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Abstract: Resuscitative endovascular balloon occlusion of the aorta (REBOA) is widely used in acute
trauma care worldwide and has recently been proposed as an adjunct to standard treatments during
cardiopulmonary resuscitation in patients with non-traumatic cardiac arrest (NTCA). Several case
series have been published highlighting promising results, and further trials are starting. REBOA
during CPR increases cerebral and coronary perfusion pressure by increasing the afterload of the
left ventricle, thus improving the chances of ROSC and decreasing hypoperfusion to the brain. In
addition, it may facilitate the termination of malignant arrhythmias by stimulating baroreceptor
reflex. Aortic occlusion could mitigate the detrimental neurological effects of adrenaline, not only by
increasing cerebral perfusion but also reducing the blood dilution of the drug, allowing the use of
lower doses. Finally, the use of a catheter could allow more precise hemodynamic monitoring during
CPR and a faster transition to ECPR. In conclusion, REBOA in NTCA is a feasible technique also in
the prehospital setting, and its use deserves further studies, especially in terms of survival and good
neurological outcome, particularly in resource-limited settings.

Keywords: REBOA; non-traumatic cardiac arrest; cardiopulmonary resuscitation; aortic occlu-
sion; ROSC

1. Introduction

The use of resuscitative endovascular balloon occlusion of the aorta (REBOA) for
the treatment of trauma patients with active bleeding is a widely studied and accepted
practice worldwide [1]. The use of REBOA for hemostatic purposes has shown promising
results in terms of outcome and has recently been included in the latest guidelines for the
management of patients with traumatic cardiac arrest as a rescue option in an attempt to
achieve the return of spontaneous circulation (ROSC) [2]. This indication outweighs the
lack of consensus on the use of REBOA in patients in extremis (no pulse) recently discussed
by an expert panel [3].

In recent years, several groups have started to study the use of REBOA in the manage-
ment of non-traumatic cardiac arrest (NTCA), proposing several case series and in vivo
studies in animal models.

Although still widely debated [4], different centers have started to use this technique
to improve the odds of ROSC with good neurological outcomes, which remain rather low.

The progressive development and implementation of extracorporeal cardiac life sup-
port (ECLS) have given rise to a series of new considerations on additional treatments
for NTCA [5]; unfortunately, this technique is quite expensive [6], challenging in terms of
logistics, and requires advanced skills not yet available on a large scale. Thus, it is worth

J. Clin. Med. 2022, 11, 742. https://doi.org/10.3390/jcm11030742 https://www.mdpi.com/journal/jcm

https://doi.org/10.3390/jcm11030742
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jcm
https://www.mdpi.com
https://orcid.org/0000-0002-8207-0525
https://orcid.org/0000-0002-4364-9163
https://doi.org/10.3390/jcm11030742
https://www.mdpi.com/journal/jcm
https://www.mdpi.com/article/10.3390/jcm11030742?type=check_update&version=1


J. Clin. Med. 2022, 11, 742 2 of 8

considering the use of REBOA in NTCA, as this method, which is cheaper and carries a
shorter learning curve, can play an important role as an adjunct treatment in settings where
the implementation of an ECLS program is not currently feasible.

Moreover, the implementation of REBOA in the prehospital setting for the treatment
of patients with hemorrhagic shock directly at the scene has opened further scenarios. In
the above-mentioned Delphi consensus paper [3], experts could not reach an agreement
on the use of aortic occlusion in out-of-hospital settings, but the discussion was limited to
bleeding patients. The same year, Brede et al. demonstrated how the application of this
technique can be rapidly extended to patients with out-of-hospital NTCA [7].

This paper aims to analyze the effects of aortic occlusion in patients with NTCA and
to define a potential physiological rationale to support the emerging evidence in this field
of study.

2. Materials and Methods

This paper provides a narrative review of the literature that focuses on the role of the
REBOA technique in NTCA that is refractory to conventional cardiopulmonary resuscitation.

The search was conducted in Medline and Embase databases, between 1 January
1955 and 31 October 2021, using free-text terms and MeSH terms: “Cardiopulmonary
Resuscitation”, “Non-Traumatic Cardiac Arrest”, “Refractory Ventricular Fibrillation”,
“Coronary Perfusion”, “Hemodynamic”, plus the Boolean operator “AND” with the terms
“REBOA” and “Aortic occlusion”.

