

Contents lists available at ScienceDirect

Data in Brief

Data Article

Data on the theoretical X-Ray attenuation and transmissions for lithium-ion battery cathodes

T.M.M. Heenan^{a,b,*}, C. Tan^{a,b}, A.J. Wade^{a,b}, R. Jervis^{a,b}, D.J.L. Brett^{a,b}, P.R. Shearing^{a,b,*}

ARTICLE INFO

Article history: Received 10 March 2020 Revised 27 March 2020 Accepted 31 March 2020 Available online 19 April 2020

Keywords: X-ray X-ray physics X-ray imaging X-ray computed tomography Materials science Batteries, Engineering Synchrotron radiation

ABSTRACT

This article reports the data required for planning attenuation-based X-ray characterisation e.g. X-ray computed tomography (CT), of lithium-ion (Li-ion) battery cathodes. The data reported here is to accompany a co-submitted manuscript (10.1016/j.matdes.2020.108585 [1]) which compares two well-known X-ray attenuation data sources: Henke et al. and Hubbell et al., and applies methodology reported by Reiter et al. to extend this data towards the practical characterisation of prominent cathode materials. This data may be used to extend beyond the analysis reported in the accompanying manuscript, and may aid in the applications for other materials, not limited to Li-ion batteries.

© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

E-mail addresses: t.heenan@ucl.ac.uk (T.M.M. Heenan), p.shearing@ucl.ac.uk (P.R. Shearing).

^a Electrochemical Innovation Lab, Department of Chemical Engineering, UCL, London WC1E 7JE, UK

^b The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot, OX11 ORA, UK

^{*} Corresponding authors at: Electrochemical Innovation Lab, Department of Chemical Engineering, UCL, London WC1E 7JE, UK.

Specifications table

Subject	Materials Science
Specific subject area	X-ray properties of prominent Li-ion battery cathode materials, for optimising X-ray computed tomography characterisation.
Type of data	38 Tables
How data were acquired	No experimental data was collected for this work, all data reported is calculated using spreadsheets generated in Excel 2016 software from spectroscopy and modelling data from published sources [2] and [3].
Data format	Computed from analysed from raw reference data.
Parameters for data collection	All parameters and equations used for the calculations that generated this data are in Section 2.1.
Description for data collection	The methodology for the calculations that were employed in order to obtain this data is outlined within the complimentary article and within Section 2 of this article.
Data source location	City: London
	Country: England
Data aggesibility	GPS: N/A Within the article
Data accessibility Related research article	Heenan, T.M.M.
Related Tesearch article	Theoretical transmissions for X-ray computed tomography studies of
	lithium-ion battery cathodes.
	Materials & Design
	č
	10.1016/j.matdes.2020.108585

Value of the Data

- This data allows for the optimisation of X-ray CT imaging for Li-ion cathodes
- These tables will benefit all who investigate structures using attenuation-based X-ray imaging
- This may also be used to calculated X-ray properties for analogous chemistries

1. Data description

Table 1 displays literature references for the crystallographic densities and chemical compositions for NMC111, 532, 622 and 811. Tables 2–9 report the first set of data calculated from the information published by Hubbell and Seltzer [2], followed by Tables 10–19 using information published by Henke et al. [3]. It should be noted that, for direct comparison, the same literature references for the crystallographic densities of the various NMC chemistries were used for both sets of calculations [4–7]. Tables 20–35 report the theoretical X-ray transmissions for the various cathode materials for numerous experimental scenarios, e.g. incident beam energies and sample thickness. Using derivations outlined by Reiter et al. [8], the optimal thicknesses for NMC for beam energies from 1 – 100 keV are reported in Tables 36 and 37. And finally, the applicability of these values for operational experiments is considered by examining the influence of lithiaiton upon the aforementioned metrics in Table 38. For a full analysis and discussion see the related research article [1].

2. Experimental design, materials and methods

2.1. Essential X-ray equations

No raw data was acquired for this work. All data was calculated from the references. The following set of equations describe all calculations within this work.

Table 1Referenced crystallographic densities, in g cm⁻³ for four NMC chemistries (to 2 d.p) [4–7].

	NMC111	NMC532	NMC622	NMC811
Chemistry ρ	LiNi _{0.1} Mn _{0.1} Co _{0.1} O ₂	LiNi _{0.5} Mn _{0.3} Co _{0.2} O ₂	LiNi _{0.6} Mn _{0.2} Co _{0.2} O ₂	LiNi _{0.8} Mn _{0.1} Co _{0.1} O ₂
	4.74	4.72	4.75	4.80

Table 2 X-ray mass attenuation coefficients for the constituent elements within NMC for incident beam energies of 1 – 10 keV, produced from work by Hubbell and Seltzer [2] and presented in $\text{cm}^2 \, \text{g}^{-1}$ to 2 d.p.

	1 keV	2 keV	3 keV	4 keV	5 keV	6 keV	8 keV	10 keV
Li	233.90	27.07	7.55	3.11	1.62	0.99	0.51	0.34
Ni	9855.00	2049.00	709.40	328.20	179.30	109.00	49.52	209.00
Mn	8093.00	1421.00	485.10	222.90	121.20	73.50	273.40	151.40
Co	9796.00	1779.00	612.90	283.00	154.30	93.70	324.80	184.10
0	4590.00	694.90	217.10	93.15	47.90	27.70	11.63	5.95

Table 3 X-ray mass attenuation coefficients for the constituent elements within NMC for incident beam energies of $10 - 100 \,\text{keV}$, produced from work by Hubbell and Seltzer [2] and presented in cm² g⁻¹ to $2 \,\text{d.p.}$

	10 keV	20 keV	30 keV	40 keV	50 keV	60 keV	80 keV	100 keV
Li	0.34	0.19	0.16	0.16	0.15	0.14	0.14	0.13
Ni	209.00	32.20	10.34	4.60	2.47	1.51	0.73	0.44
Mn	151.40	22.53	7.14	3.17	1.71	1.06	0.53	0.34
Co	184.10	28.03	8.96	3.98	2.14	1.31	0.64	0.39
O	5.95	0.87	0.38	0.26	0.21	0.19	0.17	0.16

Table 4 X-ray mass attenuation coefficients for various NMC chemistries for incident beam energies of 1 – 10 keV, produced from work by Hubbell and Seltzer [2] and presented in cm² g⁻¹ to 2 d.p.

