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Prototype-based methods in deep learning offer interpretable explanations for decisions by 
comparing inputs to typical representatives in the data. This study explores the adaptation of 
SESM, a self-attention-based prototype method successful in electrocardiogram (ECG) tasks, for 
electroencephalogram (EEG) signals. The architecture is evaluated on sleep stage classification, 
exploring its efficacy in predicting stages with single-channel EEG. The model achieves comparable 
test accuracy compared to EEGNet, a state-of-the-art black-box architecture for EEG classification. The 
generated prototypical components are exaimed qualitatively and using the area over the perterbation 
curve (AOPC) indicate some alignment with expected bio-markers for different sleep stages such as 
alpha spindles and slow waves in non-REM sleep, but the results are severely limited by the model’s 
ability to only extract and present information in the time-domain. Ablation studies are used to 
explore the impact of kernel size, number of heads, and diversity threshold on model performance and 
explainability. This study represents the first application of a self-attention based prototype method to 
EEG data and provides a step forward in explainable AI for EEG data analysis.

Electroencephalogram (EEG) is a non-invasive method for recording brain activity, capturing electrical signals 
through electrodes placed on the skull and is a popular diagnostic tool for neuro-psychological disorders1. 
Extracting useful features from EEG signals is particularly difficult because it is often required to analyse them 
from time, frequency, and spatial domains2. In addition, EEG signals contain a lot of noise causing interference. 
This complexity makes the analysis of EEG more involved than other bio-signal data such as electrocardiogram 
(ECG).

Deep learning models deployed in sensitive domains such as healthcare require transparency in their 
decision-making so that clinicians can reason the predictions generated by these models3,4. The field of 
explainable artificial intelligence (XAI) attempts to provide techniques for facilitating this transparency5. An 
explanation in XAI is a comprehensible interface between a decision maker (e.g. model) and a human6. There is 
a limited XAI research for EEG analysis incorporating explainability techniques of some kind7.

There is a distinction between post-hoc explainability, methods used to generate explanations for a model 
after it has been trained, and intrinsic methods of explainability; that is, creating white-box models that offer 
direct human-interpretable explanations for their predictions. The most common methods used on deep 
learning models for EEG involve saliency maps. These are visual representations that highlight the most 
important or relevant features in given input data, offering insights into the contribution of individual elements 
to a model’s output7,8. Specific methods or variations such as layer-wise relevance propagation (LRP)9 and class-
activation maps (CAM)10 have also been successfully applied to EEG11,12. It has been shown that DeepLift13 best 
incorporates the temporal, spectral, and spatial domains compared to other visualisation-based methods, and 
has been used to provide explainations for state-of-the-art models such as EEGNet7,14.

Perturbation-based approaches are another post-hoc technique used to generate neural network explanations 
which involve making small changes or perturbations to the input data and observing how these changes affect 
the model’s predictions15. Some applications of these methods are able to make controlled perturbations of the 
both spectral and spatial features for a more useful application to EEG, though the explanations generated are 
global and not tied to a specific input16,17.
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Although the post-hoc methods above provide a level of interpretability and transparency to deep learning 
architectures, these methods often come with inherent drawbacks. Notably, saliency, which is among the 
most common method for EEG deep learning models, suffers from a lack of model and input sensitivity for 
explanations in the temporal, spectral, and frequency domains7,17. Likewise, perturbation methods can generate 
out-of-distribution samples that are not reflective of what a classifier has truly learned18. Instead, there has been 
an increased focus on creating intrinsically explainable or white-box models18. These methods use the same 
mechanism for predictions and explanation generation, thus making the decision process transparent to even 
non-data experts.

Of these intrinsically explainable methods, constrained feature extraction has shown successful applications 
to electroencephalogram data. These methods replace the initial convolutional layers with ones that have fewer 
parameters and possess an interpretable meaning, such as Morlet wavelet-based kernel2 and sinc-convolution 
layers19–21. However, by design, these methods are restricted in the features they can learn from the data2,22.

The second major group of intrinsically explainable models are concept-based models. Concept-based models 
attempt to learn semantically distinct concepts from data which are then used for prediction generation and 
explanation. Prototype-based methods are a subclass of this group that build semantically unique concepts by 
matching them to concrete samples in the data23. Various approaches have been introduced to apply prototype-
based methods to time-series data such as ProSeNet and SCNPRO

22,24,25. The self-explaining selective model 
(SESM), based on the self-explaining neural network (SENN), used a multi-head self-attention mechanism to 
select prototypical parts of sequences that were not necessarily continuous26,27. In contrast to other prototype-
based time series approaches, the prototypes were sampled from the original data and did not require projection 
back onto the original space which increased interpretability28,29. The SESM model demonstrated a high level 
of accuracy for electrocardiogram tasks, outperforming ProSeNet and black-box architectures. Importantly, the 
interpretability scores for SESM were higher than other approaches. This success in ECG tasks highlights it’s 
potential for application to EEG analysis.

