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Abstract: Akkermanisia muciniphila imparts important health benefits and is considered a next-
generation probiotic. It is imperative to understand the genomic diversity and metabolic potential
of the species for safer applications as probiotics. As it resides with both health-promoting and
pathogenic bacteria, understanding the evolutionary patterns are crucial, but this area remains largely
unexplored. Moreover, pan-genome has previously been established based on only a limited number
of strains and without careful strain selection. The pan-genomics have become very important for
understanding species diversity and evolution. In the current study, a systematic approach was used
to find a refined pan-genome profile of A. muciniphila by excluding too-diverse strains based on aver-
age nucleotide identity-based species demarcation. The strains were divided into four phylogroups
using a variety of clustering techniques. Horizontal gene transfer and recombination patterns were
also elucidated. Evolutionary patterns revealed that different phylogroups were expanding differ-
ently. Furthermore, a comparative evaluation of the metabolic potential of the pan-genome and its
subsections was performed. Lastly, the study combines functional annotation, persistent genome,
and essential genes to devise an approach to determine a minimal genome that can systematically
remove unwanted genes, including virulent factors. The selection of one strain to be used as a chassis
for the prediction of a reduced genome was very carefully performed by analyzing several genomic
parameters, including the number of unique genes and the resistance and pathogenic potential of the
strains. The strategy could be applied to other microbes, including human-associated microbiota,
towards a common goal of predicting a minimal or a reduced genome.

Keywords: comparative genomics; pan genomics; horizontal gene transfer; probiotics; evolution;
population structure; next-generation probiotics; minimal genome

1. Introduction

Akkermansia muciniphila is an anaerobic, Gram-negative bacterium having great
potential as a probiotic representing 3% of intestinal bacteria as found in adult feces [1].
It is specialized in utilizing gut mucins as nitrogen and carbon sources. Although the
bacterium is a strict anaerobic microbe, recently its ability to colonize near epithelial
cells—characterized by microaerophilic levels of oxygen—has been determined [2]. It
cannot synthesize the most abundant amino acid in its structure—threonine—and ob-
tains it externally by degrading mucin [3,4]. Mucin degradation drives the production
of short-chain fatty acids (SCFAs)—such as propionate, acetate, and butyrate—close to
the epithelial cells [5]. The spatial location of SCFAs’ production makes them readily
available to the host [6]. The production of SCFAs induces a signaling response in the
host via the Gpr43 receptor resulting in stimulation of immune response in monoassoci-
ated germ-free mice [6–8]. Furthermore, studies have suggested a positive association
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between A. muciniphila and intestinal health. Due to widespread health impacts, it is
considered a biomarker for a healthy intestine [9,10]. Among the mucosa-associated
microbes, A. muciniphila has been found to be comparatively higher in healthy controls
as compared to patients with irritable bowel disease [11]. The comparative scarcity of A.
muciniphila was found to be related to appendicitis [6], obesity [12], and autism [13].

The potential health benefits of probiotics have attracted much interest in engineering
more useful and robust microbes that can produce a variety of beneficial metabolites and fight
against pathogens [14,15]. The use of probiotics is an innovative and safer approach to treating
infectious diseases compared to antibiotics due to the risk of multi-drug resistance develop-
ment in pathogenic bacteria. Probiotics have different mechanisms to inhibit pathogens such
as secretion of antibacterial compounds, competition of space and nutrition, activation of the
immune response, and inhibition of virulent factors in pathogens [16–18]. Many pathogenic
bacteria develop biofilms that impart resistance against antibiotics, administration of engi-
neered probiotics has demonstrated a positive response to inhibit pathogen growth in such
circumstances [19,20]. The studies have suggested the effectiveness of engineered probiotics
against Salmonella and Vibrio cholera [21–23].

In a natural setting, microbes are subject to an adaptive evolution that is driven by
various forces such as horizontal gene transfer (HGT), gene duplication, and interaction
among communities [24,25]. If the newly acquired genes are advantageous for a favorable
trait, they undergo directional selection and sweep through the population over time [26].
The horizontally acquired genes are often organized into genomic islands. A. muciniphila
resides with a dense community of microbes driving several evolutionary forces to act
upon and result in increasing diversity. The gene gain/loss and genomic diversification in
strains have given rise to the concept of pan-genomics.

The pan-genome refers to the complete set of genes present in a collection of organ-
isms [27]. Pan-genome is divided into the core genome, accessory genome, and unique
genome. The core genome reflects the pool of genes shared by at least 99% of the strains.
Genes that are shared by more than 95% but less than 99% of the strains are called the
soft-core genome. In order to incorporate the effect of missing genomic information due
to partial genome assembly, the core and soft-core genomes have been combined and
collectively referred to as persistent/conservative genome: referred to genes shared by
more than 95% of the strains/genomes [28]. Persistent genes are the ones that have stably
established in the whole population and plausibly evolved to impart essential or important
functions in the population such as basic biology and phenotype of the species. Accessory
genes, on the other hand, are the collection of genes that are shared among two or more
genomes but less than the persistent genome threshold [29]. These genes potentially impart
unique characteristics to a strain and/or provide a niche-specific advantage to the host
strains. These genes may be acquired by horizontal gene transfer (HGT) and are maintained
by a subset of all the strains of a species. The accessory genome is often split into shell
genome (genes shared by more than 15% of the strains but less than 95% of the strains)
and cloud genome (genes shared by less than 15% of the strains but more than one strain).
Unique genes are those that are found in only a single genome/strain. These may be very
recently diverged or obtained via HGT. The survival of these genes in the population is
unpredictable. In this analysis, gene sets were structured as persistent genes, shell genes,
cloud genes, and unique genes.