The abstracts were evaluated by both authors. References for each paper found
relevant were scrutinized for further articles regarding the use of REBOA in NTCA that
had not emerged from the initial research. No language restrictions were adopted.

3. REBOA in Non-Traumatic Cardiac Arrest

Currently, the REBOA technique refers to aortic occlusion within one of three distinct
zones: Zone 1 begins from the origin of the left subclavian artery and extends to the coeliac
artery; Zone 2 includes the portion from the coeliac artery to the most distal renal arteries;
and Zone 3 extends from the distal renal artery to the aortic bifurcation.

While Zone 3 is usually used to manage pelvic and lower-extremity hemorrhage,
Zone 1 is measured to the xiphoid and is used in torso hemorrhage. Zone 2 has no
current indication.

The hypothesis of the use of Zone 1 REBOA in NTCA has been put forward in recent
years [8], proposing as a rationale the increased perfusion of the organs upstream of the
occlusion during CPR.

The first feasibility trial on the use of REBOA in out-of-hospital cardiac arrest (OHCA)
was published by Brede et al. [7] in 2019; the study reported 60% ROSC, versus the 14%
from the international literature. Two further important data were the increase in etCO2
within 60 s of balloon insufflation, and that the procedure was successful in 100% of cases
without affecting the quality of advanced cardiac life support (ACLS).

Several case reports were subsequently reported, and the following year, Levis et al. [9]
published a pilot trial with 15 patients reporting only two ROSCs but no increase in etCO2.
In this study, a significant increase in cerebral oxygenation was observed.

Our study group recently published a prospective cohort study [10] on 20 patients with
traumatic and non-traumatic cardiac arrest in whom REBOA was used as an adjunctive
treatment. The results confirmed the increase in etCO2 after balloon inflation, and a
potential benefit in terms of odds of ROSC in a group of patients not eligible for ECLS.

Recently, a nice review by Nowadly et al. [11] gathered all the evidence regarding the
use of REBOA as a new technique in NTCA, also exploring the salient physiological aspects.
Several key points emerged from this work; we will review these aspects below, adding new
possible effects that aortic occlusion can have to promote ROSC. The potential physiological
effects and logistical advantages due to this technique are represented schematically in
Figure 1.
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catheter placed into the aorta. REBOA: Resuscitative Endovascular Balloon Occlusion of the Aorta,
NTCA: Non-Traumatic Cardiac Arrest, ECMO: Extracorporeal Membrane Oxygenation.

4. Physiological Effects of REBOA in Non-Traumatic Cardiac Arrest
Coronary Perfusion

Myocardial reperfusion is necessary for the heart to restart in both non-shockable and
shockable rhythms [12,13], and thus, efforts to optimize cardiopulmonary resuscitation [14]
are aimed to increase coronary perfusion pressure (adequate depth and rate of chest
compressions, minimizing interruptions), including the introduction of mechanical CPR.

Coronary perfusion pressure (CPP) is defined as the difference between right atrial
pressure (RAP) and mean arterial pressure (MAP) measured in the aortic bulb.

CPP = MAP − RAP

Old studies [15] have suggested that a CPP value of at least 15–25 mmHg is needed
to achieve ROSC. However, these studies led to the measurement of CPP after prolonged
periods of cardiac arrest. More recent studies [16] on animal models have suggested that
CPP should be considered not as a threshold value to be reached but as a “total dose” in
relation to the duration of resuscitation. This leads one to think of a defined amount of
blood with which to perfuse the myocardium during resuscitation that reasonably depends
on anthropometric parameters and inter-individual biological variability.

Considering that, in cardiac arrest conditions, RAP increases [17] due to stasis and
chest compressions, it is necessary to increase MAP to achieve adequate CPP.

The hemodynamic changes induced by aortic occlusion have been described by ana-
lyzing the backward waves [18] caused in the aortic flow, and they are potentially useful
for perfusion of the supra-aortic trunks [19]; a recent study also demonstrated that aortic
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occlusion in Zone 3 (distal to renal arteries) has little impact on those waves. This is the
reason why balloon placement in Zone 1 is recommended in NTCA.