Although, due to the longer segment length and more varied features of EEG compared to ECG, this success in 
ECG may not necessarily translate to EEG. The current work aims to assess the validity of the SESM architecture 
on EEG data for a sleep stage classification, assessing the impact on classification accuracy and analysing the 
spectral and temporal features of the generated prototypes as a preliminary assessment of their interpretability. 
To the authors’ knowledge, this work represents the first application of a self-attention prototype-based method 
to EEG data and contributes to discussions of its viability in the domain.

Methodology
Problem formulation
Sleep stage classification using EEG aims to automatically categorise distinct stages of sleep based on electrical 
impulses detected by electrodes located on the surface of the scalp. Accurate classification of sleep stages, including 
wakefulness, NREM (non-rapid eye movement) sleep, and REM (rapid eye movement) sleep, is fundamental for 
diagnosing sleep disorders and comprehending the intricate patterns of sleep. Sleep state classification is a well 
researched application of EEG analysis which makes it a useful baseline for assessing the viability of SESM. The 
challenges in sleep stage classification using EEG include inter-subject variability and noise in EEG recordings, 
necessitating the development of robust and generalisable feature extraction.

Various biomarkers across the temporal and frequency domains play a pivotal role in sleep stage classification. 
These include characteristics such as sleep spindles, K-complexes, slow-wave activity, power spectral density, 
and frequency bands (e.g., delta, theta, alpha, beta, and gamma)30–33. Figure 1 visualises typical examples of these 
wave patterns found during the various stages of normal sleep34, Figure 10.2. Sleep stage classification using EEG 
typically involves the utilisation of multiple EEG channels to capture a comprehensive view of brain activity, 
also known as spatial features30. However, there has been success in performing sleep stage analysis while only 
considering single-channel EEG from the Fpz-Cz or Pz-Oz electrodes35.

Figure 1.  Example EEG waveforms found in various stages of normal sleep. Adapted from34, Figure 10.2.
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For the current research, these bio-markers are considered the target concepts. The goal is to encode the raw 
EEG signal from a single channel and produce an output that automatically identifies sub-sections of the signal 
with these concepts present. These concepts are used as prototypes for the downstream sleep stage classification 
task. The final model represents a method that can learn intrinsically explainable concepts from the data and 
could be generalised to inter-subject and intra-subject scenarios or applied to different EEG-related classification 
tasks. The current work considers single-channel EEG data as it is the most analogous to single-channel ECG 
data discussed in previous works. However, as discussed, a single-channel EEG presents a greater challenge 
for analysis, even with spatial information disregarded, due to the greater signal-to-noise ratio and variety of 
features across the time and frequency domains.

Network architecture
The proposed solution adapts the SESM architecture for use on single-channel EEG data26. Figure 2 shows the 
architecture of this solution.

First, the single-channel EEG time series is embedded into a latent dembed-dimensional space through the 
embedder (E ) a 1D convolutional layer. The components of the embedded representation X are used as the 
smallest sequence units for the following layers.

As with the SESM architecture, there are three major components. The conceptizer C  first contains the multi-
headed self-attention mechanism which generates a binary vector sh of selective actions from the embedded 
EEG signal for every hth head for all H number of heads. The vector sh is the same length as the sequence length 

N. The equation for the attention mechanism is sh = Gumbel-Sigmoid
(
QKTW√

dh

)
.

Where Q,K ∈ RNxH  are matrices queries and keys, and W ∈ RNx1 is a matrix to ensure pair-wise attentions 
in sh are longer element-wise attentions once binarised. Following this, the selective actions sh are applied to the 
embedded signal X and encoded into further hidden representations through three sequential blocks of 1-D CNN 
layers with batch normalisation and 1-D max pooling. The result is H matrices ch ∈ RBxm representing concepts 
where B is the batch size, or number of samples, and m is the arbitrary number of hidden representations. In 
the proposed design, because the embedded signal aggregates all channels, concepts selected by the heads also 
represent interactions between all channels. Hence, it is expected that a greater number of heads will be required 
to fully capture the semantic information.

The paramaterizer P  consists of three sequential blocks of 1-D CNN layers with batch normalisation and 
1-D max pooling followed by a fully connected layer activated by a soft-max function which projects the CNN 
representations to the number of prototypical parts. In essence, this network acts as a task-agnostic model for 
predicting “relevance weights” for each prototypical part. The result is a H-dimensional vector P of scalars where 
each ph ∈ P  is the “relevance” weight for the hth head.

Finally, the aggregator G  combines the outputs of C  and P  by first applying a fully connected layer to the 
output of C  where the number of output nodes is the number of classes in the upstream task. Next the “relevance 
weights” from P  are applied to the output through matrix multiplication.

In summary, E  embeds a single-channel EEG signal into a latent representation X. C (X) outputs H concept 
matrices for X, and P(X) outputs “relevance weights” X. G  combines these scores and outputs class-wise 
activations for a given classification task. This process is summarised in Equation 1 where x is a single-channel 
EEG signal and H represents the number of heads, or equivalently the number of concepts.