Prediction of a stable genome with an enhanced expression of desired pathways is
critical in synthetic biology for the synthesis of robust next-generation probiotics. Intense
efforts are being made, currently, to synthesize bacteria with reduced stable genomes and
desired properties. Redundancy in natural organisms precludes a clear understanding
of the functional properties of an organism. Furthermore, reduced genomes have less
burden of extra genes and perform specific tasks more efficiently. The central objective
of synthetic biology is to determine a “minimal gene set”; however, the “minimal gene
set” is highly variable depending not only on the species but also on environmental
factors [30]. For a stable synthetic genome, the concept of the minimal genome is elusive



Microorganisms 2022, 10, 1350 3 of 23

and needs the incorporation of additional genes that provide additional benefits in
the context of varying environments. Several attempts have been made to delineate a
minimal genome; however, considering varying environmental pressures, the efforts
are unproductive for the long-term survival of the genome [31–33]. For the long-term
stability under fluctuating conditions, the concept of a “persistent genome” has been
introduced [33].

A second important factor in probiotic usage is the strain-specific probiotic po-
tential. It has previously been reported that the probiotic potential of an organism is
strain-specific and cannot be generalized to the whole species [34]. In this regard, a
separate comprehensive analysis of probiotic potential is necessary before human con-
sumption. More specifically, a strain-specific functional analysis focusing on antibiotic
resistance, pathogenicity determinant genes, and antimicrobial peptides is important.
It will be vital for the suitable selection of a chassis strain for the reduction of the
genome. Therefore, all strains were used to determine their resistance and pathogenic
potential for the selection of a chassis strain on which a strategy to predict a reduced
genome was applied.

Pan-genomics has diverse applications in microbial genomics such as taxonomy,
evolutionary dynamics, strain diversity, strain identification, and reverse vaccinology
among many others. However, the number and choice of strains strongly impact
the accuracy of the downstream analysis [35]. Previously, a very limited number
of strains of A. muciniphila have been used for the pan-genome analysis, which is
insufficient for a true representation of pan-genome. Furthermore, the evolutionary
dynamics of A. muciniphila has not been elucidated. We performed a comprehensive
analysis for the prediction of a reduced genome that can be used as a safe and robust
synthetic probiotic. Firstly, strains were selected for pan-genome analysis using average
nucleotide identity and gene presence-absence pattern. Secondly, functional annotation
of all the strains was performed to select a suitable strain that can act as a chassis for the
genome reduction strategy. Lastly, we combined functional annotation, pan-genomics,
and essentiality analysis to suggest a reduced genome as a safe and robust synthetic
probiotic. The strategy is also helpful for better understanding the molecular biology
of probiotics. It can be applied to other microbes as well that provide health benefits to
humans and animals.

2. Materials and Methods
2.1. Data Collection

All the available genomes of A. muciniphila were retrieved from the NCBI RefSeq database
using a custom bash script on 24 March 2021. The genomes were renamed from assembly
names to strain names for easy differentiation among different genomes.

2.2. Quality Assessment, Gene Annotation and Average Nucleotide Identity

The gene prediction was performed using Prodigal 2.6 [36] as implemented in Prokka
v1.12 [37]. The latter was also used to implement pipelines for the prediction of tRNA
and tmRNA, rRNA, and CRISPR sequences using Aragorn [38], Barrnap v0.8 (https://
github.com/tseemann/barrnap, accessed on 18 June 2017), and MinCED v0.4.0 (https:
//github.com/ctSkennerton/minced, accessed on 28 March 2019), respectively.

Average nucleotide identity (ANI) was performed to explore the taxonomic boundary
of the genomes using pyani v0.2.10 (https://github.com/widdowquinn/pyani accessed
on 4 June 2020) with BLASTP [39,40] as a similarity search program. The genomes were
also subjected to quality control as implemented in Panaroo [41]. As part of quality control,
Panaroo finds Mash distances between genomes using Mash [42]. It provides a genome-
scale dissimilarity score that can be converted to similarity scores equivalent to average
nucleotide identity.

https://github.com/tseemann/barrnap
https://github.com/tseemann/barrnap
https://github.com/ctSkennerton/minced
https://github.com/ctSkennerton/minced
https://github.com/widdowquinn/pyani
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2.3. Pan-Genome Estimation and Modeling

The pan-genome analysis was performed on both the total strains and shortlisted
strains. Shortlisting was performed based on average nucleotide identity, Mash distances,
and gene presence-absence. The pan-genome analysis was performed by Panaroo using
the sensitive algorithm of the software. The pan-genome was plotted using roary_plots.py
v0.1.0 (https://github.com/sanger-pathogens/Roary/blob/master/contrib/roary_plots/
roary_plots.py accessed on 28 June 2020). The pan-genome was modeled using PanGP [43].
The core genome was aligned using MAFFT—a multiple sequence alignment tool [44]. GC
content and gene length of the pan-genome were calculated using SeqKit [45].

