenule CFZ width of the older adults was greater than the predicted 
values and one-tailed 95% CI of the predicted values of younger adults with similar vessel parameters, except for 
two participants (S003 and S010; Table 2) whose actual computed values were greater than the predicted values 
but within the 95% CI. Figures 4 and 5 show examples of the remodeling of the pCFZs between younger and 
older adults for raw and processed images, respectively. Raw OCTA images are shown in Fig. 4 to demonstrate 
that even prior to customized processing of the images in Matlab, remodeling of the pCFZs in normal aging can 
be visually demonstrated. Customized processing of the images in Matlab as shown in Fig. 5 visually elucidates 
further the remodeling of the pCFZ in normal aging.

The FAZ area of the cognitively unimpaired older adults (0.34 ± 0.127 mm2) did not differ significantly from 
that of the cognitively unimpaired young adults (0.368 ± 0.114 mm2), t(38) = 0.73, p = 0.47. Similarly, the FAZ 
effective diameter of the cognitively unimpaired older adults (647 ± 123 µm, median = 649 µm) did not differ 
significantly from that of the cognitively unimpaired young adults (674 ± 120 µm, median = 700 µm), U = 148, 
p = 0.16.

Figure 3.   Mean capillary free zone (CFZ) width with standard deviation error bars for arterioles and venules in 
cognitively unimpaired (CU) young and older adults. The periarteriole CFZ width is significantly greater than 
the perivenule CFZ width in CU older adults (p < 0.001) similar to that reported previously17. The periarteriole 
CFZ width of the CU older adults is significantly greater than that of the CU young adults (p = 0.034). The 
perivenule CFZ width of the CU older adults is also significantly greater than that of the CU young adults 
(p < 0.001).
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Relationship between the pCFZ and FAZ parameters in cognitively unimpaired older 
adults.  There was no significant association between the periarteriole and perivenule CFZ width and FAZ 
area (r = 0.08, p = 0.75; r = 0.23, p = 0.34, respectively). Similarly, there was no significant association between the 
periarteriole and perivenule CFZ width and FAZ effective diameter (r = 0.10, p = 0.66; r = 0.22, p = 0.36, respec-
tively). The CV of the FAZ area (0.37) was significantly greater than that of the periarteriole (0.16; z = 3.35, 
p = 0.001) and perivenule CFZ (0.18; z = 2.76, p = 0.006). Interestingly, the CV of the FAZ effective diameter 
(0.19) did not significantly differ from that of the periarteriole (0.16; z = 0.84, p = 0.40) and the perivenule CFZ 
(0.18; z = 0.16, p = 0.88).

Discussion
Using OCTA retinal imaging device and software from the same vendor (Spectralis HRA + OCT, Heidelberg 
Engineering, Heidelberg, Germany) and similar imaging acquisition protocol for our cognitively unimpaired 
young and older participants, we characterized and quantified the remodeling of the pCFZs in normal aging. 
We found the periarteriole CFZ to be significantly larger than the perivenule CFZ in the cognitively unimpaired 
older adults, consistent with our previous results in the cognitively unimpaired young adults17. The difference 
in the width of the pCFZs in the cognitively unimpaired older adults was significantly smaller than that of the 
cognitively unimpaired young adults indicating a greater remodeling of the perivenule CFZ in normal aging 
compared to the periarteriole CFZ. The pCFZs in the older adults was significantly larger than that of the young 
adults with moderate and large effect sizes respectively for the periarteriole and perivenule CFZs and beyond 
group means, there were individual differences when 1:1 comparisons were made between the older and younger 
participants for the perivenule pCFZs, indicating potential clinical usability of this metric to detect age-related 
retinal vascular changes. FAZ parameters did not significantly differ between the two groups and the CV of the 
FAZ area was significantly greater than that of the periarteriole and perivenule CFZ in the older group. Interest-
ingly, the CV of the FAZ effective diameter did not significantly differ from that of the periarteriole and perivenule 
CFZ in the older group indicating a more favorable usability of this metric.