Figure 2.  Proposed model architecture for self-selecting prototypical-parts model for EEG based off26.
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The learning criteria aim to balance the accuracy of the predictions and the interpretability of the prototypes. 
Unique to SESM however is the way the cost-function is coupled to the outputs of the three major architectural 
components: The cross-entropy loss is used to capture classification accuracy, a diversity term is leveraged to 
ensure prototypical parts are sufficiently different and select different parts of the input sequence, a stability 
regularisation term guides each head of the conceptizer to capture one and only one concept by minimising the 
cosine distance between the encoded concepts from the same head, and an additional locality term prevents the 
attention heads from selecting long sequences in the conceptizer.

The exact formulations of the diversity (Ld), stability (Ls), and locality (Ll) terms are given in equations below.
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where dmin in Ld is a threshold value, B in Ls is the batch size and dcos(chi , chj ) is the cosine similarity. Hence the 
total loss is defined as in equation 3, where λd, λs, and λl are hyperparameter weight values for diversity, stability, 
and locality respectively.

	 L = Lcross-entropy + λdLd + λsLs + λlLl� (3)

Of note however is that there must be a two-stage training process, one to train E , and another where the weights 
of the E  are fixed and the remaining model is trained. This is to ensure the embedded representations remain 
consistent through training while the prototypical concepts are being learnt.

Table 1 shows the layer details for the entire model, including output shape and number of parameters. Note that 
the input mask to remove zero-valued inputs present in the original SESM implementation for ECG has not been 
included as it is not relevant for EEG data.

Dataset
The dataset used in the current research is the Sleep Cassette Data from the Sleep EDF Database36 sourced from 
PhysioNet37. The data is available through the following link ​h​t​t​p​s​:​/​/​w​w​w​.​p​h​y​s​i​o​n​e​t​.​o​r​g​/​c​o​n​t​e​n​t​/​s​l​e​e​p​-​e​d​f​/​1​.​0​.​0​
/​​​​​. The data consists of overnight polysomnographic recordings obtained from cassette-based sleep studies. In the 
current research, only the EEG data from the Fpz-Cz channel is used.

Note that although an expanded version of the dataset was introduced, the current research used the original 
version for simplicity and ease of iteration. The data comprises of 39 recordings from 20 healthy participants 
during 24 hours in their normal daily life sampled at 100 Hz. Due to the high number of awake hours in the 
original recordings, only wake periods of 30 minutes before and after the sleep periods were considered.

The dataset was organised into 30-second epochs, maintaining the 100 Hz resolution as in similar studies38. 
Additionally, data from underrepresented classes was over-sampled to reduce class bias during training. In all 
other regards, the signal was unmodified from its raw state. The data labels consist of 5 classes: Awake (W), 
non-REM sleep stage 1 (N1), non-REM sleep stage 2 (N2), non-REM sleep stage 3 (N3), and REM (rapid eye 
movement) sleep.

Experiments
EEG-SESM was implemented in Python using PyTorch as the framework. The code for the implementation can 
be found at https://github.com/BrentonAD/EEG-SESM. EEG-SESM was trained on a virtual machine running 
Windows 10 with an Nvidia GeForce GTX 1080Ti 11GB GPU, an Intel Xeon CPU, and 128GB of shared random 
access memory. Additionally, a Tensorflow implementation of EEGNet14 was used for a model comparison. This 
model was trained on the same dataset on an Apple Macbook Pro with an M1 Pro SoC with 32GB of RAM and 
Metal GPU acceleration.

In all experiments, dembed and dhidden were fixed to 64, the dropout before the final layer of P  and optimiser 
initial learning rate were set at 0.2 and 1e−3 respectively. The Adam optimiser was used in the training of the 
models with no weight decay, β1 = 0.9 and β2 = 0.99, and a scheduled learning rate decrease of 95% per epoch 
after the first five epochs39. Training was terminated according to an early stopping policy which was executed 
when the total loss 3 remained consistent for 15 consecutive epochs.

To accommodate the longer sequence length, lower sampling rate, and other differences in EEG signals 
hyperparameters were optimised before model evaluation. The optimal hyperparameters were derived through 
a non-exhaustive search maximising accuracy on the validation dataset. Some of these optimal hyperparameters 
include - number of heads (H): 5, Embedded dimension (dembed): 64, convolution Kernel size (k): 40, Minimum 
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threshold (dmin) for diversity: 9, weight factor for diversity (λd)/stability (λs)/locality (λs): 1.0/0.2/0.2, and initial 
learning rate: 1e−3.

To provide a reasonable baseline, the experiments are compared with EEGNet14, a state-of-the-art deep 
learning model for EEG data analysis. Numerous iterations of the EEGNet training were run to tune the 
hyperparameters. The best results were found using a dropout rate of 0.5, kernel Length of 64, and 64 temporal 
and pointwise filters. The EEGNet model was trained with an early termination policy monitoring the validation 
loss, with a patience of 20 and starting from epoch 50.