The size and trajectory of the pan- and core genomes were estimated using models
described previously [27,35]. The pan-genome profile was modeled using a power-law
regression model based on Heap’s law [y = ApanxBpan + Cpan] as described by Tettelin
et al. [35] and implemented in PanGP [43]. Here, y represents the size of the pan-genome, x
represents the genome number, and Apan, Bpan, and Cpan are fitting parameters. Among
the fitting parameters, Bpan is equivalent to the parameter γ used by Tettelin et al. [35] in
estimating the open or closed nature of a pan-genome. The core genome modeling was
performed using exponential regression described by Tettelin et al. [35] and implemented
in PanGP [43].

2.4. Phylogenetic Analysis and Population Structure

The core genome multiple sequence alignment was used for the inference of phy-
logenetics using FastTree 2.1 [46] and RAxML [47]. GTR + CAT algorithm was used for
the construction of the phylogenetic tree. The tree was visualized using a Bioconductor
package ggtree [48].

The core genome SNPs were detected using Snippy (https://github.com/tseemann/
snippy accessed on 25 March 2021). The recombination sites were filtered using Gub-
bins [49]. The recombination filtered alignment was also used for the inference of phyloge-
netic trees using FastTree 2.1 [46]. GTR + CAT model was used for phylogenetic analysis.

The population structure was analyzed using PopPUNK [50]. The PopPUNK finds the
core genome distances and accessory genome distances to cluster genomes into distinct groups.

The correlation of the accessory genome was carried out by converting the gene
presence-absence profile to Jaccard distances using R [51]. The distance matrix was used
for principal component analysis and visualized to assess the clustering of genomes.

2.5. Functional Annotation and Enrichment Analysis

The pan, persistent, shell, cloud, and unique genes were annotated using KAAS [52]
and EggNOG mapper [53]. Antibiotic resistance genes and virulent factors were deter-
mined by ABRicate v0.8 (https://github.com/tseemann/abricate accessed on 16 July 2018).
Antimicrobial peptides and secondary metabolite biosynthesis gene clusters were deter-
mined via antiSMASH [54] and BAGEL4 [55]. To explore the statistical significance of the
functional annotation, clusterProfiler [56] was used. clusterProfiler requires an organism
database of the species in question; however, the database of A. muciniphila was missing.
It was developed using the Bioconductor package AnnotationForge [57]. Pan-genome
annotation by EggNOG mapper was used for building the database.

To assess the antibiotic resistance genes and virulent factors in the strains, ABRicate
was employed using VFDB and NCBI databases, respectively. A minimum coverage of 30%
and a minimum sequence identity of 75% were used for the analysis. Pathogenicity islands
were predicted in A. muciniphila ATCC BAA835 using IslandViewer 4 [58].

2.6. Evolutionary Analysis

To test whether different sections of the pan-genome are exhibiting different selection,
the non-synonymous to synonymous substitution ratio was calculated using Ka/Ks Calcu-
lator. Unique genes were excluded in this test, as the analysis requires genes from at least
two organisms.

https://github.com/sanger-pathogens/Roary/blob/master/contrib/roary_plots/roary_plots.py
https://github.com/sanger-pathogens/Roary/blob/master/contrib/roary_plots/roary_plots.py
https://github.com/tseemann/snippy
https://github.com/tseemann/snippy
https://github.com/tseemann/abricate
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Gubbins [49] was used to predict the high recombination rate segments. The recom-
bination events were visualized on the Phandango web server (accessed on 20 October
2020) [59]. To determine HGT genes, HGTector [60] was used using BLASTP as a similarity
search tool.

2.7. Essentiality Analysis

To determine the essentiality of the genes, all the genes in the pan-genome were
compared to the database of essential genes (DEG) [61]. Similarly, all the genes of A.
muciniphila ATCC BAA-835 were compared to DEG. The comparison was performed using
BLASTP for protein-coding genes and BLASTN for non-protein-coding genes. Sequence
identities of 30% and 70% were considered for BLASTP and BLASTN, respectively, with an
e-value of 10−3. One best hit was considered for each blast event.

3. Results
3.1. General Characteristics of the Genomes

A total of 149 A. muciniphila genomes available in RefSeq (on 24 March 2021) were
retrieved. The number of genes ranged from a minimum of 2140 in A. muciniphila BSH
01 to a maximum of 2738 in A. muciniphila BIOML A18 and a mean and median of 2353
and 2323, respectively. Concerning the number of contigs, 75% had less than or equal to
24 contigs. The highest contigs number observed was 237 in A. muciniphila BIOML A17.

In the 130-genome dataset, obtained after filtering out 19 genomes as discussed below,
the average gene content in genomes was 2335 and the persistent gene set (core + softcore)
was 1906. On average, 430 genes in addition to persistent genes are part of a single genome.
All the genomic features are available in Supplementary File S1.

3.2. Average Nucleotide Identity (ANI) and Mash Distances

Two related criteria were used to determine species boundaries—ANI and Mash
distances. A standard cut-off of >95% ANI was considered a species boundary [62–64].
Among the 149 strains, 19 strains showed less than 95% ANI. Mash distances were also
converted to similarity scores. The Mash distance scores showed the same trend. The
same 19 strains showed less than 95% Mash similarity. It was also observed that the gene
presence-absence of these 19 strains was too diverse from the remaining strains. This
observation supported the idea of excluding these 19 strains. The approach used to exclude
19 strains has been demonstrated in Figure 1.