	1 keV	2 keV	3 keV	4 keV	5 keV	6 keV	8 keV	10 keV
NMC 111	7056.50	1277.27	432.33	197.15	106.53	64.24	131.49	110.20
NMC 532	7110.63	1314.75	445.73	203.44	110.01	66.37	105.26	113.84
NMC 622	7221.13	1353.19	459.47	209.90	113.57	68.54	92.36	117.47
NMC 811	7333.73	1407.53	478.88	219.01	118.61	71.62	62.88	122.56

Table 5 X-ray mass attenuation coefficients for various NMC chemistries for incident beam energies of $10 - 100 \,\text{keV}$, produced from work by Hubbell et al. [1] and presented in cm² g⁻¹ to 2 d.p.

	10 keV	20 keV	30 keV	40 keV	50 keV	60 keV	80 keV	100 keV
NMC 111	110.20	16.75	5.39	2.43	1.34	0.85	0.44	0.29
NMC 532	113.84	17.35	5.59	2.52	1.39	0.87	0.46	0.30
NMC 622	117.47	17.96	5.79	2.61	1.43	0.90	0.47	0.31
NMC 811	122.56	18.81	6.07	2.74	1.50	0.94	0.49	0.32

Table 6X-ray linear attenuation coefficients for various NMC chemistries for incident beam energies of $1 - 10 \,\text{keV}$, produced from work by Hubbell and Seltzer [2] and presented in cm⁻¹ to 2 d.p.

	1 keV	2 keV	3 keV	4 keV	5 keV	6 keV	8 keV	10 keV
NMC 111	33,447.82	6054.24	2049.24	934.51	504.97	304.48	623.28	522.33
NMC 532	33,562.19	6205.63	2103.86	960.26	519.26	313.25	496.83	537.32
NMC 622	34,300.38	6427.66	2182.47	997.01	539.48	325.58	438.69	557.99
NMC 811	35,201.91	6756.14	2298.65	1051.24	569.31	343.78	301.83	588.31

Table 7X-ray linear attenuation coefficients for various NMC chemistries for incident beam energies of 10 – 100 keV, produced from work by Hubbell and Seltzer [2] and presented in cm⁻¹ to 2 d.p.

	10 keV	20 keV	30 keV	40 keV	50 keV	60 keV	80 keV	100 keV
NMC 111	522.33	79.40	25.57	11.53	6.35	4.01	2.10	1.40
NMC 532	537.32	81.91	26.40	11.90	6.55	4.13	2.15	1.42
NMC 622	557.99	85.31	27.51	12.40	6.82	4.29	2.23	1.46
NMC 811	588.31	90.29	29.15	13.14	7.21	4.52	2.33	1.52

Table 8X-ray attenuation length for various NMC chemistries for incident beam energies of 1 – 10 keV, produced from work by Hubbell and Seltzer [2] and presented in μm to 2 d.p.

	1 keV	2 keV	3 keV	4 keV	5 keV	6 keV	8 keV	10 keV
NMC 111	0.30	1.65	4.88	10.70	19.80	32.84	16.04	19.15
NMC 532	0.30	1.61	4.75	10.41	19.26	31.92	20.13	18.61
NMC 622	0.29	1.56	4.58	10.03	18.54	30.71	22.80	17.92
NMC 811	0.28	1.48	4.35	9.51	17.56	29.09	33.13	17.00

Table 9X-ray attenuation length for various NMC chemistries for incident beam energies of 10 – 100 keV, produced from work by Hubbell and Seltzer [2] and presented in μm to 2 d.p.

	10 keV	20 keV	30 keV	40 keV	50 keV	60 keV	80 keV	100 keV
NMC 111	19.15	125.94	391.07	867.00	1573.69	2492.53	4753.60	7162.80
NMC 532	18.61	122.08	378.81	840.11	1526.83	2422.85	4643.21	7031.71
NMC 622	17.92	117.22	363.44	806.29	1467.19	2332.62	4491.83	6836.76
NMC 811	17.00	110.75	343.04	761.30	1387.44	2211.00	4283.76	6562.53

Table 10X-ray attenuation lengths for the light elements within NMC for incident beam energies of 1 – 8 keV, produced from work by Henke et al. [3] and presented in cm to 2 d.p.

	1 keV	2 keV	3 keV	4 keV	5 keV	6 keV	8 keV
Li	0.01	0.07	0.28	0.71	1.44	2.47	5.03
O	0.15	1.00	3.20	7.44	14.67	25.72	62.10

Table 11X-ray attenuation lengths for the light elements within NMC for incident beam energies of 10 – 30 keV, produced from work by Henke et al. [3] and presented in cm to 2 d.p.

	10 keV	20 keV	30 keV
Li	7.50	11.74	12.32
0	124.57	949.88	2188.29

Table 12 X-ray attenuation lengths for the heavy elements within NMC for incident beam energies of 1 - 8 keV, produced from work by Henke et al. [3] and presented in μ m to 2 d.p.

	1 keV	2 keV	3 keV	4 keV	5 keV	6 keV	8 keV
Ni	0.11	0.56	1.64	3.52	6.45	10.66	23.76
Mn	0.17	0.98	2.94	6.45	11.91	19.53	5.03
Co	0.12	0.64	1.91	4.18	7.76	12.85	3.52

Table 13X-ray attenuation lengths for the heavy elements within NMC for incident beam energies of 10 – 30 keV, produced from work by Henke et al. [3] and presented in μm to 2 d.p.