The primary goal of the current work is not to assess the cross-subject generalisability of the model 
performance however to minimise the influence of any inherent bias in the data, the model was trained and 
tested on three random splits of the data, each with 15% of the subjects held out for testing, 10% of the total 
for validation and hyperparameter selection, and remaining data used for model training. The final results are 
given both individually for each test split and averaged across all test splits. Importantly, no data used to train the 
model or determine it’s hyperparameters was used to evaluate the models performance. The implementation of 
EEGNet was trained and evaluated on the same data. Visualisation of the prototypical parts was performed using 
a randomly selected test subject from one of the splits mentioned above.

In addition, three ablation studies were performed to evaluate the impact of varying the kernel size, number 
of heads, and diversity threshold on performance and explainability. In these studies only split 1 was used. 
For the kernel size and number of heads studies, a diversity threshold (dmin) of 2 was used. For the diversity 
threshold study the number of heads was set to 4.

Effects of kernel size, number of heads and diversity thresholds were observed following below steps: 

	1.	� To assess the influence of kernel size (k) on the predictive power and explainability the model was trained 
with kernel sizes of 10, 20, 30, 40, 50, and 60,

	2.	� The number of heads (H) was varied from 4 to 9 to assess the impact on the accuracy and explainability of 
the model, and

	3.	� The diversity threshold dmin controls the minimum L2 distance two selective actions (such as, the output of 
each head) are permitted to be. A distance greater than dmin will result in a diversity loss of 0. The effect of 
dmin on the performance of the model was assessed for the values 2, 5, 7, 9, 10, and 11.Similar to previous 
studies, the area over perturbation curve (AOPC) was used for objective evaluation of the model explainabil-
ity26. In the current work, this is defined in equation 4

Component Layer type Output shape Kernel shape Number of parameters

Embedder

Conv1d [16, 64, 3000] [40] 2,624

BatchNorm1d [16, 64, 3000] – 128

Swish [16, 64, 3000] – –

Conceptizer

Linear [16, 3000, 60] – 3,900

Linear [16, 3000, 60] – 3,900

Linear [16, 3000, 5] – 325

GumbelSigmoid [16, 5, 3000, 1] – –

ConvNormPool [80, 64, 1500] [40] –

Conv1d [80, 64, 2961] [40] 163,904

BatchNorm1d [80, 64, 2961] – 128

Parameterizer

Conv1d [16, 64, 2961] [40] 163,904

BatchNorm1d [16, 64, 2961] – 128

Swish [16, 64, 2961] – –

Conv1d [16, 64, 2961] [40] 163,904

BatchNorm1d [16, 64, 2961] – 128

Swish [16, 64, 2961] – –

Conv1d [16, 64, 2961] [40] 163,904

BatchNorm1d [16, 64, 2961] – 128

Swish [16, 64, 2961] – –

Aggregator

BatchNorm1d [80, 64] – 128

Swish [80, 64] – –

Linear [80, 5] – 325

Total params: 1,980,167

Trainable params: 1,980,167

Non-trainable params: 0

Table 1.  Layer details of the model.
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AOPC =

1

H − 1

〈
H−1∑
h=1

f (x)− f (x\1,..,h)

〉
� (4)

where H is the number of heads, f(x) is the probability of predicting the true label, f (x\1,..,h) is the probability 
of predicting the true label excluding the top h heads sorted by relevance, and ⟨·⟩ is the average over all the 
samples. The maximum value of AOPC is 1, a higher AOPC suggests that the model changes its prediction more 
significantly when heads are removed, indicating that the prototypes contributing most to the final prediction 
are more significant and have less redundancy.

Results
Model performance
The mean and standard deviation test accuracy, precision, and recall across all three splits for both models are 
shown in Table 2. Overall EEG-SESM demonstrated a comparable standard deviation of metrics across the 
test data splits. The reported accuracy and precision for EEG-SESM were much greater than EEGNet, though 
EEGNet reported a slightly higher recall.

The mean class-wise accuracies across all three splits are given in Table 3. Both classes reported the highest 
accuracy for the N3 class, however EEG-SESM showed a much higher variance for this class. EEG-SESM 
seemingly outperformed EEGNet for W, N2 and REM, displaying much higher averages with lower standard 
deviations. Conversely, EEGNet was stronger at predicting N1 and N3. The average accuracy for the N1 class 
with EEG-SESM appears notably low, even compared to the results from EEGNet. Figure 3a shows the confusion 
matrix on the test data for EEG-SESM, which suggests that a majority of the N1 samples were misclassified as W 
or REM. Other classes do not exhibit a miss-classification bias as strong as this. The W class showed the highest 
proportion of false positives. The confusion matrix for EEGNet, shown in Fig. 3b demonstrates a similar pattern 
of N1 miss-classifying N1 as W or REM.

Figure 3.  Confusion matrices on test subjects for all three data splits for a) EEG-SESM and b) EEGNet models.