3.3. Pan-Genomics: Open Pan-Genome, Large Core and Unique Gene Sets

Pan-genomics of the whole dataset was performed, followed by plotting the pan
genome matrix. The matrix disclosed the deviance in the presence-absence profile of
the dissimilar 19 strains from the rest of the matrix. The matrix supported the ANI and
Mash distances analysis that these 19 strains deviate enough from the other strains. Mak-
ing it plausible to remove them from the downstream analysis in the quest for a robust
pan-genome.

After the removal of the 19 strains, 130 strains remained. The dataset of 130 strains
was again used for the construction of the pan-genome using the same parameters. The
pan-genome of 130 strains lead to an increase of 351 core genes and a decrease of 139, 234,
and 1852 in the soft-core, shell, and cloud genes, respectively. The total number of genes
decreased from 9499 to 7625 in 130 strains as compared to 149 strains as demonstrated in
Figure 2. Excluded 19 genomes were impacting the pan-genome by decreasing the core
genome and incorporating a significant number of unique genes.
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Figure 1. Average nucleotide identity and gene presence-absence profile of initial dataset (149 strains)
and final dataset (130 strains). The strains that are too diverse to be incorporated in the final dataset are
encircled in both ANI heat map and gene presence-absence profile. (A) Average nucleotide identity
of 149 strains. A dark red rectangle encircles excluding 19 strains. (B) Average nucleotide identity of
the final dataset (130) strains. (C) Gene presence-absence profile of 149 strains. The dark red rectangle
encircles the gene presence-absence profile of the strains to be excluded. The high proportion of
genes in these strains is different from the rest of the strains. (D) The gene presence-absence profile of
130 strains that were used for downstream analysis after exclusion of confounding strains.

Heap’s law modeling of the gene presence-absence revealed that the A. muciniphila is
an open genome with a γ value of 0.49. It suggests that the species is not saturated and the
addition of new genomes into the dataset will result in an increase in the pan-genome (total
number of genes in the species). For γ < 0, the pan-genome of the dataset is considered
closed, and the total number of genes do not increase as more and more strains are added
to the species, whereas for γ > 0, the pan-genome is open, and its size increases as more and
more strains sequences are included in the species. Fitting parameters can be visualized in
Figure 3A.

3.4. Population Structure

Multiple methods were applied to elucidate the population structure. Average nu-
cleotide identity measurements were subjected to different machine learning models such
as hierarchical clustering, partitioning around medoids, and K-means clustering to under-
stand population structure. Total within the sum of square, gap distances, and average
silhouette width were employed to understand strain clustering. It was noticed that most
of the algorithms structured the strains into four clusters. Visual observation of the plots
for these algorithms suggested three or four as potential clusters. Silhouette width reflected
that three clusters solution leave one strain with negative silhouette width, indicating
inappropriate cluster assignment of that strain. The average silhouette width was found to
be 0.71. Four cluster solutions improved the average silhouette width to 0.73 and supported
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all the clusters without any negative value in the dataset. The visual representation of all
the machine learning models is represented in Figure 4.
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Furthermore, to resolve the ambiguity in the above methods, PopPUNK was employed
to calculate the core distance (α) and accessory distances (π). These α and π distances were
found to be scattered from 0–0.35 and 0–0.03, respectively. Although π were spread across
the range, α was clustered around 0, 0.008, 0.012, 0.017, and 0.0225. An optimum number
of clusters was found to be four. Trying to fit data into three clusters merged the central two
clusters, but five clusters resulted in an overlap of two clusters. Furthermore, the principal
component analysis (PCA) and tSNE (Figure S1) of the gene presence-absence profile pro-
duced four distinct clusters. It is important to note that gene presence-absence corresponds
to the ANI and PopPUNK. PopPUNK output and PCA plot are also demonstrated in
Figure 4.
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prediction using (I) within sum of square, (II) gap distances, and (III) silhouette distances. (IV–VI)
Kmeans clustering prediction using (IV) within sum of square, (V) gap distances, and (VI) silhouette
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distances (IX), and silhouette distances. (X) Silhouette plot for three clusters. (XI) Silhouette plot
for four clusters. (B) Dirichlet Process Gaussian Mixture Model-based clustering of strains into
phylogroups using core distances and accessory distances. (C) Principal component analysis of gene
presence-absence profile.

3.5. Phylogroups Are Expanding at Varying Rates

In order to estimate the gene expansion within clades, Heap’s law (power-law) and
exponential regression were applied to the pan- and core genomes of each phylogroup,
respectively. The γ values were 0.31, 0.17, 0.2, and 0.9 for AmI, AmII, AmIII, and AmIV,
respectively. It demonstrates that all the phylogroups had different trajectories for possible
pan-genome expansion. AmIV showed higher trajectory than other phylogroups while
AmII was most saturated among all as demonstrated by the flattened trajectory in Figure 3C.
It was visible that the γ values of phylogroups were independent of the within-group ANI
value—higher ANI did not result in higher diversity (Figure 3B).

3.6. Metabolic Potential of A. muciniphila

A. muciniphila has diverse metabolic potential. Many probiotics are characterized by
their ability to ferment non-digestible fibers into short-chain fatty acids (SCFAs) such as
n-butyrate, acetate, and propionate. SCFAs are important gut microbial products that can
impact multiple host processes including energy consumption, microbe-host signaling, and
decreased colonic pH. These processes, in turn, affect the gut microbial composition, gut
motility, and epithelial cell proliferation [65]. SCFAs act as both a local nutrient source for
colonocytes and a nutrient source for different microbes in the gastrointestinal tract [66].
An upshot of an eight to ten-fold increase in serotonin has been observed in an in-vitro
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colonic mucosal system by treatment of SCFAs [67]. Two different pathways have been
observed in A. muciniphila for the synthesis of propionate—the malonate semialdehyde
pathway and the propanoyl-CoA metabolism. Similarly, an extensive network of genes
involved in methane metabolism has been identified using KEGG pathways.

