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Abstract: In this paper, we investigate the state estimation of systems with unknown covariance
non-Gaussian measurement noise. A novel improved Gaussian filter (GF) is proposed, where the
maximum correntropy criterion (MCC) is used to suppress the pollution of non-Gaussian
measurement noise and its covariance is online estimated through the variational Bayes (VB)
approximation. MCC and VB are integrated through the fixed-point iteration to modify the estimated
measurement noise covariance. As a general framework, the proposed algorithm is applicable to
both linear and nonlinear systems with different rules being used to calculate the Gaussian integrals.
Experimental results show that the proposed algorithm has better estimation accuracy than related
robust and adaptive algorithms through a target tracking simulation example and the field test of
an INS/DVL integrated navigation system.
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1. Introduction

As the benchmark work in state estimation problems, the linear recursive Kalman filter (KF)
has been applied in various applications, such as information fusion, system control, integrated
navigation, target tracking, and GPS solutions [1–4]. It is then extended to nonlinear systems through
different ways to approximate the nonlinear functions or filtering distributions. Using the Taylor
series to linearize the nonlinear functions, the popular extended Kalman filter (EKF) [5] is obtained.
To further improve the estimation accuracy of EKF, several sigma points based nonlinear filters
have been proposed in recent decades, such as unscented Kalman filter (UKF) using unscented
transform [6], cubature Kalman filter (CKF) according to cubature rules [7], and divided difference
Kalman filter (DDKF) adopting the polynomial approximations [8]. All these filters can be regarded as
special cases of Gaussian filter (GF) [9–11], where the noise distribution is assumed to be Gaussian.

However, when the measurements are polluted by non-Gaussian noise, such as impulsive
inference or outliers, GF will have worse estimation results and even break down [12,13]. Besides the
computation extensive methods including particle filter [14,15], Gaussian sum filter [16], and multiple
model filters [17], the robust filters, such as Huber’s KF (HKF, also known as M-estimation) [18–20] and
H∞ filter [21], are also intended for the contaminated measurements. Although the H∞ filter can obtain
guaranteed bounded estimation error, it does not perform well under Gaussian noise [22]. The Huber’s
M-estimation is a combined l1 and l2 norm filter that can effectively suppress the non-Gaussian
noise [18–20]. Recently, the information theoretical measure correntropy has been used to incorporate
the non-Gaussian noise [23–28]. According to the maximum correntropy criterion (MCC), a new
robust filter known as the maximum correntropy Kalman filter (MCKF) has been proposed in [24],
and it is also extended to nonlinear systems using EKF [27] and UKF [25,26,28]. Simulation results

Sensors 2018, 18, 1960; doi:10.3390/s18061960 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/1424-8220/18/6/1960?type=check_update&version=1
http://dx.doi.org/10.3390/s18061960
http://www.mdpi.com/journal/sensors


Sensors 2018, 18, 1960 2 of 14

show that an MCC based GF (MCGF) may obtain better estimation accuracy than M-estimation when
choosing a proper kernel bandwidth [23–26]. Even so, both MCGF and M-estimation still require
the information of nominal measurement noise covariance, which may be unknown or time varying
in some applications. In this situation, the performance of MCGF will degrade as shown in our
simulation examples.

Traditionally, the unknown noise statistic can be estimated by the adaptive filter, such as the
Sage–Husa filter [29] and fading memory filter [30]. One drawback of these recursion adaptive filters
is that the previously estimated statistic of the last time instant will influence current estimation, which
is not suitable for the case measurement noise having frequently changing statistics [31]. The recently
proposed variational Bayes (VB) based adaptive filter avoids this limitation by VB approximation, and
VB based GFs (VBGFs) for both linear [32] and nonlinear systems [9,33] have been proposed.

In this paper, we proposed an adaptive MCGF based on the VB approximation, which is
especially useful for estimating the system state from the measurements with unknown covariance
non-Gaussian noise. Typical applications include low-cost INS/GPS integrated navigation systems [32]
and maneuvering target tracking [33]. To overcome the limitation of MCGF under unknown time
varying measurement noise covariance, the VB method is utilised to improve the adaptivity of MCGF,
which is achieved through the fixed-point iteration framework. As will be demonstrated in our
simulation results, our proposed method has better estimation accuracy than related algorithms.
Furthermore, various filters can be obtained by using different ways to calculate the Gaussian integrals.