 

Model W N1 N2 N3 REM

EEG-SESM 0.738 ± 0.092 0.286 ± 0.019) 0.851 ± 0.027 0.863 ± 0.111 0.724 ±0.091

EEGNet 0.670 ± 0.138 0.570 ± 0.045 0.711 ± 0.088 0.990 ± 0.008 0.695 ± 0.111

Table 3.  Mean and standard deviation of class-wise accuracies for EEG-SESM and EEGNet across all three 
data splits. Significant values are in bold.

 

Model Accuracy Precision Recall

EEG-SESM 0.764 ± 0.014 0.701 ± 0.013 0.693 ± 0.019

EEGNet 0.716 ± 0.007 0.686 ± 0.023 0.727 ± 0.019

Table 2.  Mean and standard deviation of accuracy, precision, and recall across all three hold-out test dataset 
for EEG-SESM and EEGNet. Significant values are in bold.
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To help interpret the results in a more rigorous way, the distributions shown in Tables 2 and 3 were compared 
using a two-tailed T-test between EEG-SESM and EEGNet. The p-values obtained from these comparisons were 
then corrected for multiple tests using the Benjamini-Hochberg false discovery rate procedure40. The corrected 
two-tailed t-test p-values accuracy, precision, and recall were 0.019, 0.365, 0.138 respectively. Similarly, the 
corrected values for the W, N1, N2, N3, and REM class-wise accuracies were 0.646, 0.003, 0.147, 0.203, 0.737.

Hence, any apparent differences in precision, recall, and most class-wise accuracies are not evidence that the 
evaluation results from the two models are statistically sampled from different distributions (to a significance 
factor of 5%). The only statistically significant results were that of the mean accuracy and N2 class-wise accuracy 
results, from SESM outperformed EEGNet.

Model explainability
The AOPC scores calculated for each of the 3 data splits are 0.66, 0.61 and 0.70 respectively. The highest observed 
AOPC score was demonstrated in split 3, which indicates that the most relevant heads share great significance 
to the model’s prediction with minimal redundancy. The results are consistent across data splits, with a standard 
devition of 0.043.

In addition to the use of AOPC for an objective measure of explainability, correctly predicted test samples 
from subject 2 were selected at random. Figure 4 visualises two randomly sampled instances of the W class, 
selecting the top three most relevant heads. In both samples, heads 1, 3, and 4 were determined to be the most 
relevant. In Fig. 4a heads 1 and 3 showed the highest relevance, with strong confidence for the W class. Head 1 
was the most relevant selecting short sequences of variability, with slight overlap with the sections selected by 
head 3. Head three selected segments of the signal with high amplitude change with high-frequency variability. 
Interestingly, head 4 selected different sections of the sample compared to heads 1 and 3 predicting REM as the 

Figure 4.  Visualisation of two randomly selected samples from subject 3 for the W class, overlaid with top 3 
relevant heads including (a) sample 1044 and (b) sample 1978.
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most likely class. However, the confidence for the REM class (41.26%) is lower than the confidence for heads 1 
and 3 for the W class (94.03% and 99.54% respectively). In Fig. 4b all three of the most relevant heads predicted 
the W class as the most prominent class. Head 3 selected sections of signal with high amplitude variability 
and presented the highest confidence for the W class, but had the lowest relevance. In contrast, head 1 showed 
the highest relevance but the lowest confidence. Head one generated fewer prototypical parts, and overlapped 
significantly with head 3 as in Fig. 4a. Head 4 selected similar spikes in amplitude for both samples, yet attributed 
them to REM in the first sample while attributing them to the W class in the second. There was minimal overlap 
between the prototypical parts generated from head 4 and those generated by heads 1 and 3.

Figure 3a indicates that N1 samples were largely misclassified as either W, N2, or REM, specifically in subject 
3 N1 samples were largely misclassified as N2 or REM. To examine the underlying mechanism behind this 
miss-classification, Fig. 5 visualises a randomly selected sample where N1 sleep was incorrectly classified as 
W. In this example, the two most relevant heads (1 and 3) predicted N2 and REM sleep with low confidence. 
Although head 2 exhibited relatively low relevance, it displayed strong confidence in predicting the W class 
with prototypical W segments. For instance, a prototypical segment generated by 2 illustrates a long segment 
of significant amplitude variation with a low-frequency component, characteristic of the W class. This sample 
demonstrates how, despite head 2’s lower relevance weight, its high confidence in the W class led to an overall 
prediction of W. It suggests that a prototypical segment with sufficiently high confidence for a specific class can 
override concepts deemed more relevant by other heads. Empirically, however, this phenomenon is not the most 
likely cause of the miss-classification of N1 sleep. Table 4 explores samples where the class was miss-classified as 
not being N1 and shows the average relevance weights for heads that incorrectly predicted each class as the most 
prominent compared to heads that correctly predicted N1 in these samples which were incorrectly classified. As 
shown, the average relevance weights for heads that predicted the wrong class are statistically higher than those 
that predicted N1. This suggests that the model, in general, makes an incorrect prediction of N1 because heads 
that predict the wrong class have a misinformed higher relevance than heads that correctly guessed N1 for that 
sample.