The current study observed that the A. muciniphila genomes anabolize gut-derived
lipopolysaccharides (LPS) also known as endotoxins. Two types of LPSs have been
observed—N-acetylneuraminic acid and N-acetyl-beta-L-fucosamine. LPSs are immunos-
timulants and induce mild inflammation. In addition to LPSs, A. muciniphila is capable
of producing a variety of glycans including O-antigen nucleotide sugar biosynthesis and
other O-linked and N-linked glycans.

Genes for the biosynthetic pathways of thiamine, nicotinamide adenine dinucleotide
(NAD+), pantothenate, biotin, and lipoic acid have been found to be part of the persistent
genome. The pathways for tetrahydrofolate, Coenzyme A, riboflavin, cobalamin, and
heame synthesis have one missing enzyme. All the pathways and the corresponding
number of genes observed using KEGG are represented as a bar plot in Figure 5. The
metabolic potential of all the subsections of the pan-genome is available in Figure S2.

Figure 5. KEGG pathway annotation by KAAS. The majority of genes in the genetic information
processing, environmental information processing, and cellular processes belong to the core genome.
Furthermore, the species has been found to carry diverse metabolic potential and is involved in many
important biological pathways such as vitamin synthesis and synthesis of secondary metabolites.
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The persistent, shell, cloud, and unique genomes were also annotated using clusters of
orthologous (COG) database. The top five categories of significant similarity are “Function
unknown”, “Replication/recombination and repair”, “Cell wall/membrane/envelop bio-
genesis”, “Amino acid transport and metabolism” and “Transcription”. The shell and cloud
genomes have a higher proportion of genes in “Replication/recombination and repair”,
“Cell wall/membrane/envelop biogenesis”, “Transcription” and “Defense mechanisms”
as compared to the persistent genome. It depicts the role of the shell and cloud genomes
in transcription and defense mechanisms. Some of the important categories where the
persistent genome has a higher proportion of genes as compared to other sections of the
pan-genome are “Amino acid transport and metabolism”, “translation/ribosomal structure
and biogenesis”, “carbohydrate transport and metabolism”, and “energy production and
conversion”. All the COG categories have been sorted according to the total number of
gene counts and plotted in Figure 6A. Furthermore, core genes of the phylogroups were
annotated by the EggNOG mapper and compared with each other and with the core genes
of the complete data set (130 strains). It reflected that for each COG category, core genes of
the phylogroups, as well as the complete data set, encode an almost equal number of genes
Figure 6B.
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Figure 6. Clusters of orthologous (COG) annotation, enrichment analysis, and genomic islands.
(A) The functions are arranged according to the number of genes related to that function. The top
five functional categories are “Function unknown”, “Replication/recombination and repair”, “Cell
wall/membrane/envelop biogenesis”, “Amino acid transport and metabolism”, and “Transcription”.
(B) Comparison of the core genome of all strains (130) and core genome of all the phylogroups.
(C) Enrichment analysis of all subsections of the pan-genome was performed. Only persistent
genome expressed enrichment in different pathways. The enrichment was related to pathways such
as intracellular anatomical structure, cytoplasm, cytosol, and protein-containing complex, etc.
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3.7. Functional Enrichment of Genes

Functional enrichment of each section of the pan-genome (persistent, shell, cloud, and
unique) was performed. It was observed that none of the sections entail enriched genes
except the persistent genome. Most enriched genes belonged to ribosome synthesis and
cytoplasm. The enrichment analysis has been demonstrated in Figure 6C.

3.8. Virulent Factors, Antibiotic Resistance Genes

All 130 strains were predicted for the presence of antibiotic resistance genes and
virulent factors. It was observed that out of 130 strains, 23 contain at least one antibiotic
resistance gene. A. muciniphila GP38 contains the maximum number (four) of antibiotic-
resistant genes. It contains two types of aminoglycoside (aph Id and aph Ib), tetracycline
resistance, and sulfonamide resistance. The majority of the strains (15) are resistant to the
lincosamide class of antibiotics followed by tetracycline (5) and macrolide (4). A. muciniphila
BIOML-A13 contains a pathogenic gene secreted auto transport toxin with 99.64% identity
over 35.21% coverage. Antibiotic resistance genes and virulent factors are shown in Figure 7.
Genome lengths, GC contents, the presence of unique genes in each strain, and the presence
of CRISPR sequences have also been shown around a phylogenetic tree in Figure 7. It is
evident from Figure 7 that AmIII and AmIV have the least number of antibiotic resistance
genes and pathogenicity factors. Similarly, most strains of AmIII and many members of
AmIV and AmII have saturated genomes with fewer unique genes, reflecting the stability
of the genomes. This is helpful in screening for the chassis strain for the genome reduction.
We selected ATCC BAA-835 as a chassis for several reasons such as complete assembly,
absence of antibiotic resistance, absence of virulent factor, no unique genes, and lastly, it is
a representative genome.
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Figure 7. Phylogenetic tree of A. muciniphila strains. Information around the tree provides an
overview of the genetic potential of different strains predicted using suitable tools. Strains from
different phylogroups are colored differently. The clustering of the strains in the phylogenetic
tree corresponds to the clustering inferred in Section 3.4. Layers around the tree denote (from
inside out) GC content, genome length, number of CRISPR sequences, number of unique genes as a
bubble, number of unique genes in digits, antibiotic resistance genes, and virulent factors. Antibiotic
resistance genes are shown by red stars while virulent factors are shown by green stars.
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3.9. Functionally Annotated Genes within Each Group Express Different GC Content