The rest of this paper is given as follows. In Section 2, after briefly introducing the concept of
correntropy, we give the general MCGF algorithm. In Section 3, we explain the main idea of the
VB method and the procedure of embedding it into MCGF to obtain our proposed adaptive MCGF.
Section 4 gives the experimental results of a typical target tracking model and an INS/DVL navigation
system comparing with several related algorithms. Conclusions are made in the final section.

2. Gaussian Filter Based on the Maximum Correntropy Criterion

2.1. Correntropy

As a kind of similarity measure, the correntropy of random variables X and Y is defined as [24–26]

V(X, Y) = E[κ(X, Y)] =
∫ ∫

κ(x, y)dFX,Y(x, y), (1)

where E[·] denotes expectation, FX,Y(x, y) is the joint density function, and κ(x, y) represents the
Mercer kernel. The most popular Gaussian kernel is given as the following:

κ(x, y) = Gσ(e) = exp(− e2

2σ2 ), (2)

where e = x− y, and σ > 0 is the kernel bandwidth.
Then, taking the Taylor series expansion on the Gaussian correntropy, we obtain that

V(X, Y) =
∞

∑
n=0

(−1)n

2nσ2nn!
E[(X−Y)2n]. (3)

Obviously, it contains all the even moments of X − Y weighted by the kernel bandwidth σ.
It enables us to capture high order information when applying the correntropy in signal processing.
In practice, we can use the sampling data to estimate the real correntropy since the joint density
function is usually unavailable.
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2.2. Maximum Correntropy Gaussian Filter

In this paper, we consider the following nonlinear system with additive noise

xi = fi−1(xi−1) + wi−1,
zi = hi(xi) + vi,

(4)

where xi ∈ Rn is the system state at time i and zi ∈ Rm denotes the measurement. fi(·) and hi(·)
represent the known nonlinear functions. In standard GF, the process noise wi and the measurement
noise vi are assumed to be zero mean Gaussian noise sequences with known covariance Qi and Ri.
The initial state x0 has known mean x̄0 and covariance P0.

In both GF and MCGF, the one step estimation x̂−i and its estimation covariance P−i are
obtained through:

x̂−i =
∫

fi−1(xi−1)N (xi−1|x̂i−1, Pi−1)dxi−1, (5)

P−i =
∫
(fi−1(xi−1)− x̂−i )(fi−1(xi−1)− x̂−i )

TN (xi−1|x̂i−1, Pi−1)dxi−1 + Qi−1. (6)

To further improve the robustness of GF, MCC has been applied on the derivation of measurement
update of MCGF. Consider the following regression model based on Equations (4)–(6) [25]:[

x̂−i
zi

]
=

[
xi

hi(xi)

]
+

[
δxi
vi

]
(7)

where δxi = x̂−i − xi. The covariance of [δxi vi]
T is[

P−i 0
0 Ri

]
=

[
Sp,iST

p,i 0
0 Sr,iST

r,i

]
= SiST

i . (8)

Multiplying S−1
i on both sides of Equation (7), we obtain

ei = Di −Wi, (9)

where Di = S−1
i

[
x̂−i
zi

]
and Wi = S−1

i

[
xi

hi(xi)

]
.

Then, the optimal estimation x̂i under the MCC can be obtained through the following
optimization problem:

x̂i = arg max
xi

JL = arg max
xi

m+n

∑
k=1

Gσ(ei(k)), (10)

where ei(k) is the k-th element of ei.
Equation (10) can be solved by:

∂JL
∂xi

=

(
∂hi(xi)

∂xi

)T

Ci(Di −Wi) = 0, (11)

where

Ci =

[
C̃x,i, 0,

0, C̃y,i,

]
, (12)

C̃x,i = diag (Gσ(ei(1)), . . . , Gσ(ei(n))) , (13)