The use of Zone 1 REBOA reduces the distribution of the systolic stroke volume gener-
ated during the chest compressions, increasing MAP [20]. In addition, animal studies [21]
have shown that the increase in MAP is persistent and immediate after inflation, unlike
adrenaline, which takes about 60 s after administration to obtain a similar effect.

In a porcine model of NTCA, a significant increase in diastolic blood pressure and
thus coronary perfusion was observed during CPR [22].

Finally, it is plausible that aortic occlusion also improves coronary perfusion during
the relaxation phases of cardiac massage or backward passes by increasing the Windkessel
effect [23] due to the aortic wall’s elastic recoil.

5. Potential Effects of REBOA in Non-Traumatic Cardiac Arrest
5.1. Baroreceptor Reflex

The baroreceptor reflex is a feedback loop homeostatic mechanism aimed at main-
taining the stability of blood pressure and, more generally, of cardiac output. The primum
movens resides in the baroreceptors located in the wall of the aortic arch and in the carotid si-
nuses, which respond to distension due to an increase in systolic pressure. The signal is then
transmitted to the brainstem, causing inactivation of the sympathetic branch and activation
of the parasympathetic branch of the autonomic nervous system [24]. The whole reflex can
rely on several feedback loops for continuous balancing between the two branches.

During high-quality CPR, a sudden aortic occlusion could cause distension of the
aortic and carotid walls, leading to a stimulation of the parasympathetic branch and,
indeed, of the vagus nerve, as observed in animal heart-beating models [25]. This finding is
further supported by the evidence of an increase in aortic and carotid pressure after REBOA
inflation in animal models.

This should be of some importance, as vagal stimulation effects on ventricular ar-
rhythmias have been widely studied and have shown to increase the threshold of onset
of ventricular fibrillation. In animal models, it has been observed that the induction of
ventricular fibrillation is more difficult during vagus nerve stimulation [26,27].

There are currently no data on vagal activity during CPR, and it would, in any event, be
difficult to estimate the effectiveness of this reflex in conditions of severe hypoperfusion of
the brainstem; however, in cases where there are clinical signs of perfusion of the medulla,
where the regulatory centers are located, such as gasping [28], one can hypothesize a
residual functioning.

It is rather unlikely that it has a role in the termination of ventricular fibrillation,
considering that, to our knowledge, this has never been observed.

It is possible that the triggering of a baroreflex due to aortic occlusion may contribute,
as part of all resuscitation maneuvers, to predisposing myocardial tissue to a recovery of
contractile function in the event of a persistent malignant arrhythmia.

5.2. Adrenaline Blood Concentration

Studies in animal models have shown that aortic occlusion drastically reduces the
return of blood from the inferior vena cava [19], which is a logical consequence of the
interruption of arterial blood flow in the subdiaphragmatic aorta, causing de facto complete
visceral ischemia. As a result of this major change, the circulating blood pool is reduced by
a large proportion and limited to the districts supplied by the supra-aortic trunks [29–31].

Normally, adrenaline boluses are administered via venous lines positioned in the
patient’s limbs; placing them in the arms seems mandatory to make sure the drugs are
drained into the superior vena cava in the case of aortic occlusion in Zone 1.

Moreover, it is reasonable to think that the dose of adrenaline administered enters the
circulation in a momentarily reduced quantity of blood flow, as explained above, making,
at least initially, plasma concentration higher than in a conventional situation, and thus
decreasing the volume of drug distribution and potentially increasing its efficacy.
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In contrast, there is a marked reduction, if not a complete interruption, in adrenal
gland perfusion, which has been observed to secrete copious amounts of catecholamines
during cardiac arrest in response to low flow.

Given all these aspects and the known detrimental effects that β-adrenergic stimulation
can have on myocardial function and cerebral perfusion [21,32,33], it is plausible to aim
for a reduction in adrenaline dosages once aortic occlusion has been achieved, and further
studies should better define this aspect.

Lower circulating adrenaline blood levels may result in greater hemodynamic stability
and lower arrhythmogenic risk after ROSC.

6. Pitfalls and Caveats

While it is far from the purpose of this article to describe practical and technical
aspects concerning REBOA positioning, it is nevertheless imperative to consider the risk of
complications when describing the physiological aspects of an invasive maneuver.