The median GC content and gene length were found to be higher in persistent
genes as compared to the shell, cloud, and unique genes. The majority of the persistent
genes had a GC content of around 58% and gene length of around 900 base pairs. The
median GC content and gene length of all other sections were around 50% and 600 base
pairs, respectively, as demonstrated in Figure 8. Among the persistent, shell, cloud, and
unique gene sets, GC content and gene length were statistically significant except for
the gene length between the shell and cloud genomes. All four groups were annotated
by KEGG and EggNOG mapper. Among different groups, 54%, 13%, 10%, and 22% of
the genes were successfully annotated by KAAS in persistent, shell, cloud, and unique
genes, respectively. Within each group, GC content and gene length were significantly
different between annotated and non-annotated gene sets. It was observed that the
majority of the annotated genes tend to have higher GC content and/or gene length
compared to non-annotated genes that were shorter in size or lower in GC percentage
as demonstrated in a 2d density plot in Figure 8. In each of the four sections of the
pan-genome, the median gene length and GC percentage were higher in annotated genes
as compared to non-annotated genes as demonstrated in Figure 8. The results suggest
a role of GC content and gene length in the evolution and functional repertoire of the
organism. The genes that had high GC content and higher gene length were maintained
in the species and were playing a functional role in the genome. The low GC content
genes and small-sized genes were either easier to obtain through horizontal gene transfer
and/or difficult to maintain in all strains of the species. These were also less likely to
have a functional role in a genome.

3.10. Recombination Analysis

Very extensive recombination has been observed among the strains. Recombination
is more prevalent within a phylogroup; however, the occurrence of recombination across
phylogroups is evident. Recombination across the pan-genome has been visualized
using Phandango [59]. AmIV is the largest phylogroup and exhibits the most extensive
recombination pattern among all the phylogroups, as shown in Figure 9A. A network of
recombination pattern was constructed using igraph package in R. The node indicates
the strain name, and the edge represents recombination between the nodes. The nodes
are colored by phylogroups. The network graph revealed that all the phylogroups share
recombination; however, some strains of the phylogroup AmII form a distinct cluster.
There is one exception that one strain of AmIV shares recombination events with a
distinct cluster of AmII as indicated in the lower cluster in Figure 9B.

3.11. Horizontal Gene Transfer

Around 15% (1164) of the genes in the pan-genome are derived via HGT. Among the
HGT genes, the percentages of the persistent, shell, cloud, and the unique genome are
11.4%, 5%, 15.8%, and 67.8%, respectively, while out of non-HGT genes, the percentages
of the persistent, shell, cloud, and unique genomes are 27.6%, 8.7%, 30.3%, and 33.5%,
respectively. Similarly, among the unique, cloud, shell, and persistent genomes, the
percentages of HGT are 26.84%, 8.63%, 9.4%, and 6.98%, respectively Figure 10A. The
majority of HGT genes were found in other gut microbes such as Clostridiales, Bac-
teroidales, Firmicutes, and Akkermansiaceae Figure 10B. However, the direction of gene
transfer is unknown.
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Figure 8. Distribution of GC content and gene length among different sections of the pan-genome.
(A) Distribution of GC content in the persistent, cloud, shell, and unique genome. The difference
in the GC content among different sections was found to be significant with a very low p-value.
(B) Distribution of gene length across different sub-sections of the pan-genome. The difference is
non-significant between the cloud and shell genomes while significant for others. (C) GC content
across different sub-sections of the pan-genome is further divided into genes that are annotated by
KAAS and those that are not annotated by KAAS within each sub-section. The difference in GC
content between annotated and non-annotated genes was found to be significant within each group.
(D) Gene length across different sub-sections of the pan-genome is further divided into genes that
are annotated by KAAS and those that are not annotated by KAAS within each sub-section. The
difference in gene length between annotated and non-annotated genes was found to be significant
within each group. (E,F) GC content and gene length was plotted for annotated and non-annotated
genes and across all sub-sections of the pan-genome. It was observed that annotated genes tend to
have higher GC content and gene length. Similarly, GC content and gene length tended to be for the
persistent genome as compared to the cloud, shell, and unique genomes. Significance is denoted by:
“***” if p value is less than 0.001, “**” if p value is less than 0.01 and more than 0.001 and “*” if p value
is less than 0.05 and more than 0.01.

3.12. Genomic Islands, Prophages and Secondary Metabolite Gene Clusters

For secondary metabolite gene clusters, presence of prophages, and genomic islands,
representative strain A. muciniphila ATCC BAA-835 was used. Five different genomic
islands across A. muciniphila ATCC BAA-835 were predicted using IslandViewer 4 [58] as
shown in Figure 10C. Gene clusters related to terpene and arylpolyene were predicted by
antiSMASH, and sactipeptide was predicted by BAGEL4.
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Figure 9. Evolutionary dynamics of A. muciniphila depicting recombination. (A) Recombination
among different strains as depicted by Gubbins. Based on the recombination pattern, it is evident
that all phylogroups share recombination as indicated by the red tiles. (B) Network graph of
the recombination pattern showed two distinct clusters. One cluster contains strains from all the
phylogroups while one cluster consists of some strains of AmII and one strain of AmIV.