	10 keV	20 keV	30 keV
Ni	5.43	36.04	113.42
Mn	9.10	63.52	202.47
Co	6.25	42.24	133.55

Table 14X-ray linear attenuation coefficients for the constituent elements within NMC for incident beam energies of 1 – 8 keV, produced from work by Henke et al. [3] and presented in cm⁻¹ to 2 d.p.

	1 keV	2 keV	3 keV	4 keV	5 keV	6 keV	8 keV
Li	118.99	13.42	3.59	1.40	0.69	0.41	0.20
Ni	92,912.63	17,818.17	6093.96	2842.15	1550.51	938.30	420.95
Mn	58,254.01	10,241.16	3398.57	1550.98	839.83	512.05	1988.30
Co	86,464.80	15,618.92	5236.07	2391.96	1288.96	778.43	2840.83
0	6.60	1.00	0.31	0.13	0.07	0.04	0.02

Table 15X-ray linear attenuation coefficients for the constituent elements within NMC for incident beam energies of 10 – 30 keV, produced from work by Henke et al. [3] and presented in cm⁻¹ to 2 d.p.

30 keV
0.08
88.17
49.39
74.88
0.00

Table 16 X-ray mass attenuation coefficients for the constituent elements within NMC for incident beam energies of 1 - 8 keV, produced from work by Henke et al. [3] and presented in cm⁻² g⁻¹ to 2 d.p.

	1 keV	2 keV	3 keV	4 keV	5 keV	6 keV	8 keV
Li	222.80	25.10	6.70	2.60	1.30	0.80	0.40
Ni	10,437.30	2001.60	684.60	319.30	174.20	105.40	47.30
Mn	7980.00	1402.90	465.60	212.50	115.00	70.10	272.40
Co	9715.10	1754.90	588.30	268.80	144.80	87.50	319.20
0	4615.50	699.20	218.40	94.10	47.70	27.20	11.30

Table 17 X-ray mass attenuation coefficients for the constituent elements within NMC for incident beam energies of $10 - 30 \,\text{keV}$, produced from work by Henke et al. [3] and presented in cm⁻² g^{-1} to 2 d.p.

	10 keV	20 keV	30 keV
Li	0.20	0.20	0.20
Ni	207.00	31.20	9.90
Mn	150.50	21.60	6.80
Co	179.90	26.60	8.40
0	5.60	0.70	0.30

Table 18 X-ray mass attenuation coefficients for the various NMC chemistries for incident beam energies of 1 - 8 keV, produced from work by Henke et al. [3] and presented in cm⁻² g⁻¹ to 2 d.p.

	1 keV	2 keV	3 keV	4 keV	5 keV	6 keV	8 keV
NMC 111	7144.06	1260.68	419.02	190.76	102.32	61.43	129.58
NMC 532	7266.10	1295.60	432.23	197.48	106.16	63.76	103.59
NMC 622	7417.66	1332.26	445.63	204.01	109.77	65.92	90.62
NMC 811	7611.09	1383.44	464.69	213.52	115.12	69.14	61.28

Table 19 X-ray mass attenuation coefficients for the various NMC chemistries for incident beam energies of $10 - 30 \, \text{keV}$, produced from work by Henke et al. [3] and presented in cm⁻² g⁻¹ to 2 d.p.

	10 keV	20 keV	30 keV
NMC 111	108.65	16.03	5.10
NMC 532	112.45	16.66	5.31
NMC 622	116.01	17.26	5.50
NMC 811	121.17	18.13	5.79

Table 20 Theoretical X-ray transmission for NMC 111 for thicknesses of $1-10\,\mu m$ and incident beam energies of $1-10\,k eV$, presented as a percentage to 2 d.p.

	1 keV	2 keV	3 keV	4 keV	5 keV	6 keV	8 keV	10 keV
1 μm	3.53%	54.58%	81.47%	91.08%	95.08%	97.00%	93.96%	94.91%
2 μm	0.12%	29.79%	66.38%	82.95%	90.39%	94.09%	88.28%	90.08%
3 µm	0.00%	16.26%	54.08%	75.55%	85.94%	91.27%	82.95%	85.50%
4 μm	0.00%	8.88%	44.06%	68.81%	81.71%	88.53%	77.93%	81.15%
5 μm	0.00%	4.85%	35.89%	62.67%	77.69%	85.88%	73.22%	77.02%
6 μm	0.00%	2.64%	29.24%	57.08%	73.86%	83.30%	68.80%	73.10%
7 μm	0.00%	1.44%	23.82%	51.99%	70.22%	80.80%	64.64%	69.38%
8 µm	0.00%	0.79%	19.41%	47.35%	66.77%	78.38%	60.74%	65.85%
9 µm	0.00%	0.43%	15.81%	43.13%	63.48%	76.03%	57.07%	62.49%
10 μm	0.00%	0.23%	12.88%	39.28%	60.35%	73.75%	53.62%	59.31%

Table 21 Theoretical X-ray transmission for NMC 111 for thicknesses of $1-10\,\mu m$ and incident beam energies of $10-100\,k eV$, presented as a percentage to 2 d.p.