Figure 6 visualises a randomly selected correctly guessed sample from the N2 class, comparing the expected 
slow-wave and spindle features with the selections from the top three most relevant heads. In this instance, all 
three heads predicted N2 as the primary class, albeit with low confidence percentages ranging from 60.11 to 
69.25%. Heads 1 and 3 shared considerable overlap in their selections, while head 4 predominantly chose distinct 
segments. In combination, these heads successfully identified two sleep spindles in the signal, along with short 

Misclassified as Number of samples Mean relevance weights of misclassifying heads Mean relevance weights of N1 classifying heads T-test (BH corrected p-value)

W 16 1.467 0.517 4.088 (1.78×10−4)

N2 109 1.457 0.439 10.255 (2.84×10−21)

N3 7 1.477 0.438 2.311 (3.29×10−2)

REM 66 1.749 0.495 10.495 (2.84×10−21)

Table 4.  Mean relevance weights for heads which provided the incorrect class prediction as the most 
prominent compared to heads which provided the correct N1 prediction in all samples where N1 was 
misclassified. The p-values have been corrected for multiple tests using the Benjamini-Hochberg false 
discovery rate procedure.  Significant values are in bold.

 

Figure 5.  Visualisation of a randomly selected sample where N1 sleep was incorrectly classified as W, overlaid 
with top 2 relevant heads and head with highest confidence for W class.

 

Scientific Reports |        (2024) 14:27612 8| https://doi.org/10.1038/s41598-024-79139-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


sections depicting slow waves. Irrelevant segments selected by all heads were also present in the middle of the 
sample. For this portion of the signal, the prototypical parts identified by the heads did not align with sleep 
spindles or slow waves. This example demonstrates that although the expected features are correctly identified 
and attributed to the N2 class, the model does not always provide the most concise explanation.

Ablation studies
Below are the findings while ablation studies were carried out to observe the effects of kernel size, the number 
of heads and diversity thresholds: 

	1.	� Table 7a indicate that the accuracy and f1-score increases as the kernel size increases to 30, and steadily 
declines for k > 30. Similarly, the AOPC increases dramatically until k = 40 where it decreases and remains 
consistent.

	2.	� Figure 7b shows the accuracy and AOPC as the number of heads increases for all three of the hold-out test 
subjects. The accuracy did not change as H increased from 4 to 5, however decreased for H > 5, where the 
number of heads appeared to have little impact on the test accuracy of the model but the F1-score gradually 
increased.

	3.	� Figure 7c shows the performance Accuracy and AOPC across all hold-out test subjects as the diversity 
threshold dmin increases. The value of dmin has no noticeable effect on the accuracy on the test dataset, apart 
from a slight decrease for dmin = 5. However, an increase in dmin while keeping the number of heads constant 
demonstrated a steady increase in AOPC until dmin = 9, after which the AOPC decreased dramatically and 
stayed relatively low.

Discussion
EEG-SESM performed comparably EEGNet for all three splits, indicating the model has similar predictive 
power than this implementation of EEGNet. The mean precision and recall across the three data splits for EEG-
SESM were not significantly different to EEGNet, however EEG-SESM did demonstrate a statistically significant 
improvement of mean accuracy across the data splits. These performance results provide evidence that a 
direct application of SESM, without future modifications, performs similar to EEGNet in this context. Future 
research is suggested to incrementally improve the performance through modifications discussed in more detail 
throughout this section.

The standard deviation of the accuracy for EEG-SESM was higher than that of EEGNet, which may suggest 
some difficulties generalising across subjects compared to EEGNet. Variation in results across subjects is a 
known issue faced by all EEG studies and is magnified by the use of unseen hold-out subjects in test data41. 
Previous studies have introduced transfer methods for CNN-based architectures used for EEG analysis such as a 
stage-training strategy42. This has been shown to increase the overall accuracy of EEGNet and may be employed 
in the embedder, conceptizer, and parameterizer encoders of SESM for increased robustness to inter-subject 
variability. Another recent study using a different prototype-based method on EEG data includes a prototype 

Figure 6.  Visualisation of a randomly selected correctly predicted N2 class sample, overlaid with top 3 relevant 
heads (bottom row) compared to expected slow-wave and spindle features (top row).
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calibration step in which within-dataset cross-subject and cross-dataset samples are used during model testing 
to improve results28. This method is not as easily transferable to the self-attention-based prototype generation of 
SESM but may be explored in future work.

