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A B S T R A C T   

GM-CSF acts as a pro-inflammatory cytokine and a key growth factor produced by several immune cells such as 
macrophages and activated T cells. In this review, we discuss recent studies that point to the crucial role of GM- 
CSF in the immune response against infections. Upon induction, GM-CSF activates four main signalling networks 
including the JAK/STAT, PI3K, MAPK, and NFκB pathways. Many of these transduction pathways such as JAK/ 
STAT signal via proteins commonly activated with other antiviral signalling cascades, such as those induced by 
IFNs. 

GM-CSF also helps defend against respiratory infections by regulating alveolar macrophage differentiation and 
enhancing innate immunity in the lungs. Here, we also summarize the numerous clinical trials that have taken 
advantage of GM-CSF’s mechanistic attributes in immunotherapy. Moreover, we discuss how GM-CSF is used as 
an adjuvant in vaccines and how its activity is interfered with to reduce inflammation such as in the case of 
COVID-19. This review brings forth the current knowledge on the antiviral actions of GM-CSF, the associated 
signalling cascades, and its application in immunotherapy.   

1. Introduction 

1.1. The numerous roles of GM-CSF in the immune system 

Granulocyte macrophage colony stimulating factor (GM-CSF) func
tions as a hematopoietic growth factor, as it stimulates proliferation and 
differentiation of bone marrow progenitor cells into granulocytes and 
macrophages [1]. Furthermore, GM-CSF enables survival and activation 
of mature myeloid cells [2]. Evidence from knock-out (KO) mouse 
studies indicate that although GM-CSF plays a role in steady state 
myelopoiesis, it is not essential for this process [3]. However, GM-CSF is 
needed to drive emergency myelopoiesis to efficiently clear infections by 
enhancing the numbers of newly recruited macrophages and gran
ulocytes [4]. Further characterization of GM-CSF showed that it is 
crucial for the maturation of fetal monocytes into alveolar macrophages 
(AM) [5]. GM-CSF is also necessary for the steady-state maintenance of 
non-lymphoid tissue-resident CD103+ dendritic cells (DCs) across 
multiple tissues in mice. These cells are imperative for the initiation of 
CD8 + T cell actions in the lung [6,7]. The role that GM-CSF plays in 
host lung immunity and its homeostasis is discussed further in Section 
3.1. 

GM-CSF plays a key role in inflammation [2]; its basal circulating 
levels under homeostatic conditions are low, but significantly increase 
during inflammation [8]. Specifically, GM-CSF is produced by various 
immune cells including monocytes, macrophages, and activated T and B 
cells in response to infection [9]. During such events, pro-inflammatory 
cytokines including interleukin-6 (IL-6), tumor necrosis factor-α 
(TNF-α), and IL-23 induce GM-CSF production by activated CD4+ and 
CD8 + T cells. This is beneficial to the host when combating infections, 
but can be detrimental in chronic inflammatory conditions [10]. 

Several studies demonstrate how GM-CSF producing T cells are 
critical to the immune response against various bacterial and viral 
pathogens like Mycobacterium tuberculosis, Epstein–Barr virus (EBV), 
and human immunodeficiency viruses (HIV) [11–15]. This is largely due 
to the pro-inflammatory actions evoked after the recruitment and acti
vation of myeloid cells by GM-CSF [16]. Particularly, GM-CSF drives the 
activation of macrophages to an M1-like pro-inflammatory phenotype in 
vitro [17–20], producing chemokines such as C-C motif chemokine 
ligand-2 (CCL2), CCL24, CCL5, and CCL1 for leukocyte recruitment [21] 
and cytokines like TNF-α, IL-6, IL-12p70, IL-23, and IL-1β for 
pro-inflammatory actions upon stimulation [17,18]. These molecular 
signals also contribute to the role of GM-CSF in the differentiation and 
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activation of T helper (Th) type 1 and Th17 cells, further promoting 
pro-inflammatory events and clearance of infections [22]. 