C̃y,i = diag (Gσ(ei(n + 1)), . . . , Gσ(ei(n + m))) . (14)

Note here that the diag(·) is used to denote the diagonal matrix.
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Based on the above equation and using x̂−i to replace the xi contained in Equation (9), MCGF can
be written in a similar way as GF except a modified measurement noise covariance [25]:

R̃i = Sr,iC̃
−1
y,i ST

r,i. (15)

Then, x̂i and its covariance Pi can be obtained through

x̂i = x̂−i + Ki(zi − ẑi), (16)

Pi = P−i −KiPzzKT
i , (17)

where
Ki = PxzP−1

zz , (18)

ẑi =
∫

hi(xi)N (xi|x̂−i , P−i )dxi, (19)

Pzz =
∫
(hi(xi)− ẑi)(hi(xi)− ẑi)

TN (xi|x̂−i , P−i )dxi + R̃i, (20)

Pxz =
∫
(xi − x̂−i )(hi(xi)− ẑi)

TN (xi|x̂−i , P−i )dxi. (21)

We easily find that the main difference between MCGF and GF is the modified measurement noise
covariance, and MCGF shows excellent estimation performance when measurement is polluted by
outliers or shot noise [24–26]. However, it still requires the knowledge of measurement noise covariance.
When the covariance changes over time (which implies the true covariance is different from the known
covariance), the MCGF algorithm does not perform well. Therefore, we adopt the adaptive method to
further improve the performance of MCGF in this case.

3. Variation Beysian Maximum Correntropy Gaussian Filter

The main idea under state estimation is to obtain the posterior probability density function
p(xi|z1:i). For GF, we obtain it through the Gaussian approximation p(xi|z1:i) ≈ N (xi|x̂i, Pi). However,
if the measurement noise covariance Ri is unavailable, we need to estimate the joint posterior
distribution p(xi, Ri|z1:i). This distribution can be solved by the free form VB approximation [9,32]:

p(xi, Ri|z1:i) ≈ Q(xi)Q(Ri), (22)

where Q(xi) and Q(Ri) are unknown approximation densities, which can be calculated by minimizing
the Kullback–Leibler (KL) divergence between the true one and its corresponding approximation [9,32]:

Q(xi) ∝ exp
(∫

log p(zi, xi, Ri|z1:i−1)Q(Ri)dRi

)
, (23)

Q(Ri) ∝ exp
(∫

log p(zi, xi, Ri|z1:i−1)Q(xi)dxi

)
. (24)

According to the VB method, p(xi, Ri|z1:i) can be approximated as a product of Gaussian
distribution and inverse Wishart (IW) distribution [9,32]:

p(xi, Ri|z1:i) ≈ N (xi|x̂i, Pi)IW(Ri|vi, Vi), (25)

where

N (xi|x̂i, Pi) ∝| Pi |−1/2 exp
(
−1

2
(xi − x̂i)

TP−1
i (xi − x̂i)

)
(26)

IW(Ri|vi, Vi) ∝| Ri |−(vi+n+1)/2 exp
(
−1

2
tr(ViRi)

)
, (27)
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where tr(·) is the trace of a matrix, and vi and Vi are the degree of freedom parameter and the inverse
scale matrix, respectively.

The integrals in (22) and (23) can be computed as follows [9,32]:∫
log p(zi, xi, Ri|z1:i−1)Q(Ri)dRi

= −1
2
(zi − hi(xi))

T〈R−1
i 〉R(zi − hi(xi))−

1
2
(xi − x̂−i )

T(P−i )
−1(xi − x̂−i ) + C1, (28)

∫
log p(zi, xi, Ri|z1:i−1)Q(xi)dxi

= −1
2
(v−i + n + 2) log | Ri | −

1
2

tr(V−i R−1
i )− 1

2
〈(zi − hi(xi))

TR−1
i (zi − hi(xi))〉x + C2, (29)

where 〈·〉R =
∫
(·)Q(Ri)dRi, 〈·〉x =

∫
(·)Q(xi)dxi, and C1, C2 are some constants. Due to the fact that

Q(Ri) = IW(Ri|vi, Vi), we obtain

〈R−1
i 〉R = (vi − n− 1)V−1

i . (30)