The retinal neurovascular unit consists of blood vessel endothelial cells, pericytes, neurons, astrocytes, and 
Müller cells that are intimately connected to form the inner retinal blood barrier35. The inner retinal blood barrier 
essentially controls nutrient flow to the neural retinal; specifically, the inner retinal neurons35. A pCFZ represents 
the distance that oxygen and nutrient have to diffuse to reach the neural retina, and therefore serves as a metric 
of retinal tissue oxygenation.17 The pCFZs are formed based on the concept of oxygen saturation in the retinal 
arterioles and venules; essentially larger periarteriole CFZs are expected compared to perivenule CFZs since 
retinal arterioles contain large concentration of oxygenated blood compared to venules and hence a reduced 
need for capillaries to exist closely to the arterioles and vice versa17,21–25. Our results of periarteriole CFZs being 
larger than the perivenule CFZs in cognitively unimpaired older adults is consistent with our hypothesis and 
similar to previous findings17,23,25. Interestingly, the difference in the width of the pCFZs in the older adult group 
was significantly smaller than that of the younger adult group, indirectly indicating that even though there is 

Figure 4.   Raw OCTA images showing an example of the remodeling of the pCFZs in normal aging for 
10 × 10-degree region of the retina. 10 × 10-degree images are shown here to demonstrate detailed remodeling 
of the pCFZ in normal aging. (a) OCTA image of a 23-year-old cognitively unimpaired male showing paired 
arteriole (red “A”) and venule (blue “V”) at 15.8 and 17.4 degrees, respectively, inferior from the fovea in the 
superficial vascular plexus (SVP). Periarteriole and perivenule CFZs are indicated by red and blue arrows, 
respectively. Periarteriole CFZ (68.6 µm) can be observed as larger than the perivenule CFZ (44.7 µm). (b) 
OCTA image of the SVP of a 62-year-old cognitively unimpaired female showing the peripheral periarteriole 
(red “A” and arrows) and perivenule (blue “V” and arrows) CFZs, 14.6 and 14.2 degrees, respectively, inferior 
to the fovea. The periarteriole (97 µm) and perivenule (64.9 µm) CFZs can be observed as larger than those 
observed in the cognitively unimpaired young participant. Scale bar: 200 µm.
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greater oxygen saturation in both the arterioles and venules in older adults, the magnitude of increase in oxygen 
saturation for the venules in older adults was greater compared to the arterioles.

In normal aging, there is reduced vessel density4,14, and atrophy of the inner retinal neurons9–11 leading to a 
paradoxical increased oxygen saturation (reduced oxygen extraction) in the arterioles and venules12,13. Since the 
pCFZs are formed to regulate oxygen diffusion to meet requirements of the surrounding neuropil17,21,23, it follows 
that the higher the oxygen saturation in the arterioles and venules (reduced need for capillaries to exist closer 
to the retinal vessels), the wider the pCFZ. We found larger pCFZs in the older group compared to the young 
group, indicating reduced oxygen uptake in older adults compared to younger adults. The group difference effect 
size for the perivenule CFZ was large while that of the periarteriole CFZ was moderate, indicating the potential 
use of the pCFZ width as a biomarker for age-related retinal vascular unit changes. Beyond group means, there 
were individual differences for the perivenule CFZs indicating sensitivity of the pCFZ as a biomarker of normal 
age-related retinal vascular changes and corroborating our previous results which found the perivenule CFZ to 
be more consistent compared to the periarteriole CFZ17.

The FAZ area as a clinical biomarker for normal age and disease associated retinal vascular changes has 
various limitations15–17, the computation of retinal vessel density can be affected by noise in the image along 
with variable anatomical features such as vessel diameter20, and traditional retinal oximetry methods are highly 
variable18,19. The FAZ consists of a single layer of lacy capillaries and as a metric of size, it may saturate with no 
further increase in size even with increasing disease severity17. It is also highly variable15–17 and the capillar-
ies of the FAZ are limited to deeper retinal layers where there is little influence of the RNFL and RGCs which 
are known to atrophy in normal aging17. Our results showed no significant difference in FAZ area or effective 
diameter between the two groups, consistent with previous results that did not demonstrate remodeling of the 
FAZ area in normal aging6–8. The above expatiation of the limitations of the FAZ area may have accounted for 
the lack of significant difference between the groups. However, we have to also consider the limited sample size 
of our data as a possible explanation. Interestingly, the CV of the FAZ area was significantly larger than that of 
the pCFZs while that of the effective diameter did not significantly differ from the pCFZ. This indicates that the 
FAZ effective diameter may be a more useful clinical retinal vascular metric to detect age-related retinal vascular 