GM-CSF also has an important role in expanding myeloid-derived 
suppressor cells (MDSCs) at the resolution of inflammation for wound 
healing and tissue repair. Interestingly, tumors exploit this process as 
malignant cells secrete GM-CSF to reprogram tissue-resident macro
phages into MDSCs that suppress CD8 + T cell responses [23]. Despite 
this function, numerous investigations are centered on the use of 
GM-CSF clinically as a therapeutic, which paradoxically includes cancer 
therapy. Talimogene laherparepvec, the GM-CSF encoding oncolytic 
virus has been approved for the local treatment of advanced melanoma. 
Moreover, recombinant GM-CSF has been approved for other clinical 
uses as well including treatment of neutropenia associated with stem cell 
transplantation. As an immunostimulatory agent, GM-CSF promotes the 
functions of antigen presenting cells for aiding the immune system in the 
aforementioned conditions. Currently, because GM-CSF is required for 
AM homeostasis and lung pathogen clearance, it is being investigated as 
a potential therapeutic for COVID-19 patients with respiratory failure 
[6]. 

Although GM-CSF possesses favorable roles during various disease 
states by inducing the activation, migration, survival, and renewal of 
effector macrophages and granulocytes, it has also been implicated in 
the exacerbation of such diseases. For example, GM-CSF drives the 
progression of diseases including rheumatoid arthritis (RA) and multiple 
sclerosis (MS) [8,17,24]. It seems to be associated with inflammatory 
pain in these diseases via the CCL17/GM-CSF pathway [25,26]. None
theless, there are various signalling pathways induced by GM-CSF which 
we discuss next, that enable survival, differentiation, and proliferative 
effects of the responding immune cells. 

1.2. GM-CSF signalling pathways 

The first step in GM-CSF signalling is the binding of GM-CSF to its 

receptor (GM-CSFR). The GM-CSFR is a type I cytokine receptor 
composed of an α and β subunit, involved in binding and signalling [22]. 
While the α subunit is specific to GM-CSF, the β subunit is shared with 
IL-3 and IL-5 [22]. The GM-CSF receptor is expressed on myeloid cells 
but is also found on non-hematopoietic cells such as alveolar epithelial 
cells, fibroblasts, and vascular endothelial cells [27]. Although the exact 
mechanism behind GM-CSFR activation and signal transduction is not 
entirely delineated, it has been proposed that activation of the receptor 
occurs by GM-CSF binding to the α chain resulting in dimerization of the 
two subunits (Fig. 1) [27]. The discovery of the crystal structure un
covered that two α, β and GM-CSF complexes come together to form a 
heterohexameric complex (Fig. 1, step 3) [27]. The dodecamer confor
mation in the hexameric complexes can then trigger the initiation of four 
main signalling pathways including the janus kinase-signal transducer of 
activation of transcription (JAK-STAT), phosphoinositide 3-kinase 
(PI3K), mitogen-activated protein kinase (MAPK), and activated nu
clear factor-κB (NFκB) pathways [28]. 

To activate the JAK-STAT, PI3K, and MAPK pathways, JAK2 clusters 
to the β cytoplasmic tails of the complex, initiating kinase activation and 
transphosphorylation by the JAK2s (Fig. 1, step 4) [28]. In the 
JAK-STAT pathway, the phosphorylated JAK2s induce recruitment, 
phosphorylation, and dimerization of the transcription factor STAT5 
[28]. The STAT5 dimers then translocate to the nucleus to induce 
transcription of genes involved in myeloid cell differentiation, prolif
eration, and survival [28]. These genes include c-fos to promote the 
differentiation of myeloid cells, RelB and IRF4 to stimulate DC devel
opment, and pim-1, cis, and osm to induce myeloid cell proliferation [28, 
29]. 