Besides this, the expectation can be rewritten as

〈(zi − hi(xi))
TR−1

i (zi − hi(xi))〉x = tr{〈(zi − hi(xi))
T(zi − hi(xi))〉xR−1

i }. (31)

Substituting (30) and (31) into (28) and (29), and matching the parameters in (26) and (27), we can
obtain the following results:

vi = v−i + 1, (32)

Ti =
∫
(hi(xi)− ẑi)(hi(xi)− ẑi)

TN (xi|x̂−i , P−i )dxi + (vi − n− 1)−1Vi, (33)

Ki = Pxz (Ti)
−1 , (34)

x̂i = x̂−i + Ki(zi − ẑi), (35)

Pi = P−i −KiTiKi
T, (36)

Vi = V−i +
∫
(zi − hi(xi))(zi − hi(xi))

TN (xi|x̂i, Pi)dxi, (37)

where (vi − n− 1)−1Vi is the estimated measurement covariance.
The VB based GF works well for unknown measurement noise covariance. However, when the

measurement contains outliers or shot noise, their estimation will degrade, as will be shown in our
simulation results. To overcome the shortcomings of MCGF and VBGF, we take the advantages of VB
and MCC by the fixed-point iteration method, and design the so called VBMCGF algorithm, which is
summarized as follows:

Step 1: Predict:
x̂−i and P−i are obtained through (5) and (6), and

v−k = ρ(vk−1 − n− 1) + n + 1, (38)

V−k = BVk−1BT, (39)

where 0 < ρ ≤ 1, 0 <| B |≤ 1, and a reasonable choice is B =
√

ρI.
Step 2: Update:

First, set x̂(1)i = x̂−i , P(1)
i = P−i , vi = 1 + v−i , and V(1)

i = V−i . Calculate ẑi and Pxz by (19) and (21).
For j = 1, . . . , N, iterate the following equations:
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R(j)
i = S(j)

r,i (S
(j)
r,i )

T = (vi − n− 1)−1V(j)
i , (40)

e(j)
r,i = (S(j)

r,i )
−1(zi − ẑi), (41)

C̃(j)
r,i = diag

(
Gσ(e

(j)
r,i (1)), . . . , Gσ(e

(j)
r,i (m))

)
, (42)

R̃
(j)
i = S(j)

r,i (C̃
(j)
r,i )
−1(S(j)

r,i )
T, (43)

T(j+1)
i =

∫
(hi(xi)− ẑi)(hi(xi)− ẑi)

TN (xi|x̂−i , P−i )dxi + R̃
(j)
i , (44)

K(j+1)
i = Pxz(T

(j+1)
i )−1, (45)

x̂(j+1)
i = x̂−i + K(j+1)

i (zi − ẑi), (46)

P(j+1)
i = P−i −K(j+1)

i T(j+1)
i (K(j+1)

i )T, (47)

V(j+1)
i = V−i +

∫
(zi − hi(xi))(zi − hi(xi))

TN (xi|x̂
(j+1)
i , P(j+1)

i )dxi, (48)

End For. In addition, set Vi = V(N+1)
i , x̂i = x̂(N+1)

i , and Pi = P(N+1)
i .

The main difference between the proposed VBMCGF and existing GFs lies in the modified

estimation error covariance R̃
(j)
i , where VB iterations are used to estimate its value and MCC is used to

modify it in the presence of non-Gaussian noises. The kernel bandwidth σ plays an important role in
reducing the effect of non-Gaussian noise or outliers. A smaller σ will make the filter more sensitive
to outliers, but it may affect the convergence performance. In addition, a too large σ may cause the
VBMCGF to perform more like VBGF (It can be proved that, if σ → ∞, the proposed VBMCGF will
reduce to VBGF). One possible way to select it is by the trial and error method [24–26]. Another
important issue is the number of fixed-point iterations. In fact, only a few iterations (e.g., 2 or 3) are
enough [31,32].