Figure 5.   Raw and processed OCTA images showing a sex-matched example of the remodeling of the pCFZ 
in normal aging for a 20 × 20-degree region of the retina. (a) and (d) represent raw OCTA images of a 28 and 
66-year-old cognitively unimpaired female, respectively. (b) and (e) represent corresponding vesselness filtered 
images in Matlab. (c) and (f) represent corresponding vesselness filtered and Otsu thresholded images in Matlab. 
Red “A” and blue “V” represent paired arterioles and venules, respectively. The dark gaps around the arteriole 
(periarteriole CFZ; 111 µm; vessel distance from fovea = 14.2 degrees) and venule (perivenule CFZ; 93.2 µm; 
vessel distance from fovea = 13.9 degrees) of the cognitively unimpaired older adult can be observed as larger 
than that around the arteriole (periarteriole CFZ; 73.4 µm; vessel distance from fovea = 13.8 degrees) and venule 
(perivenule CFZ; 57.4 µm; vessel distance from fovea = 16.1 degrees) of the young participant. Scale bar: 200 µm.
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changes in the retina compared to the FAZ area. The above findings of the FAZ metrics indicate that the pCFZ 
may be more sensitive to age-related changes in the retinal neurovascular unit than the FAZ.

The pCFZ has a potential clinical application as a retinal vascular biomarker for early detection of Alzheimer’s 
disease (AD)36–40. The human retina is an extension of the brain as both are derived from the neural ectoderm, 
both are supported by glia and astrocytes, and both are metabolically demanding. Also, RGCs are similar to 
cerebral cortex neurons, and cerebral small vessels are similar to retinal vessels41. It is well established that AD 
is not limited to the brain but also affects the retina36–40. The neurodegeneration in the brain of AD patients is 
associated with reduced RNFL and RGC layer thickness40,42. The human retina is therefore ideally positioned as 
a non-invasive window to the brain for early AD risk detection and disease monitoring. In AD, there is increased 
thinning of the RGCs and RNFL compared to normal aging, concomitant with the atrophy of the frontal cortex 
and hippocampus40,42–44. As a result, a higher oxygen saturation in the retinal arterioles and venules45,46 and a 
corresponding larger peripheral CFZ in the AD retina would be expected compared to cognitively unimpaired 
older adults. Such an investigation should also include measures of visual sensory metrics such as field of vision 
and sensitivity to contrast. 24–2 and 30–2 protocols can be done for the field of vision assessment in order to 
target the peripheral retina. The above analogy represents the next line of steps in terms of future research for 
our current research lab.

We recommend montages of OCTA images for the computation of pCFZ width while using retinal imaging 
device from the same vendor across groups of participants. In our current study, OCTA retinal imaging device 
from the same vendor (Spectralis HRA + OCT, Heidelberg Engineering, Heidelberg, Germany) was used to image 
both groups of participants. Comparing retinal vascular metrics from OCTA devices from different vendors at 
this point in the retinal imaging field is discouraged31. Montages of OCTA images can include 10 × 10-degree 
(3 mm × 3 mm; for our younger participants published previously)17 and 20 × 20-degree (6 mm × 6 mm) images 
from the same vendor software. pCFZs computed from 10 × 10-degree and 20 × 20-degree OCTA montages taken 
with the same vendor software can be compared so far as the following conditions are met; (1) Using the micron 
to pixel ratio in the x and y directions from the vendor software fiducial marks for each individual image, and 
(2) Using the same defined boundary for the retinal vascular plexus of interest (SVP for example in this current 
study). Even with periodic software updates for some vendors (Heidelberg Engineering for e.g.), there is always 
flexibility to customize the boundaries of the retinal vascular plexus of interest to be the same as previous. The 
size of the FAZ area for example will not differ in a 10 × 10-degree image compared to a 20 × 20-degree if the 
same vendor software is used and the above conditions are met. Measures of vessel density will differ between 
the two because the areas are different. It is imperative to mention that a 10 × 10-degree montage (depending on 
the number of single images used in the montage) generates a field of view of the OCTA image that is greater 
than 10 degrees and similar to what can be achieved in a 20 × 20-degree montage. So far as (1) the same vendor 
software is used, (2) micron to pixel ratio in the x and y directions from the fiducial marks for each individual 