	10 keV	20 keV	30 keV	40 keV	50 keV	60 keV	80 keV	100 keV
1 μm	94.91%	99.21%	99.74%	99.88%	99.94%	99.96%	99.98%	99.99%
2 µm	90.08%	98.42%	99.49%	99.77%	99.87%	99.92%	99.96%	99.97%
3 µm	85.50%	97.65%	99.24%	99.65%	99.81%	99.88%	99.94%	99.96%
4 µm	81.15%	96.87%	98.98%	99.54%	99.75%	99.84%	99.92%	99.94%
5 μm	77.02%	96.11%	98.73%	99.42%	99.68%	99.80%	99.89%	99.93%
6 µm	73.10%	95.35%	98.48%	99.31%	99.62%	99.76%	99.87%	99.92%
7 μm	69.38%	94.59%	98.23%	99.20%	99.56%	99.72%	99.85%	99.90%
8 µm	65.85%	93.85%	97.98%	99.08%	99.49%	99.68%	99.83%	99.89%
9 µm	62.49%	93.10%	97.72%	98.97%	99.43%	99.64%	99.81%	99.87%
10 μm	59.31%	92.37%	97.48%	98.85%	99.37%	99.60%	99.79%	99.86%

Table 22 Theoretical X-ray transmission for NMC 111 for thicknesses of $10 - 100\,\mu m$ and incident beam energies of $1 - 10\,keV$, presented as a percentage to 2 dp.

	1 keV	2 keV	3 keV	4 keV	5 keV	6 keV	8 keV	10 keV
10 μm	0.00%	0.23%	12.88%	39.28%	60.35%	73.75%	53.62%	59.31%
20 μm	0.00%	0.00%	1.66%	15.43%	36.42%	54.39%	28.75%	35.18%
30 μm	0.00%	0.00%	0.21%	6.06%	21.98%	40.11%	15.42%	20.87%
40 μm	0.00%	0.00%	0.03%	2.38%	13.27%	29.58%	8.27%	12.38%
50 μm	0.00%	0.00%	0.00%	0.93%	8.01%	21.82%	4.43%	7.34%
60 µm	0.00%	0.00%	0.00%	0.37%	4.83%	16.09%	2.38%	4.35%
70 µm	0.00%	0.00%	0.00%	0.14%	2.92%	11.87%	1.27%	2.58%
80 µm	0.00%	0.00%	0.00%	0.06%	1.76%	8.75%	0.68%	1.53%
90 μm	0.00%	0.00%	0.00%	0.02%	1.06%	6.46%	0.37%	0.91%
100 μm	0.00%	0.00%	0.00%	0.01%	0.64%	4.76%	0.20%	0.54%

Table 23 Theoretical X-ray transmission for NMC 111 for thicknesses of $10 - 100 \,\mu m$ and incident beam energies of $10 - 100 \,keV$, presented as a percentage to 2 d.p.

	10 keV	20 keV	30 keV	40 keV	50 keV	60 keV	80 keV	100 keV
10 μm	59.31%	92.37%	97.48%	98.85%	99.37%	99.60%	99.79%	99.86%
20 μm	35.18%	85.32%	95.01%	97.72%	98.74%	99.20%	99.58%	99.72%
30 µm	20.87%	78.80%	92.62%	96.60%	98.11%	98.80%	99.37%	99.58%
40 μm	12.38%	72.79%	90.28%	95.49%	97.49%	98.41%	99.16%	99.44%
50 μm	7.34%	67.23%	88.00%	94.40%	96.87%	98.01%	98.95%	99.30%
60 µm	4.35%	62.10%	85.78%	93.31%	96.26%	97.62%	98.75%	99.17%
70 µm	2.58%	57.36%	83.61%	92.24%	95.65%	97.23%	98.54%	99.03%
80 µm	1.53%	52.98%	81.50%	91.19%	95.04%	96.84%	98.33%	98.89%
90 μm	0.91%	48.94%	79.44%	90.14%	94.44%	96.45%	98.12%	98.75%
100 μm	0.54%	45.20%	77.44%	89.11%	93.84%	96.07%	97.92%	98.61%

Table 24 Theoretical X-ray transmission for NMC 532 for thicknesses of $1 - 10 \,\mu m$ and incident beam energies of $1 - 10 \,keV$, presented as a percentage to $2 \,d.p.$

	1 keV	2 keV	3 keV	4 keV	5 keV	6 keV	8 keV	10 keV
1 μm	3.49%	53.76%	81.03%	90.84%	94.94%	96.92%	95.15%	94.77%
2 μm	0.12%	28.91%	65.65%	82.53%	90.14%	93.93%	90.54%	89.81%
3 μm	0.00%	15.54%	53.20%	74.97%	85.57%	91.03%	86.15%	85.11%
4 μm	0.00%	8.36%	43.10%	68.11%	81.24%	88.22%	81.98%	80.66%
5 μm	0.00%	4.49%	34.93%	61.87%	77.13%	85.50%	78.00%	76.44%
6 μm	0.00%	2.42%	28.30%	56.21%	73.23%	82.87%	74.22%	72.44%
7 μm	0.00%	1.30%	22.93%	51.06%	69.53%	80.31%	70.63%	68.65%
8 µm	0.00%	0.70%	18.58%	46.38%	66.01%	77.83%	67.20%	65.06%
9 μm	0.00%	0.38%	15.05%	42.14%	62.67%	75.43%	63.94%	61.66%
10 μm	0.00%	0.20%	12.20%	38.28%	59.50%	73.11%	60.85%	58.43%

Table 25 Theoretical X-ray transmission for NMC 532 for thicknesses of $1-10\,\mu m$ and incident beam energies of $10-100\,k eV$, presented as a percentage to 2 d.p.