As the general framework, our filter can be easily implemented according to the real requirements.
For linear systems that are described by xi = Fi−1xi−1 + wi−1 and zi = Hixi + vi, the predation update
in the VBMCKF is the same as KF:

x̂−i = Fi−1x̂i−1, (49)

P−i = Fi−1Pi−1FT
i−1 + Qi−1. (50)

In addition, the ẑi, Pxz, T(j+1)
i , and V(j+1)

i that appeared in VBMCKF will reduce to the
following equations:

ẑi = Hix̂−i , (51)

Pxz = P−i HT
i , (52)

T(j+1)
i = HiP−i HT

i + R̃
(j)
i , (53)

V(j+1)
i = V−i + HiP

(j+1)
i HT

i + (zi −Hix̂
(j+1)
i )(zi −Hix̂

(j+1)
i )T, (54)

while other steps are the same as the general framework.
When it comes to the nonlinear systems, the Gaussian integrals contained in x̂−i , P−i , ẑi, Pxz, T(j+1)

i ,

and V(j+1)
i can be calculated according to Taylor series, unscented transform, or cubature rules, and the

corresponding filters are called VBMCEKF, VBMCUKF, and VBMCCKF, respectively.



Sensors 2018, 18, 1960 7 of 14

4. Experimental Results

4.1. Simulation Results of the Target Tracking Model

To illustrate the performance of the proposed algorithm, we first give the simulation results using a
typical target tracking model, where cubature rules are used to calculate the integrals. We compare the
estimation accuracy of seven filters: CKF [7], MCCKF-1 [26], MCCKF-2 [25], VBCKF [9], HCKF [18],
VBHCKF (which adopts Huber’s function) and the proposed VBMCCKF under various kinds of
measurement noise. The target tracking example is modeled as [2]:

xi =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

 xi−1 +


T2

2 0
T 0
0 T2

2
0 T

wi−1, (55)

zi =

 √
(ξx − ξ0)2 + (ηy − η0)2

arctan ηx−η0
ξy−ξ0

+ vi, (56)

where xi = [ ξx,i ξ̇x,i ηy,i ˙ηy,i ]T is the system state with (ξx,i, ηy,i) and (ξ̇x,i, η̇y,i) being the
position and velocity in x and y directions. The position of radar is set as (ξ0, η0) = (−100 m, −100 m).
We set the sampling period T = 0.1 s, Qi = diag(0.04 m2s−3, 0.04 s−3). The initial state is x̂0 = x̄0 =

[−40 m 3 ms−1 10 m 1 ms−1]T and the covariance is P0 = diag(4 m2, 0.01 m2s−2, 4 m2, 0.01 m2s−2).
The root mean square error (RMSE) and average RMSE (ARMSE) in position or velocity are used to
describe the estimation accuracy—for example, the RMSE and ARMSE in position are defined as [2]:

RMSEpos(i) =

√√√√ 1
M

M

∑
c=1

((ξc
x,i − ξ̂c

x,i)
2 + (ηc

y,i − η̂c
y,i)

2), (57)

ARMSEpos =
1
L

L

∑
i=1

RMSEpos(i), (58)

where (ξc
x,i, ηc

y,i) and (ξ̂c
x,i, η̂c

y,i) are the true and estimated position in the cth Monte Carlo experiment,
respectively. The RMSE and ARMSE of velocity are similar.

We here consider the following five kinds of measurement noises:
Case A: Gaussian distribution

vi ∼ N (0, diag[(0.2 m)2, (0.015 rad)2]), (59)

Case B: Time varying measurement noise covariance

vi ∼ N (0, α2
i diag[(0.2 m)2, (0.015 rad)2]), (60)

Case C: Gaussian mixture noise with time varying measurement noise covariance

vi ∼ 0.8N (0, α2
i diag[(0.2 m)2, (0.015 rad)2]) + 0.2N (0, diag[(5 m)2, (0.75 rad)2]), (61)

Case D: Time varying measurement noise covariance and shot noise

vi ∼ [βi, γi]
T +N (0, α2

i diag[(0.2 m)2, (0.015 rad)2]), (62)

Case E: Gaussian mixture noise with time varying measurement noise covariance and shot noise
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vi ∼ [βi, γi]
T + 0.8N (0, α2

i diag[(0.2 m)2, (0.015 rad)2]) + 0.2N (0, diag[(5 m)2, (0.75 rad)2]), (63)

where the parameters αi, βi, and γi are given in Figure 1.
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Figure 1. The time varying parameters. (a) αi; (b) βi and γi.