For both EEG-SESM and EEGNet, the highest accuracy was observed for the N3 class. Conversely, the 
lowest accuracy was recorded for N1 sleep, which often only involves subtle changes in EEG signals compared 
to restful wakefulness31. Additionally, N1 sleep is the most under-represented class in the dataset. In most cases 
it was observed that N1 often was misclassified by EEG-SESM as W, N2, or REM, indicating that the concepts 
learnt do not adequately distinguish the subtle features of N1 sleep. This pattern of N1-REM and N1-N2 miss-
classification is common among other sleep classification methods based on single-channel EEG data43,44. The 
prototypical parts offered by the self-attention heads provide insight into the mechanism for the low N1 accuracy 
for EEG-SESM. In most cases, an incorrect prediction for N1 was because heads that incorrectly predicted the 
wrong class were of high relevance compared to the heads that correctly predicted N1. A miss-classification due 
to inappropriate relevance for a sample is likely to be influenced by the paramaterizer network which outputs the 
relevance weights based on the embedded signal. This suggests that improving the embedder or paramterizer 
encoders may improve performance.

The motivation for EEG-SESM is to provide a model architecture that is task-independent and can learn 
concepts regardless of context, and this is the reason for comparing it with a comparably generic EEG-based 
model such as EEGNet. Previous models specifically designed for sleep stage classification have been presented 
in previous studies which have performed better than EEG-SESM in their experiments43,44. When compared to 
other studies, EEG-SESM performs most closely with other 1D-CNN-based models, exhibiting a slightly better 
accuracy on the SleepEDF dataset in one instance45. A model that uses a similar attention-based mechanism, 
albeit for temporary context encoding rather than prototypical-part generation, performed better on the 
SleepEDF dataset46. One critical difference between this architecture and EEG-SESM is the process of feature 
extraction or embedding. In cases like this where spectral features were explicitly extracted through multi-scale 
or multi-resolution CNN layers the accuracy was higher than EEG-SESM44,46. Important to note though is 
that the benefit SESM has over these black-box approaches is its intrinsic explainability through the generated 
prototypical parts. Similar approaches to include multi-scale CNN layers have been included in other prototype-
based networks which suggests that the addition of this mechanism to SESM in the embedder or paramterizer 
may dramatically improve the performance25,29. From the class-wise accuracy results and visual explainability 
analysis, the integration of spectral feature extraction is a highly recommended avenue for future iterations of 
SESM to be applied to EEG.

The AOPC was relatively consistent across splits and was higher than observed when the SESM architecture 
was applied to ECG data26. There also appears to be no strong correlation between the accuracy of the model and 
AOPC, that is a change in redundancy amongst the heads does not affect the accuracy of the final prediction, 
providing further evidence that redundant heads do not impact predictive power26. Overall the prototypical 
explanations typically generate a lot of noise by highlighting seemingly irrelevant segments of the signal, limiting 
their usefulness in the current context. The best representation of an explanation generated by EEG-SESM was 
shown for the W class, which identified both a high-amplitude peak and low-amplitude mixed-frequency activity 
from three separate heads. Prototypical parts from heads appeared to overlap, however, suggesting that although 
the AOPC is high there still exists redundancy between the heads. Similar useful explanations were common 
for N2 class predictions, particularly for alpha-spindles which are easily identifiable in the time domain. The 
presence and apparent detection rate of these time domain characteristic features are may be a reason why the 
N2 class-wise accuracy was statistically significantly higher for EEG-SESM compared to EEGNet, though future 
research is required explore this conjecture quantitatively. Features that contain more frequency-rich information 
were selected with less accuracy, such as slow waves in N2 and N3 sleep. The inability of the model to identify 
spectral-based bio-markers may explain the lower accuracy for the N1 and N3 classes, as the EEG features for 
these classes are strongly related to phenomenon in the frequency domain31. To the author’s knowledge, this 
prototype generation and analysis represents the first examination of prototypes sampled from data in real-time 

Figure 7.  Accuracy (blue), F1-Score (red), and AOPC (green) across all hold-out test subjects for different 
ablation studies. Like accuracy and the f1-score, the maximum value for AOPC is 1, a higher value represents 
less redundancy in explanations.
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aligning to EEG biomarkers. The exploration of other common sleep features identified in the AASM30 such as 
K-complexes and vertex sharp waves was not considered in the current study but may provide greater insight 
into the interpretation of the generated prototypical parts.

The findings of ablation studies can be summarised as follows:

•	 The results from the kernel size experiments provide evidence that a larger kernel size has an impact on the 
accuracy and redundancy of heads. A larger kernel size introduced more parameters and a model with higher 
accuracy and F1-score until k = 30. Traditionally, more parameters in a model increase the model’s capacity 
for prediction but increases the likelihood of overfitting. The decrease in accuracy and F1-score for k > 30 
may be due to this overfitting phenomenon and potentially could be improved by increased regularisation, 
such as increasing the dropout before the final layer. A larger kernel size also demonstrated a higher diversity 
loss throughout training. Previous studies using CNN layers for time-series EEG data typically recommend 
a kernel size half of the sampling rate to capture frequency information of above 2Hz14. With limited scope 
to extract all available features, this suggests one reason why a model trained with a smaller kernel size had 
increased redundancy. The choice of kernel size in the current study was modified as a hyper-parameter how-
ever there is some evidence to suggest that an appropriate kernel size can be learnt from the data47.