Activated JAK2 also phosphorylates and activates PI3K, which acts 
as a second messenger to regulate the activity of protein kinase B (PKB). 
PI3K recruits PKB to the plasma membrane for activation via phos
phorylation by pyruvate dehydrogenase kinase 1 (PDK1) and mTOR 
complex 2 (mTORC2), needed for the proliferation and survival of 

Fig. 1. GM-CSF signaling pathways. To activate downstream signalling, multiple events occur as depicted (1-4) in this Fig. 1) GM-CSF binds to the α subunit of the 
GM-CSFR. 2) Dimerization of the two subunits upon GM-CSF binding. 3) Formation of the GM-CSFR hexameric complex followed by the lateral association of two 
hexameric complexes. 4) Several signalling pathways could result from GM-CSFR activation; JAK2 binds the β cytoplasmic tails and transphosphorylate each other, 
which activates the PI3K, MAPK, and JAK/STAT pathways, as well as the NFκB pathway. Activated NFκB dimers translocate into the nucleus and result in the 
transcription of genes for the differentiation and survival of myeloid cells such as RelB and IRF4. The JAK/STAT pathway induces the phosphorylation of STAT5, 
eventually causing STAT5 dimerization and translocation to the nucleus for transcriptional regulation of genes for the differentiation, proliferation, and survival of 
myeloid cells including c-fos, RelB, IRF4, pim-1, cis, and osm. The MAPK pathway also results in the differentiation and survival of myeloid cells via ERK kinase 
activation, through the transcription of genes such as c-fos. Finally, PI3K is phosphorylated by JAK2 resulting in signal transduction through a PIP3 intermediate, 
causing membrane recruitment of PKB followed by its phosphorylation by mTORC2 and PDK1, eventually leading to the proliferation and survival of myeloid cells. 
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myeloid cells [28]. Through a series of intermediates, the MAPK/ERK 
kinase (MEK) is also activated by JAK2, consequently triggering extra
cellular signal regulated kinase (ERK) and its kinase activity to regulate 
downstream transcription of genes such as c-fos to promote the differ
entiation and survival of myeloid cells [28,29]. Interestingly, Achuthan 
et al., reported a correlation between ERK activity and GM-CSF 
enhancement of human monocyte survival in vivo [25]. Furthermore, 
upon GM-CSF treatment, ERK1/2 activation has been found to induce 
multipotent mesenteric mesothelial cell differentiation into macro
phages [30]. 

How GM-CSF initiates NFκB signalling has yet to be fully defined, but 
it is known to involve the IκB kinase (IKK) complex, which in turn 
phosphorylates IκB, the NFκB inhibitor, leading to IκB ubiquitination 
and degradation, consequently activating NFκB [31]. NFκB dimers then 
translocate to the nucleus where they regulate the transcription of genes 
such as RelB and IRF4 to promote DC development (Fig. 1) [28,29]. 
Although not yet fully elucidated, interferon regulatory factors (IRF) 4 
and 5 have been also reported as important downstream targets of 
GM-CSF [22]. Reports have found that IRF4-dependent signalling ap
pears to upregulate MHC class II expression in mouse macrophages and 
DCs due to GM-CSF treatment [32]. Moreover, in response to GM-CSF 
stimulation, IRF5 has been reported to promote macrophage polariza
tion to the M1-like phenotype [33]. IRF5 has also been implicated in 
inducing the synthesis of type I interferons (IFNs) and TNF-α to promote 
an antiviral state in infections such as Newcastle disease virus (NDV), 
herpes simplex virus (HSV-1), and vesicular stomatitis virus (VSV) [34]. 
Thus, the GM-CSF signalling pathways contribute in part to key steps 
that help the immune system in fighting infections. 

2. Cytokines and pathways associated with antiviral immunity 

2.1. Antiviral activities of interferons 

IFNs, commonly classified into three types (I, II, III), are a host- 
encoded, multi-gene family of inducible cytokines that possess various 
functions, namely, antiviral activity. The type I IFN response represents 
an early host defense through the establishment of an antiviral state, 
serving as the first line of immunity against viral infection. Specifically, 
upon stimulation of pattern-recognition receptors (PRRs) from viral 
antigens, a rapid production of IFN-β and subsequently, IFN-α is pro
duced, which is dependent on phosphorylated IRF3 and activated NFκB 
[35]. The rapid type I IFN production then induces the phosphorylation 
of IRF7, needed to enhance the antiviral response [35]. 