In these simulations, we use σ = 8 for MCC based algorithms, the commonly used threshold
h = 1.345 for Huber’s function, and we set ρ = 0.8 and N = 3 for VB approximations. We perform
L = 100 steps and run M = 100 Monte Carlo experiments for each case. The simulation results are
plotted in Figures 2–6.
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Figure 2. RMSE performances of different filters under Case A. (a) position; (b) velocity.

Under the Gaussian measurement noise with known noise covariance, as given in Figure 2,
both MCCKF and HCKF have nearly similar estimation accuracy to CKF, since they will reduce to
CKF if choosing proper free parameters (e.g., the σ and h are infinity). VBCKF and VBMCCKF work
slightly worse as compared with CKF because they only use their online estimated measurement noise
covariance instead of the real one. In particular, the VBHCKF has the worst performance since the
commonly used parameter h = 1.345 for Huber’s function doesn’t fit the Gaussian noise situation
when using the inaccurate online estimated measurement noise covariance. The proposed VBMCCKF
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works well with the same kernel bandwidth under both Gaussian and non-Gaussian noise situations,
as will be shown in the following cases.
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Figure 3. RMSE performances of different filters under Case B. (a) position; (b) velocity.
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Figure 4. RMSE performances of different filters under Case C. (a) Position; (b) Velocity.

Figures 3–6 show the estimation performances of different algorithms under Cases B–E.
It can be seen obviously that CKF has the worst estimation accuracy since it requires the measurement
noise satisfying Gaussian distribution with known covariance, which is violated in these situations.
MCCKF-1 and MCCKF-2 have similar estimation performance but are slightly worse than HCKF
when using this kernel bandwidth. As demonstrated in [23–27], MCCKF is able to obtain better
estimation accuracy than HCKF with a suitable σ. The estimation results of MCCKF and HCKF do not
change too much when Gaussian mixture noise or shot noise are added, since they are robust filters.
The VBHCKF has better estimation results in velocity but worse accuracy than HCKF. The VBCKF has
much better estimation in Cases B and C, as it is able to online estimate the time varying measurement
noise covariance. However, its performance will degrade once shot noise is injected in Cases D
and E. Among these algorithms, our VBMCCKF has the best estimation accuracy as compared with
other algorithms under Cases B–E. It shows the adaptivity to unknown changing measurement noise
covariance and robustness to Gaussian mixture noise and shot noise. Its estimation results are also
much better than VBHCKF since the MCC has the potential to capture high order information than
Huber’s function. The ARMSEs of these filters under different noises are also given in Table 1 to clearly
show the differences.
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Figure 5. RMSE performances of different filters under Case D. (a) position; (b) velocity.
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Figure 6. RMSE performances of different filters under Case E. (a) position; (b) velocity.

Table 1. ARMSEs of different filters under five cases.

Algorithms Case A Case B Case C Case D Case E
Pos. Vel. Pos. Vel. Pos. Vel. Pos. Vel. Pos. Vel.

CKF 0.4097 0.0855 2.2930 0.3121 2.2050 0.3053 3.7720 0.7809 3.2960 0.6923
MCCKF-1 0.4077 0.0854 1.4960 0.1959 1.5680 0.2052 1.4090 0.2077 1.5680 0.2100
MCCKF-2 0.4079 0.0853 1.5280 0.1989 1.5990 0.2058 1.4500 0.2098 1.6010 0.2114

HCKF 0.4045 0.0847 1.0990 0.1304 1.1360 0.1390 1.0100 0.1384 1.1030 0.1365
VBHCKF 0.6500 0.1296 1.7180 0.1185 1.6360 0.1260 1.6460 0.1207 1.7590 0.1251
VBCKF 0.4362 0.0880 0.8761 0.0845 0.7828 0.0914 1.1240 0.0977 1.3100 0.1000