•	 In contrast to previous applications of the SESM architecture, the number of heads appeared to impact model 
accuracy26. As the number of heads increased from 5 to 6 the accuracy dropped dramatically. This provides 
new evidence that suggests additional heads may provide noise to the model predictions and decrease a 
model’s performance. With respect to the impact on AOPC, the addition of excessive prototypes contributing 
to redundancy in the explanations is a known occurrence in prototype-based models and may explain the 
overall decrease in AOPC as the number of heads increases48,49. The unique pattern of alternating AOPC, 
that is a slight increase followed by a sharp decrease after the addition of another head may imply an increase 
in redundancy for excessive heads until there is a sufficient number to represent a new concept. A higher 
number of heads may be harder for end users to interpret, given research has shown that people often prefer 
simple explanations even if a more complex explanation is more likely50,51. Further work is required to see if 
this preference is valid for the current context.

•	 In general, the accuracy and F1-score were not affected by changes to the diversity threshold, whereas the 
AOPC increased as dmin increased until dmin = 9. Small values for dmin resulted in a close to 0 diversity loss 
early in training, which interrupted minimisation for later epochs, resulting in less diverse heads. Converse-
ly, a high diversity threshold (dmin > 9) increases the minimum distance for heads in the final model and 
subsequently also results in less diverse heads. Hence, a maximum value for dmin should be chosen which 
reduces redundancy of attention heads (i.e. not too high) while maintaining the utility of the diversity loss 
throughout training (i.e. not too low). Further analysis is required to determine if the optimal value for dmin 
impacted by, or can be derived from, the number of heads or length of the signal.Limitations of our study can 
be summarised as follows:

•	
•	 One limitation of this model is the computational complexity involved in performing the multi-headed 

self-attention mechanism on a long time series. The final model took approximately 35 hours to train on the 
specified hardware until the early stopping policy was reached and required a larger GPU memory of at least 
8 GB. Previous studies have suggested potential lines of research for improving the efficiency of multi-head-
ed self-attention mechanisms such as utilising shared query and key projection50,52. Additionally, the SESM 
architecture may benefit from using shorter epochs, such as 10 seconds, if being used for sleep stage classifi-
cation in the future as with other studies33.

•	 The current iteration of EEG-SESM only supports single-channel data. The use of single-channel data for 
CNN-based or attention-based sleep stage classification is common43,44,46, though the AASM rules do provide 
guidelines for multiple channels30,31. The spatial information provided by the addition of multiple channels 
would be lost by the convolutional layers of the embedder. As such, the selective attention generated from the 
self-attention mechanism could not highlight sub-regions of channels independently. EEGNet14 introduced 
channel-independent processing through the use of depth-wise convolutions in temporal filters, it is possible 
a similar approach could be taken in the embedder and conceptizer of EEG-SESM to preserve channel inde-
pendence while generating the concepts.

•	 Unlike traditional prototype-based methods, the SESM architecture has no direct mechanism for domain 
experts to alter the learnt concepts to better match expected bio-markers. For example, ProSeNet24 provides 
the ability to manually refine prototypes after generation. SCNPRO

25 allows for the indirect manipulation of 
prototypes through the filter resolution.

•	 Finally, the interpretability of the prototypical part explanations was only investigated qualitatively and 
through the AOPC measurement. Different methods for evaluating an explanation of an AI prediction have 
been suggested, including human evaluation of interpretability via a selection of questionnaires provided to 
relevant domain experts to quantify a subjective measure of explainability5,24.

Conclusion
The current work represents the first comprehensive application of a self-attention based prototype method to 
EEG data, including the qualitative validation of concepts from the sleep stage classification perspective. The 
findings suggest that though a reasonable accuracy can be achieved for a subset of subjects, there is still inter-
subject variability in the results. Objective and qualitative analysis of the prototypical parts offer some insights 
into the explanations generated from the model, though the alignment to bio-markers is limited by the model’s 
ability to only express features in the time-domain. This limitation may prove the SESM unsuitable for sleep-
stage classification where the sleep phenomena demands analysis of EEG signal’s frequency components, though 
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the results are promising to explore applications to other EEG tasks. Based on the results from the current 
study, the authors recommend future work in adapting SESM to support the integration of spectral information 
when applying the model architecture EEG. The behaviour of SESM components such as kernel length, diversity 
threshold, and number of attention heads has also been studied as a useful guide to these future works.

Data availibility
The dataset used in the current research was obtained from PhysioNet37 in accordance with the Open Data 
Commons Attribution License (ODC-By) v1.0. The data is available through the following link ​h​t​t​p​s​:​/​/​w​w​w​.​p​h​
y​s​i​o​n​e​t​.​o​r​g​/​c​o​n​t​e​n​t​/​s​l​e​e​p​-​e​d​f​/​1​.​0​.​0​/​​​​​.​​
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