The type I IFNs signal via the type I IFN receptor (IFNAR), which 
upon binding, activates the tyrosine kinases, JAK1 and TYK2 [36,37]. 
The tyrosine kinases then phosphorylate the transcription factors STAT1 
and STAT2, which come together with IRF9 to form the trimeric 
IFN-stimulated gene factor 3 (ISGF3) complex. ISGF3 is responsible for 
the production of IFN-stimulated genes (ISG) with diverse functions 
including positive or negative regulation of antiviral IFN signalling and 
direct inhibition at various points of the viral replication cycle [38]. 

Similar to type I IFNs, type III IFNs (IFNλ1-4) are also regarded as 
antiviral [39,40]. The signalling cascade induced by type I and type III 
IFNs is similar [41]. However, the IFNλs are mainly produced by and 
target mucosal epithelial cells and some immune cells such as macro
phages, peripheral blood lymphocytes, conventional DCs, and plasma
cytoid DCs, where type I IFNs are expressed by and target all nucleated 
cells [39,40,42,43]. 

IFN-γ (type II IFN) signals via its tetrameric receptor, IFNGR [44]. 
Upon receptor activation, JAK1 and JAK2 auto-phosphorylate each 
other, then phosphorylate STAT1 leading to dimerization, nuclear 
translocation, and stimulation of target gene transcription [44]. IFN-γ 
functions as both an immunoregulatory and antiviral cytokine. For 
example, IFN-γ has a major role in polarizing macrophages into the M1 
phenotype [45,46]. In the context of viral infections, IFN-γ released by 
activated T cells is crucial for establishing an antiviral state and 

long-term control of infection [47,48]. Specifically, Changotra et al. 
demonstrated the ability of IFN-γ to directly inhibit Murine Norovirus 
replication through reducing the levels of both structural and 
non-structural viral proteins resulting in a potent inhibition of overall 
virion production [49]. Additionally, the ability of IFN-γ to induce 
indoleamine 2,3-dioxygenase (IDO) and inducible nitric oxide synthase 
(iNOS) to deplete tryptophan and produce nitric oxide (NO), respec
tively shows powerful antiviral effects [50,51]. 

2.2. The antiviral activity of pro-inflammatory cytokines (IL-1β, TNF-α, 
IL-6) 

Although IFNs are the main antiviral cytokines of the immune sys
tem, pro-inflammatory cytokines including IL-6, IL-1β, and TNF-α also 
display significant antiviral activity [52–55]. It is interesting to note that 
these cytokines are among those that are highly upregulated by GM-CSF 
signalling during an infection [9,17,22]. IL-1β, TNF-α, and IL-6 are key 
mediators of the inflammatory response and are also involved in the 
physiological control of virus infections. Most, but not all, mechanistic 
explanations for IL-1β, TNF-α, and IL-6 antiviral activities have been 
credited to common pathways shared with IFNs. For instance, the potent 
ability of TNF-α to impede viral replication is largely due to its syner
gistic relationship with IFN-γ and IFN-β [56,57]. Though, there is evi
dence of TNF-α alone acting as a highly antiviral agent. Specifically, one 
report indicated that through an unknown mechanism, TNF-α can 
demonstrate stronger antiviral actions than both IFN-α and IFN-γ alone 
in an in vitro influenza virus (IV) infection [55]. Unfortunately, this 
unique finding was not further explored, but contributes to the evidence 
of the antiviral activities exhibited by TNF-α. Nevertheless, such actions 
are mediated by both subunits of the murine TNF-α receptor, TNFR1 and 
TNFR2 [54]. 

Recently, Luo et al. used a genetically engineered rabies virus 
encoding the IL-6 gene to evaluate the relevance of IL-6 during a viral 
infection [58]. This study revealed that IL-6 promoted an intensified 
innate immune response with up-regulated ISGs including ISG15, ISG20, 
2’-5’-oligoadenylate synthetase (OAS) 1, OAS2, and MX2 [58]. Simi
larly, IL-1β is involved in the induction of IFN-α mediated antiviral genes 
such as OAS and protein kinase RNA-activated (PKR) [59]. In virally 
infected myeloid cells, such expression of ISGs has resulted through a 
process of IL-1β and IRF3 signalling crosstalk, further connecting 
pro-inflammatory cytokine antiviral actions to IFN signalling [60]. In 
line with this, IL-1β exerts antiviral functions via a 
gp130-JAK-STAT1-dependent pathway to control viral infections that 
inhibit or block IFN expression [53]. These findings reintroduce the 
notion that antiviral functions exhibited by these cytokines occur 
beyond a shared signalling with the IFNs. 