VBMCCKF 0.4350 0.0878 0.8633 0.0843 0.7752 0.0909 0.7424 0.0933 0.8236 0.0931

4.2. Field Results of Integrated Navigation

To further illustrate the effectiveness of the proposed algorithm, we compare our algorithm and
existing related methods using the real data collected by a self-made fiber optical gyroscope inertial
navigation system (INS) together with a doppler velocity logger (DVL). The integrated navigation
results of photonics inertial navigation system (PHINS) and GPS are used as the reference system.
We adopt the loosely coupled method to fusion the information of INS and DVL. The state vector is
chosen as x = [δL δλ δVE δVN ϕx ϕy ϕz ∇x ∇y ∇z εx εy εz]T, where δL and δλ are the latitude and
longitude error, {δVj, ϕj,∇j, ε j} are the velocity error, attitude error, accelerometer bias and gyroscope
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constant drift, respectively. j denotes the subscribe {e, n, x, y, z}, where e and n present the east and
north directions in the local-level frame, and x, y, and z are the directions of three axises in the body
frame. Then, the continuous system model is given as follows:

ẋ(t) = A(t)x(t) + B(t)w(t), (64)

where t is the continuous system time, and w(t) = [01×2 wax way wgx wgy wgz 01×5]
T is the process

noise, which contains the Gaussian noise of both accelerometers and gyroscopes. The detailed elements
of matrix A(t) and B(t) can refer to [34]. The measurement equation is

z(t) = Hx(t) + v(t), (65)

where z(t) = [ (V INS
e −VDVL

e ) (V INS
n −VDVL

n ) ]T, H = [02×2 I2×2 02×8], and v(t) = [VDVL
e VDVL

n ]T.
Then, the discretization process is performed before running filtering algorithms.

We compare the estimation results of KF, VBKF, HKF, MCKF, and VBMCKF, where we choose
h = 1.345, σ = 4, ρ = 0.96, and N = 3. We set x̂0 = [01×12]

T, and the covariance is
P0 = diag( 500

Re rad/s, 500
Re rad/s, 0.5 ◦, 0.5 ◦, 3 ◦, 1 × 10−4 g, 1 × 10−4 g, 0.01◦/h, 0.01◦/h, 0.01◦/h),

where Re is the radius of the earth, and g is the gravitational acceleration. The process noise covariance
and measurement noise covariance are set as Qi = diag(0, 0, 1×10−3 g, 1 ×10−3 g, 0.025◦/h, 0.025 ◦/h,
0.025 ◦/h, 0, 0, 0, 0, 0) and Ri = diag(0.1 m/s, 0.1 m/s) according to the parameters of INS and DVL.

In this experiment, the system is first tested in anchorage for about 50 min, then the ship starts to
move. The real velocities of the ship are shown in Figure 7 provided by the commercial INS/GPS
integrated navigation system. The collected data is processed using MATLAB (R2014a by MathWorks,
Inc., Natick, MA, USA) on a computer with 2.50 GHz Intel Core i5-7300HQ CPU and 8 GB memory.
The total computational time of KF, VBKF, HKF, MCKF, and VBMCKF are 0.1900 s, 0.4800 s, 0.2640 s,
0.2310 s, and 0.6340 s, respectively. The position and velocity errors of different filters are given in
Figures 8 and 9. The differences between attitude and heading errors are quite similar so we omit them.0 30 60 90−10−505

Time (minute)

V
e
lo
c
it
y
(m

s
−
1
)

East velocityNorth velocity
Figure 7. Real velocities of this field experiment.
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It can be seen from Figures 8 and 9 that when the motion state changes sharply, the proposed
VBMCKF algorithm has the smallest estimation errors with slightly increased computational time as
compared with other estimation methods.
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Figure 8. Position errors of different filters.
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5. Conclusions

In this paper, a novel adaptive MCGF based on VB approximation is proposed. The MCC is used to
reduce the effect of non-Gaussian measurement noise and outliers, while we use VB to estimate the
unknown measurement noise covariance. Experimental results based on simulation examples and
real data show that the proposed algorithm has better estimation accuracy than related robust and
adaptive filters.
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