	10 keV	20 keV	30 keV	40 keV	50 keV	60 keV	80 keV	100 keV
1 μm	94.77%	99.18%	99.74%	99.88%	99.93%	99.96%	99.98%	99.99%
2 µm	89.81%	98.38%	99.47%	99.76%	99.87%	99.92%	99.96%	99.97%
3 µm	85.11%	97.57%	99.21%	99.64%	99.80%	99.88%	99.94%	99.96%
4 μm	80.66%	96.78%	98.95%	99.53%	99.74%	99.84%	99.91%	99.94%
5 μm	76.44%	95.99%	98.69%	99.41%	99.67%	99.79%	99.89%	99.93%
6 μm	72.44%	95.20%	98.43%	99.29%	99.61%	99.75%	99.87%	99.91%
7 μm	68.65%	94.43%	98.17%	99.17%	99.54%	99.71%	99.85%	99.90%
8 µm	65.06%	93.66%	97.91%	99.05%	99.48%	99.67%	99.83%	99.89%
9 µm	61.66%	92.89%	97.65%	98.93%	99.41%	99.63%	99.81%	99.87%
10 μm	58.43%	92.14%	97.39%	98.82%	99.35%	99.59%	99.78%	99.86%

Table 26 Theoretical X-ray transmission for NMC 532 for thicknesses of $10 - 100 \, \mu m$ and incident beam energies of $1 - 10 \, keV$, presented as a percentage to $2 \, d.p.$

	1 keV	2 keV	3 keV	4 keV	5 keV	6 keV	8 keV	10 keV
	0.00%	0.20%	12.20%	38.28%	59.50%	73.11%	60.85%	58.43%
20 μm	0.00%	0.00%	1.49%	14.65%	35.40%	53.45%	37.02%	34.14%
30 µm	0.00%	0.00%	0.18%	5.61%	21.06%	39.07%	22.53%	19.95%
40 μm	0.00%	0.00%	0.02%	2.15%	12.53%	28.57%	13.71%	11.66%
50 μm	0.00%	0.00%	0.00%	0.82%	7.45%	20.88%	8.34%	6.81%
60 µm	0.00%	0.00%	0.00%	0.31%	4.44%	15.27%	5.07%	3.98%
70 µm	0.00%	0.00%	0.00%	0.12%	2.64%	11.16%	3.09%	2.33%
80 µm	0.00%	0.00%	0.00%	0.05%	1.57%	8.16%	1.88%	1.36%
90 μm	0.00%	0.00%	0.00%	0.02%	0.93%	5.97%	1.14%	0.79%
100 μm	0.00%	0.00%	0.00%	0.01%	0.56%	4.36%	0.70%	0.46%

Table 27 Theoretical X-ray transmission for NMC 532 for thicknesses of $10 - 100 \,\mu m$ and incident beam energies of $10 - 100 \,keV$, presented as a percentage to $2 \,d.p.$

	10 keV	20 keV	30 keV	40 keV	50 keV	60 keV	80 keV	100 keV
10 μm	58.43%	92.14%	97.39%	98.82%	99.35%	99.59%	99.78%	99.86%
20 μm	34.14%	84.89%	94.86%	97.65%	98.70%	99.18%	99.57%	99.72%
30 μm	19.95%	78.21%	92.39%	96.49%	98.05%	98.77%	99.36%	99.57%
40 μm	11.66%	72.06%	89.98%	95.35%	97.41%	98.36%	99.14%	99.43%
50 μm	6.81%	66.39%	87.63%	94.22%	96.78%	97.96%	98.93%	99.29%
60 µm	3.98%	61.17%	85.35%	93.11%	96.15%	97.55%	98.72%	99.15%
70 µm	2.33%	56.36%	83.13%	92.01%	95.52%	97.15%	98.50%	99.01%
80 µm	1.36%	51.93%	80.96%	90.92%	94.90%	96.75%	98.29%	98.87%
90 μm	0.79%	47.84%	78.85%	89.84%	94.28%	96.35%	98.08%	98.73%
100 μm	0.46%	44.08%	76.80%	88.78%	93.66%	95.96%	97.87%	98.59%

Table 28 Theoretical X-ray transmission for NMC 622 for thicknesses of $1-10\,\mu m$ and incident beam energies of $1-10\,k eV$, presented as a percentage to 2 d.p.

	1 keV	2 keV	3 keV	4 keV	5 keV	6 keV	8 keV	10 keV
1 μm	3.24%	52.58%	80.39%	90.51%	94.75%	96.80%	95.71%	94.57%
2 μm	0.10%	27.65%	64.63%	81.92%	89.77%	93.70%	91.60%	89.44%
3 μm	0.00%	14.54%	51.96%	74.15%	85.06%	90.69%	87.67%	84.59%
4 μm	0.00%	7.65%	41.77%	67.11%	80.59%	87.79%	83.91%	80.00%
5 μm	0.00%	4.02%	33.58%	60.74%	76.36%	84.98%	80.30%	75.65%
6 μm	0.00%	2.11%	27.00%	54.98%	72.35%	82.25%	76.86%	71.55%
7 μm	0.00%	1.11%	21.70%	49.76%	68.55%	79.62%	73.56%	67.67%
8 µm	0.00%	0.58%	17.45%	45.04%	64.95%	77.07%	70.40%	63.99%
9 μm	0.00%	0.31%	14.03%	40.77%	61.54%	74.60%	67.38%	60.52%
10 μm	0.00%	0.16%	11.28%	36.90%	58.31%	72.21%	64.49%	57.24%

Table 29 Theoretical X-ray transmission for NMC 622 for thicknesses of $1-10\,\mu m$ and incident beam energies of $10-100\,k eV$, presented as a percentage to 2 d.p.

	10 keV	20 keV	30 keV	40 keV	50 keV	60 keV	80 keV	100 keV
1 μm	94.57%	99.15%	99.73%	99.88%	99.93%	99.96%	99.98%	99.99%
2 μm	89.44%	98.31%	99.45%	99.75%	99.86%	99.91%	99.96%	99.97%
3 μm	84.59%	97.47%	99.18%	99.63%	99.80%	99.87%	99.93%	99.96%
4 μm	80.00%	96.65%	98.91%	99.51%	99.73%	99.83%	99.91%	99.94%
5 μm	75.65%	95.82%	98.63%	99.38%	99.66%	99.79%	99.89%	99.93%
6 μm	71.55%	95.01%	98.36%	99.26%	99.59%	99.74%	99.87%	99.91%
7 μm	67.67%	94.20%	98.09%	99.14%	99.52%	99.70%	99.84%	99.90%
8 µm	63.99%	93.40%	97.82%	99.01%	99.46%	99.66%	99.82%	99.88%
9 μm	60.52%	92.61%	97.55%	98.89%	99.39%	99.61%	99.80%	99.87%
10 μm	57.24%	91.82%	97.29%	98.77%	99.32%	99.57%	99.78%	99.85%

Table 30 Theoretical X-ray transmission for NMC 622 for thicknesses of $10 - 100\,\mu m$ and incident beam energies of $1 - 10\,k eV$, presented as a percentage to 2 d.p.