Table 2.   Actual computed perivenule CFZ width of all cognitively unimpaired (CU) older participants as 
well as predicted perivenule CFZ and one-tailed 95% CI of the predicted values of younger adults with similar 
vessel parameters are compared. All the actual computed perivenule CFZs are greater than the predicted and 
one-tailed 95% CI of the predicted values except for two study participants. *Actual computed values are 
greater than the predicted values but within the 95% CI of the predicted values.

CU older participants Perivenule CFZ width of CU older adults (µm)
Predicted perivenule CFZ width of CU young 
adults (µm)

One-tailed 95% CI for predicted perivenule 
CFZ width of CU young adults (µm)

S001 68.2 41.8 53.4

S002 49.5 42.6 48.7

S003* 46.9 41.2 47.0

S004 56.5 41.2 49.0

S005 58.2 40.1 48.3

S006 61.4 43.1 52.4

S007 53.4 44.0 51.0

S008 55.1 42.6 50.0

S009 64.9 42.1 52.4

S010* 47.7 42.2 48.0

S011 63.8 41.5 51.5

S012 54.5 42.2 49.4

S013 93.2 41.9 62.6

S014 75.4 44.2 58.3

S015 77.3 44.9 59.6

S016 66.8 42.7 53.7

S017 55.9 43.2 50.8

S018 52.7 41.8 48.6

S019 67.1 42.7 53.8

S020 60.8 42.4 51.5
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image is used, and (3) the same retinal boundary definition is used for the vascular plexus of interest, covari-
ates of vessel distance from the fovea, and vessel diameter17 are what need to be controlled for when comparing 
pCFZs across of groups of pariticpants. However, when possible, similar field of view should be used in OCTA 
montages for each group of participants for the computation of pCFZ width so a constant fiducial mark from 
the vendor software can be applied to the images.

Limitations of the results of our current study are embedded in the limits of lateral resolution of OCTA tech-
nology as a whole, limited age-range for our young participants, and future covariates/associations that need to 
be investigated. OCTA however has better axial resolution than other superior lateral resolution devices such 
as AOSLO. Tighter CI of the pCFZs of the young participants were also provided despite the limited age range. 
Other covariates/associations such as sex47, linear distance traversed for a vessel especially for montaged images 
and associations with retinal thickness and other visual sensory measures like sensitivity to contrast and field of 
vision in a diseased group all need to be explored in future studies.

In summary, we characterized and quantified the remodeling of the pCFZs in normal aging. We showed that 
the perivenule CFZ remodeled to a greater extent compared to the periarteriole CFZ in normal aging further 
corroborating the consistency of the perivenule CFZ. There were large and moderate effects sizes for the group 
differences in the pCFZ width indicating the potential use of the pCFZ width as a biomarker for age-related 
retinal vascular unit changes. Beyond group means, there were individual differences for the perivenule CFZ in 
the older group indicating sensitivity of this metric as a retinal vascular measure for normal aging. We showed 
high variability of the FAZ area compared to the pCFZ width and indicated that the FAZ effective diameter may 
be a more useful retinal vascular metric than FAZ area. The FAZ metrics did not significantly differ between 
the cognitively unimpaired young and older group. The findings of the FAZ metrics indicate that the pCFZ 
may be more sensitive to age-related retinal vascular changes than the FAZ. Beyond showing the remodeling of 
the pCFZ in normal aging, the next steps of research would include demonstrating its applicability in AD and 
cerebral amyloid angiopathy48.

Data availability
Data used in this current study are available from the corresponding author upon appropriate data sharing 
agreement with University of Rhode Island (URI) and BayCare Health.
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