The most important to mention are those related to ischemia [34,35], mainly of the
ipsilateral limb of the cannulated femoral artery, and vascular [36] damage of the femoral
artery or aorta.

These risks are mitigated by the use of smaller catheters and consequently smaller
sheaths [37,38], guidewire-free catheters, and atraumatic tips.

Regarding the ischemia below the balloon, in the context of hemorrhage, noticeable re-
sults have been achieved by partial occlusion (p-REBOA) [39,40], which limits the bleeding
allowing a minimum but sufficient perfusion of the splanchnic organs [41]. This technique
is not practicable during NTCA but could be useful when ROSC is achieved. There is
indeed a high risk of reperfusion-ischemia syndrome after ROSC and deflation of the
balloon [36], so the use of a p-REBOA approach with gradual deflation and vasopressor
support may be considered, even in this case.

7. Discussions

The use of the REBOA technique in NTCA could be a potential future change to what
we now consider the standard management of CPR.

The potentially positive effects are twofold: firstly, the physiological changes that
aortic occlusion causes during CPR; secondly, the additional features that a catheter itself
can bring in addition to standard treatment and monitoring.

Improved coronary perfusion due to REBOA deployment is already well documented.
The same kind of improvement has been demonstrated for cerebral perfusion. Increasing
perfusion of the heart and brain is the main goal of CPR [42], and it may have a positive
impact on the rate of ROSC.

Moreover, aortic occlusion could counteract the negative effects that adrenaline admin-
istration has been shown to have on cerebral perfusion during CPR by increasing perfusion
pressure in the carotid arteries and thus the intracranial circulation.

Additionally, taking into account the possible effect on the concentration of the drug
itself, one could also hypothesize a possible reduction in dosages following aortic occlusion.

On the other hand, we should consider that, once a catheter has been positioned, if an
arterial line is available on the device, it is possible to inject drugs and establish infusions
of fluids, even cold ones. It would be possible to take blood samples too.

Some drugs that are ineffective, such as nitrates [43], may show efficacy if administered
directly into the aorta and with a reduction in systemic effects due to occlusion.

Of paramount importance is that this type of catheter provides the possibility to
measure arterial pressure in the aortic arch in real-time, giving even more precise data
on the perfusion of the heart and brain. A pressure wave can help to distinguish a true
from a false PEA, and, combined with the etCO2 value, suggest the presence of a possible
pulmonary embolism.

If a central venous catheter is inserted or, better still, a pulmonary artery catheter, we
can estimate CPP, thus adding a potential parameter to improve the quality of CPR.
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Additionally, it is worth mentioning that a catheter sheath can be used for cannulation
and thus enable a faster transition to ECMO.

Furthermore, one has to consider the possible complications which, as mentioned
above, can potentially be quite serious. It should be borne in mind that if this maneuver
is performed by skilled professionals, it will lead to fewer complications [36], and the
continuous improvement of equipment can play an important role in reducing the rate
of vascular damage. According to the authors’ experience, it is essential that the REBOA
technique is initially implemented in the intra-hospital setting and, at a later stage, in the
pre-hospital setting involving a team of professionals working in both settings in order to
ensure homogeneous and consistent management of patients undergoing aortic occlusion.
Maintenance training of all staff prevents skill deterioration.

Finally, another aspect that should be addressed in future studies is the optimal timing
of positioning, since earlier positioning could increase the likelihood of ROSC for the supra-
mentioned mechanisms, but, on the other hand, potential benefits should be weighed
against the known risks of this technique.

8. Conclusions

The use of REBOA during CPR in patients with NTCA is a topic that is gaining
increased interest worldwide. Several studies have already been performed, and a new
large RCT is underway [44].

The feasibility and potential cost-effectiveness of this addition to the established
resuscitation protocols call for further studies with larger populations. Meanwhile, reliable
methods and scores [45] for training professionals in emergency catheter placement are
being studied; the ease with which this technique can also be used in the pre-hospital
setting is one of its greatest strengths.

As mentioned above, ECLS already plays a key role, but it is not currently applicable
on a large scale. It is not the intention of the authors to consider REBOA as a substitute for
ECMO in patients with NTCA, but we believe it deserves further study as an addition to
improve outcomes for an increasing number of patients, and also in resource-limited settings.
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