	1 keV	2 keV	3 keV	4 keV	5 keV	6 keV	8 keV	10 keV
	0.00%	0.16%	11.28%	36.90%	58.31%	72.21%	64.49%	57.24%
20 μm	0.00%	0.00%	1.27%	13.61%	34.00%	52.14%	41.59%	32.76%
30 μm	0.00%	0.00%	0.14%	5.02%	19.82%	37.65%	26.82%	18.75%
40 μm	0.00%	0.00%	0.02%	1.85%	11.56%	27.19%	17.29%	10.73%
50 μm	0.00%	0.00%	0.00%	0.68%	6.74%	19.63%	11.15%	6.14%
60 µm	0.00%	0.00%	0.00%	0.25%	3.93%	14.18%	7.19%	3.52%
70 μm	0.00%	0.00%	0.00%	0.09%	2.29%	10.24%	4.64%	2.01%
80 µm	0.00%	0.00%	0.00%	0.03%	1.34%	7.39%	2.99%	1.15%
90 μm	0.00%	0.00%	0.00%	0.01%	0.78%	5.34%	1.93%	0.66%
100 μm	0.00%	0.00%	0.00%	0.00%	0.45%	3.86%	1.24%	0.38%

Table 31 Theoretical X-ray transmission for NMC 622 for thicknesses of $10 - 100 \,\mu m$ and incident beam energies of $10 - 100 \,keV$, presented as a percentage to $2 \,d.p.$

	10 keV	20 keV	30 keV	40 keV	50 keV	60 keV	80 keV	100 keV
10 μm	57.24%	91.82%	97.29%	98.77%	99.32%	99.57%	99.78%	99.85%
20 μm	32.76%	84.31%	94.65%	97.55%	98.65%	99.15%	99.56%	99.71%
30 μm	18.75%	77.42%	92.08%	96.35%	97.98%	98.72%	99.33%	99.56%
40 μm	10.73%	71.09%	89.58%	95.16%	97.31%	98.30%	99.11%	99.42%
50 μm	6.14%	65.28%	87.15%	93.99%	96.65%	97.88%	98.89%	99.27%
60 µm	3.52%	59.94%	84.78%	92.83%	95.99%	97.46%	98.67%	99.13%
70 μm	2.01%	55.04%	82.48%	91.68%	95.34%	97.04%	98.45%	98.98%
80 µm	1.15%	50.54%	80.24%	90.55%	94.69%	96.63%	98.23%	98.84%
90 μm	0.66%	46.40%	78.06%	89.44%	94.05%	96.22%	98.02%	98.69%
100 μm	0.38%	42.61%	75.95%	88.34%	93.41%	95.80%	97.80%	98.55%

Table 32 Theoretical X-ray transmission for NMC 811 for thicknesses of $1 - 10 \,\mu m$ and incident beam energies of $1 - 10 \,keV$, presented as a percentage to $2 \,d.p.$

	1 keV	2 keV	3 keV	4 keV	5 keV	6 keV	8 keV	10 keV
1 μm	2.96%	50.88%	79.46%	90.02%	94.47%	96.62%	97.03%	94.29%
2 μm	0.09%	25.89%	63.15%	81.04%	89.24%	93.36%	94.14%	88.90%
3 µm	0.00%	13.18%	50.18%	72.95%	84.30%	90.20%	91.34%	83.82%
4 μm	0.00%	6.70%	39.87%	65.67%	79.63%	87.15%	88.63%	79.03%
5 μm	0.00%	3.41%	31.69%	59.12%	75.23%	84.21%	85.99%	74.52%
6 µm	0.00%	1.74%	25.18%	53.22%	71.06%	81.36%	83.44%	70.26%
7 μm	0.00%	0.88%	20.01%	47.91%	67.13%	78.61%	80.95%	66.24%
8 µm	0.00%	0.45%	15.90%	43.13%	63.42%	75.96%	78.55%	62.46%
9 µm	0.00%	0.23%	12.63%	38.82%	59.91%	73.39%	76.21%	58.89%
10 µm	0.00%	0.12%	10.04%	34.95%	56.59%	70.91%	73.95%	55.53%

Table 33 Theoretical X-ray transmission for NMC 811 for thicknesses of $1-10\,\mu m$ and incident beam energies of $10-100\,k eV$, presented as a percentage to 2 d.p.

	10 keV	20 keV	30 keV	40 keV	50 keV	60 keV	80 keV	100 keV
1 μm	94.29%	99.10%	99.71%	99.87%	99.93%	99.95%	99.98%	99.98%
2 μm	88.90%	98.21%	99.42%	99.74%	99.86%	99.91%	99.95%	99.97%
3 µm	83.82%	97.33%	99.13%	99.61%	99.78%	99.86%	99.93%	99.95%
4 μm	79.03%	96.45%	98.84%	99.48%	99.71%	99.82%	99.91%	99.94%
5 μm	74.52%	95.59%	98.55%	99.35%	99.64%	99.77%	99.88%	99.92%
6 μm	70.26%	94.73%	98.27%	99.21%	99.57%	99.73%	99.86%	99.91%
7 μm	66.24%	93.88%	97.98%	99.08%	99.50%	99.68%	99.84%	99.89%
8 µm	62.46%	93.03%	97.69%	98.95%	99.43%	99.64%	99.81%	99.88%
9 μm	58.89%	92.20%	97.41%	98.82%	99.35%	99.59%	99.79%	99.86%
10 μm	55.53%	91.37%	97.13%	98.70%	99.28%	99.55%	99.77%	99.85%

Table 34 Theoretical X-ray transmission for NMC 811 for thicknesses of $10 - 100\,\mu m$ and incident beam energies of $1 - 10\,keV$, presented as a percentage to 2 d.p.