3.13. Non-Synonymous to Synonymous Mutation Calculation

The genes of the persistent, shell, and cloud genomes were used to find non-synonymous
to synonymous mutation (Ka/Ks) calculations. Ka/Ks was observed to be lowest in the
persistent genome and increased sequentially in the shell and cloud genome. High Ka/Ks
values in shell and cloud genomes denote evolutionary pressure on the gene sets denoted
in Figure 10D.

3.14. Essentiality of Genes

Out of a total of 7625 pan genes, 2064 (27%) genes maintain homology with 1415 unique
DEG genes. About 924 out of 1906 (48%) persistent genes, 97 out of 626 (15%) shell genes,
286 out of 2134 (13%) cloud genes, and 757 out of 2945 (25%) unique genes exhibited
homology with the DEG genes. A Venn diagram was constructed to visualize if there are
genes in different sections of the pan-genome that show homology with the same DEG
gene. It was observed that three DEG genes got hit by all sections of the pan-genome.
The Venn diagram is demonstrated in Figure 10E. All genes of A. muciniphila ATCC BAA
835 were also inferred for homology with the DEG genes, and it was observed that out of
2243 genes, 955 were found to be homologous.
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Figure 10. (A) Horizontal gene transfer prediction by HGTector within each sub-section of pan-
genome. (B) The taxonomic groups that are predicted to share horizontally transferred genes with A.
muciniphila. It has been observed that the majority of taxonomic groups reside in the gastrointestinal
tract. (C) Genomic Islands as indicated by IslandViewer4. (D) Ka/Ks in the genes belonging to
the persistent, cloud, and shell genomes. Genes that belong to the persistent genome showed the
least values of Ka/Ks followed by the cloud and shell genomes. (E) Essentiality analysis of the
pan-genome. The overlap shows the common essential gene that reveals high similarity with genes
from more than one sub-section of the pan-genome. Significance is denoted by: “***” if p value is less
than 0.001.

3.15. Genome Reduction Strategy

An important consideration in the genome reduction was to reduce redundancy
and remove undesired genes. The shell, cloud, and unique genes are not present in all
strains, so they are not necessary for the species. However, the persistent genes were
evolutionarily maintained by almost all strains of the species despite multiple evolutionary
pressures. Persistent genes are involved in the basic biology and fundamental processes
of the species including metabolism and central dogma. These are considered crucial
for metabolic potential and the long-term survival of a strain and species. In addition
to persistent genes, every strain encodes additional genes that are unique to that strain.
In A. muciniphila, 1906 are persistent genes, and on average 430 genes are non-persistent.
Non-persistent genes may have arrived in the genomes by HGT or may be the result of
gene loss from some of the strains of A. muciniphila. They may encode important pathways
that provide advantage to some strains. In order to find a reduced genome that is stable
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and functional in the long run, a systematic approach was applied. The persistent genome
was maintained in the reduced genome because the genes in the persistent genome have
maintained themselves in the species despite many evolutionary pressures over a long
period of time and possibly code for proteins involved in the fundamental processes such
as the basic biology and phenotype of the species. Furthermore, the KEGG and EggNOG
mapper indicated that persistent genes were enriched for functionally important metabolic
pathways and involved in mechanisms vital to life such as replication, transcription, cell
wall/membrane biogenesis, and translation. Moreover, the gene set was undergoing the
lowest Ka/Ks ratio and maintained a stable GC content and average gene length. For the
non-persistent gene set, the criterion for inclusion into the reduced genome was determined
by essentiality analysis. If a gene was found to be essential after BLAST with the DEG,
it was included. A. muciniphila ATCC BAA 835 was used as a chassis for the reduction
criterion. Regions encoding functional genes, secondary metabolite gene clusters, KEGG
orthologs, COG orthologs, and GO orthologs were not excluded. A landscape of necessary
and unnecessary parts of the genome has been constructed after an extensive analysis of
persistent genes, gene essentiality, and metabolic potential. The Circos plot depicts a visual
representation of the above idea in Figure 11.
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by A–O. A—genes that are present in 100% of the genomes, B—genes that are present in 95% of
the genomes, C—shell genome, D—unique genome, E—essential genes, F—undesired genes (those
that are neither essential nor persistent, G—genomic islands, H—phages as depicted by PHASTER,
I—secondary metabolite gene clusters by AntiSMASH, J—genes annotated by KEGG, K—genes
annotated by GO, L—genes annotated by COG, M—histogram of gene length, N—heatmap of GC
content, O—histogram of GC-skew.
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4. Discussion

Trillions of microbes are resident in the gastrointestinal tract. Many microbes are
getting uprising attention as probiotics for their role in modulating disease and health in
humans. A. muciniphila is a probiotic that is unique in its food source and found in both
humans and animals. Its association with several metabolic and immunity-related diseases
has been observed.

Previously, pan-genomics has been performed on a very limited number of genomes
that provided a preliminary picture of the pan-genome dynamics of A. muciniphila. The
recent boost in next-generation sequencing has resulted in the accumulation of sequences
of various strains of A. muciniphila that require a more comprehensive analysis to un-
derstand the species diversity, metabolic potential, and evolutionary dynamics of the
species [68]. This study comprehensively analyzed the population structure, genomic diver-
sity, metabolic potential, and evolutionary parameters. Pan-genome was refined to entail
only A. miciniphila genomes by systematically removing the sequences that had less ANI
and contain an abnormally high number of unique genes. The study, further, integrated the
persistent and essential genomes to come up with an idea of a minimal functional genome.