	1 keV	2 keV	3 keV	4 keV	5 keV	6 keV	8 keV	10 keV
10 μm	0.00%	0.12%	10.04%	34.95%	56.59%	70.91%	73.95%	55.53%
20 μm	0.00%	0.00%	1.01%	12.22%	32.03%	50.28%	54.68%	30.83%
30 μm	0.00%	0.00%	0.10%	4.27%	18.12%	35.65%	40.43%	17.12%
40 μm	0.00%	0.00%	0.01%	1.49%	10.26%	25.28%	29.90%	9.51%
50 μm	0.00%	0.00%	0.00%	0.52%	5.80%	17.93%	22.11%	5.28%
60 µm	0.00%	0.00%	0.00%	0.18%	3.28%	12.71%	16.35%	2.93%
70 μm	0.00%	0.00%	0.00%	0.06%	1.86%	9.01%	12.09%	1.63%
80 µm	0.00%	0.00%	0.00%	0.02%	1.05%	6.39%	8.94%	0.90%
90 μm	0.00%	0.00%	0.00%	0.01%	0.60%	4.53%	6.61%	0.50%
100 μm	0.00%	0.00%	0.00%	0.00%	0.34%	3.21%	4.89%	0.28%

Table 35 Theoretical X-ray transmission for NMC 811 for thicknesses of $10 - 100 \,\mu m$ and incident beam energies of $10 - 100 \,keV$, presented as a percentage to $2 \,d.p.$

	10 keV	20 keV	30 keV	40 keV	50 keV	60 keV	80 keV	100 keV
10 μm	55.53%	91.37%	97.13%	98.70%	99.28%	99.55%	99.77%	99.85%
20 μm	30.83%	83.48%	94.34%	97.41%	98.57%	99.10%	99.53%	99.70%
30 μm	17.12%	76.27%	91.63%	96.14%	97.86%	98.65%	99.30%	99.54%
40 μm	9.51%	69.69%	88.99%	94.88%	97.16%	98.21%	99.07%	99.39%
50 μm	5.28%	63.67%	86.44%	93.64%	96.46%	97.76%	98.84%	99.24%
60 µm	2.93%	58.17%	83.95%	92.42%	95.77%	97.32%	98.61%	99.09%
70 μm	1.63%	53.15%	81.54%	91.22%	95.08%	96.88%	98.38%	98.94%
80 µm	0.90%	48.56%	79.20%	90.02%	94.40%	96.45%	98.15%	98.79%
90 μm	0.50%	44.37%	76.92%	88.85%	93.72%	96.01%	97.92%	98.64%
100 μm	0.28%	40.54%	74.71%	87.69%	93.05%	95.58%	97.69%	98.49%

Table 36Theoretical thicknesses for optimal contrast-to-noise ratio for various NMC chemistries and incident beam energies of 1 – 10 keV, presented in μm to 2 d.p.

	1 keV	2 keV	3 keV	4 keV	5 keV	6 keV	8 keV	10 keV
NMC 111	0.60	3.30	9.76	21.40	39.60	65.68	32.08	38.30
NMC 532	0.60	3.22	9.50	20.82	38.52	63.84	40.26	37.22
NMC 622	0.58	3.12	9.16	20.06	37.08	61.42	45.60	35.84
NMC 811	0.56	2.96	8.70	19.02	35.12	58.18	66.26	34.00

Table 37 Theoretical thicknesses for optimal contrast-to-noise ratio for various NMC chemistries and incident beam energies of $10 - 100 \, \text{keV}$, presented in μm to $2 \, \text{d.p.}$

	10 keV	20 keV	30 keV	40 keV	50 keV	60 keV	80 keV	100 keV
NMC 111	38.30	251.88	782.14	1734.00	3147.38	4985.06	9507.20	14,325.60
NMC 532	37.22	244.16	757.62	1680.22	3053.66	4845.70	9286.42	14,063.42
NMC 622	35.84	234.44	726.88	1612.58	2934.38	4665.24	8983.66	13,673.52
NMC 811	34.00	221.50	686.08	1522.60	2774.88	4422.00	8567.52	13,125.06

Table 38The influence of lithiation state upon the X-ray attenuation properties of NMC811 for three incident beam energies: 1, 10 and 100 keV, presented are X-ray mass attenuation coefficients in cm 2 g $^{-1}$ (to 2 d.p.).

Lithiation state, x	State of Charge (SoC)	Incident Beam Energy			
		1 keV	10 keV	100 keV	
0.0	Li _{1.0} Ni _{0.8} Mn _{0.1} Co _{0.1} O ₂	7333.73	122.56	0.32	
0.2	$Li_{0.8}Ni_{0.8}Mn_{0.1}Co_{0.1}O_2$	7436.50	124.33	0.32	
0.4	$Li_{0.6}Ni_{0.8}Mn_{0.1}Co_{0.1}O_2$	7542.29	126.15	0.32	
0.6	$Li_{0.4}Ni_{0.8}Mn_{0.1}Co_{0.1}O_2$	7651.23	128.03	0.33	
0.8	$Li_{0.2}Ni_{0.8}Mn_{0.1}Co_{0.1}O_2$	7763.46	129.96	0.33	
1.0	$\text{Li}_{0.0} \text{Ni}_{0.8} \text{Mn}_{0.1} \text{Co}_{0.1} \text{O}_2$	7879.15	131.95	0.33	

X-ray mass attenuation coefficient for a material, from its constituent elements (Eq. (1)).

$$\mu_m(E_0) = \sum_i [w_i.\mu_m(i, E_0)] \tag{1}$$

Converting X-ray mass attenuation coefficient to the X-ray linear attenuation coefficient (Eq. (2)).

$$\mu(E_0) = \mu_m(E_0).\rho \tag{2}$$

Converting X-ray linear attenuation coefficient to the X-ray attenuation length (Eq. (3)).

$$\lambda(E_0) = \mu(E_0)^{-1} \tag{3}$$

Calculating X-ray transmission from the X-ray linear attenuation coefficient or the X-ray attenuation length (Eq. (4)).

$$T = e^{-t.\mu(E_0)} = e^{\frac{-t}{\lambda(E_0)}} \tag{4}$$

Material thickness for optimum image contrast (Eq. (5)).

$$t.\mu(E_0) = 2 \tag{5}$$

T	Transmission	%
I	Transmitted X-ray intensity	energy per area per time
I_0	Incident X-ray intensity	energy per area per time
E_0	Incident X-ray energy	energy
t	Thickness of the sample	length
i	Constituent element	no-units
w_i	Weight fraction of element i	%
$\mu_m(E_0)$	X-ray mass attenuation coefficient	area per weight
$\mu(E_0)$	X-ray linear attenuation coefficient	inverse length
$\lambda(E_0)$	X-ray attenuation length	length

2.2. X-Ray attenuation data calculated from Hubbell

These tables report data produced from work by Hubbell and Seltzer [2].

2.3. X-Ray attenuation data calculated from Henke

These tables report data produced from work by Henke et al. [3].

The same literature references for the crystallographic densities of the various NMC chemistries were used for both the attenuation calculations based upon Hubbell and Henke [4–7].

2.4. X-Ray transmissions for NMC111

Firstly transmission values for small samples. Secondly transmission values for large samples.

2.5. X-Ray transmissions for NMC532

Firstly transmission values for small samples. Secondly transmission values for large samples.

2.6. X-Ray transmissions for NMC622

Firstly transmission values for small samples. Secondly transmission values for large samples.

2.7. X-Ray transmissions for NMC811

Firstly transmission values for small samples. Secondly transmission values for large samples.

2.8. Theoretical NMC thickness for optimum image contrast

Using derivations outlined by Reiter et al. [8], the theoretical thickness for optimum image contrast can be calculated using Eq. (5): firstly, for low energies (Table 36), and secondly, for high energies (Table 37).

2.9. Theoretical influence of electrode lithiation

All calculations thus far have reported results based upon fully lithiated material, because the influence of lithiation is assumed negligible with comparison to variations in the incident beam energy or chemical composition. In order to demonstrate the validity of this assumption, Table 38 reports the theoretical variation in X-ray mass attenuation coefficient with state of charge (quantified by the value of x within $\text{Li}_{1-x}\text{Ni}_{0.8}\text{Mn}_{0.1}\text{Co}_{0.1}\text{O}_2$) for three incident beam energies: 1, 10, 100 keV.

Acknowledgments

The authors would like to acknowledge the EPSRC (EP/M014045/1), the Royal Academy of Engineering (CiET1718\59). This work was carried out with funding from the Faraday Institution (faraday.ac.uk; EP/S003053/1), grant number FIRG001.

Conflict of Interest

The authors declare that they have no known conflicts of interest to declare.

References

- [1] T.M.M. Heenan, C. Tan, A.J. Wade, R. Jervis, D.J.L. Brett, P.R. Shearing, Theoretical transmissions for X-ray computed tomography studies of lithium-ion battery cathodes, Mater. Des. (2020) 108585.
- [2] Hubbell, J.H. and Seltzer, S.M., 1995. Tables of X-ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients 1keV to 20 MeV for Elements Z= 1 to 92 and 48 Additional Substances of Dosimetric Interest (No. PB-95-220539/XAB; NISTIR-5632).
- [3] B.L. Henke, E.M. Gullikson, J.C. Davis, X-ray interactions: photoabsorption, scattering, transmission, and reflection at E= 50-30,000eV, Z= 1-92, Atom. Data Nucl. Data Tables 54 (2) (1993) 181-342.
- [4] Y. Fujii, H. Miura, N. Suzuki, T. Shoji, N. Nakayama, Structural and electrochemical properties of LiNi1/3Co1/3Mn1/3O2-LiMg1/3Co1/3Mn1/3O2 solid solutions, Solid State Ionics 178 (11–12) (2007) 849–857.
- [5] Y.J. Gu, Q.G. Zhang, Y.B. Chen, H.Q. Liu, J.X. Ding, Y.M. Wang, H.F. Wang, L. Chen, M. Wang, S.W. Fan, Q.F. Zang, Reduction of the lithium and nickel site substitution in Li1+ xNi0. 5Co0. 2Mn0. 3O2 with Li excess as a cathode electrode material for Li-ion batteries, J. Alloys Compd. 630 (2015) 316–322.
- [6] X. Zheng, X. Li, Z. Huang, B. Zhang, Z. Wang, H. Guo, Z. Yang, Enhanced electrochemical performance of LiNio. 6Coo. 2Mno. 202 cathode materials by ultrasonic-assisted co-precipitation method, J. Alloys Compd. 644 (2015) 607–614.
- [7] R. Jung, R. Morasch, P. Karayaylali, K. Phillips, F. Maglia, C. Stinner, Y. Shao-Horn, H.A. Gasteiger, Effect of ambient storage on the degradation of Ni-rich positive electrode materials (NMC811) for Li-ion batteries, J. Electrochem. Soc. 165 (2) (2018) A132–A141.
- [8] M. Reiter, M. Krumm, S. Kasperl, C. Kuhn, M. Erler, D. Weiß, C. Heinzl, C. Gusenbauer, J. Kastner, Evaluation of transmission based image quality optimisation for X-ray computed tomography, in: Proceedings of the Conference on Industrial Computed Tomography (ICT), 2012, September, pp. 241–250. Sept.