As a first step, ANI was used to exclude the genomes that are too diverse to be
contained in the same species. This is the most important step to maintaining a stable and
true representative landscape of the species pan-genome. Following ANI, 19 sequences
were excluded from the downstream analysis, leaving 130 genomes for further analysis.
Studies have suggested that the genomes below the 95% threshold influence the core
genome disproportionately [69].

Previously, based on 39 genomes [70], the γ value was found to be 0.25; however, our
study, based on 130 genomes, demonstrated that the genomes are expanding at double the
rate that was previously speculated with a γ value of 0.49. Furthermore, each phylogroup
was found to be independently expanding. Furthermore, the strains in each phylogroup
are expanding independent of the within-group ANI range.

There was a disagreement in the number of phylogroups of A. muciniphila in different
studies. Two studies based on 18 and 39 genomes have suggested three phylogroups [70,71]
and one study based on 75 genomes suggested four phylogroups [72]. Recently, isolate
genomes were combined with metagenomics to reveal the ecology of gut microbiota and
a phylogenetic tree was constructed using core genes. The tree clustered A. muciniphila
genomes into four phylogroups [73]. In the current study, different machine learning-
based clustering approaches were employed to uncover the best potential phylogroups.
PopPUNK was also used to uncover underlying clusters based on core genome dis-
tances and accessory genome distances. Furthermore, it was observed that clustering
of gene presence-absence juxtaposed similarly with the PopPUNK clustering and machine
learning approaches.

A. muciniphila is characterized by extensive recombination and a high rate of HGT.
Both of these probably lead to an open pan-genome of the species. Furthermore, the
highest recombination in AmIV possibly and at least partially answers the highest γ value
in AmIV. HGT has been observed to be highest in the unique genome, followed by the
cloud, shell, and persistent genomes. The HGT genes were shared to or from other gut
microbes such as Clostridiales, Bacteroidales, Firmicutes, and Akkermansiaceae. As a probiotic,
it was probable to have obtained genes from neighboring species. As expected, new genes
incorporate regularly into the pan-genome as a result of HGT and lead to more diversity in
the species. The persistent genome (core and soft-core genome) has the least fraction of
HGT genes, which indicates that it contains species-specific gene content that is essential
for the long-term benefit of the species.

A. muciniphila maintains genes involved in various important pathways such as SCFAs,
various vitamins, antimicrobial metabolites, and other secondary metabolites. The presence
of prophages, secondary metabolite gene clusters, and genomic islands have been observed
in the representative strain of A. muciniphila.
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The presence of antibiotic genes and pathogenic determinants raises concern for
use as a probiotic. A special focus on the resistome profiling of probiotics has emerged
recently. Studies have suggested the presence of genes conferring resistance to tetracycline,
vancomycin, clindamycin, and ciprofloxacin in Lactobacillus and Lactococcus, [68,74] and
dalfopristin in E. faecalis [75]. The HGT of antibiotic resistance genes to pathogens is also an
emerging cause of concern for public health. The observation that 43% of the pan-genome
is the result of HGT reflects that a high prevalence of HGT is prevailing in A. muciniphila
with phylogenetically distant bacterial species. The presence of virulence factor is even
more alarming and has very recently been profiled in various strains of Lactobacillus and
Bifidobacterium [74–76].

The persistent genome was expectedly the most important in terms of metabolism. It
maintained high GC content and average gene length as compared to other parts of the
pan-genome, indicating the stability of the persistent genome. Meanwhile, Ka/Ks values
of the persistent-genome are less than other sections of the pan-genome. It corresponds to
the Ka/Ks values found previously [77]. Similarly, genes belonging to the persistent group
underwent the least HGT.

Two important aspects of the study were to determine the evolutionary dynamics and
design a reduced genome for next-generation probiotics. Pan-genome was systematically
refined in the quest to get a more accurate prediction of both aspects. The study concluded
a high rate of recombination within the different strains and HGT events from bacteria
that colonize the gut. Lastly, based on the persistent genes, essential genes, and function-
ally annotated genes, a reduced genome was proposed for safer use as a next-generation
probiotic. Recently, synthetic biology approaches have focused on the development of
minimal or reduced genomes for many species such as E. coli, Bacillus subtilis, and Corynebac-
terium glutamicum. The reduced genomes provide the advantage of high production of
desired compounds as compared to natural ones. In addition to the high yield of desired
compounds, the small genomes provide the advantage of easier metabolic modeling and
systematic prediction. However, minimal genomes are less robust to fluctuating conditions
and may be unstable in the long run. Different methods have been proposed to tackle the
problem of stability [78]. In the current analysis, we got the advantage of evolutionarily
important genes that have survived in the whole species despite a variety of evolutionary
pressures. These are the genes that are present in more than 95% of the genome [33]. Our
analysis has confirmed that these genes are involved in important metabolic pathways
that are fundamental to the functional properties of the species. We have built our genome
reduction strategy on these persistent genes in an attempt to predict a reduced genome
that is stable and represents the functional properties of the species. The approach will be
useful for prediction of reduced genomes for related microbes.
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