Both IL-1β and IL-6 activate MAPK/ERK signalling pathways [61, 
62].This pathway has been implicated in the production of the antiviral 
protein, 1-8U through IL-1β signalling during a Hepatitis C Virus (HCV) 
infection [63]. Furthermore, an in vitro study investigating Hepatitis B 
Virus (HBV) infection found that exogenous IL-6 was able to directly 
suppress HBV replication via an IFN-independent mechanism [64]. 
Overall, there are innumerable molecular events mediating viral re
striction by these cytokines, with the examples discussed herein high
lighting IFN signalling crosstalk as well as IFN-independent 
mechanisms. 

3. An indirect role of GM-CSF in antiviral immunity 

3.1. GM-CSF in respiratory viral infections 

AM and DCs play a crucial role in host lung defense through their 
ability to phagocytose and destroy pathogens, recruit and activate other 
inflammatory cells, and serve as important links between innate and 
adaptive immunity. Production of GM-CSF by alveolar epithelial cells 
(AEC) is critical for AM function and differentiation, pulmonary 
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homeostasis, and driving pulmonary antiviral actions [65]. Moreover, 
mice lacking lung GM-CSF signalling (GM-/-) exhibit AM dysfunction 
and pulmonary alveolar proteinosis (PAP), in which surfactant accu
mulates within the alveoli [66]. When this occurs, AMs become defec
tive in their antiviral activities including phagocytosis, superoxide 
production, cytokine release, and PRR expression [65]. Through the 
expression of the transcription factors, PU.1 and IRF5, GM-CSF regulates 
the diverse functions of AMs critical to both surfactant homeostasis and 
defense [33,65]. Thus, the presence of GM-CSF in the lung allows AMs 
and other immune cells to resist and clear various respiratory viral in
fections such as influenza and respiratory syncytial virus (RSV). 

3.1.1. GM-CSF as a potent anti-influenza cytokine 
The immune response to influenza relies on B cells, CD8 + T cells 

[67,68], and innate immunity driven by AMs [69–71]. During a pul
monary inflammatory event, GM-CSF is secreted by various cell types 
including macrophages, endothelial cells, fibroblasts, T cells and type II 
AECs [72]. Once GM-CSF is released, it enhances resistance of AMs and 
other cells to infection, augments viral clearance, reduces lung injury, 
and increases survival rates during IV infection [7,73–76]. The use of 
GM-/- mice has demonstrated that without GM-CSF, mice display a 
reduced resistance to IV as a result of dysfunctional AMs being unable to 
effectively clear pathogens [74]. The mechanism for this impairment 
may be explained by findings that GM-CSF signalling, via PU.1, co
ordinates the ability of AMs to perform Fcɣ receptor-mediated phago
cytosis of pathogens [65]. Additionally, AMs have also been shown to 
display GM-CSF-dependent production of reactive oxygen species 
(ROS), a phenomenon known to confer protection against IV pneumonia 
and secondary bacterial pneumonia, a condition commonly associated 
with morbidity and mortality post-IV infection [77]. 

The use of intranasally administered recombinant human GM-CSF 
(rHuGM-CSF) has demonstrated both in vitro and in vivo protection 
against IV infection [73]. Moreover, transgenic mice over-expressing 
GM-CSF (SPC-GM) demonstrate increased production of cytokines by 
activated target cells – mainly epithelial cells, monocytes, and macro
phages, which aid in anti-IV responses [73,78]. In these mice, increased 
levels of monocyte chemoattractant protein-1 (MCP-1) and TNF-α in the 
lungs enabled a reduced viral burden [73,76]. In other studies, both 
MCP-1 and TNF-α helped in the protection against IV, but were associ
ated with lung immunopathology if over produced [59,79–82]. Inter
estingly, the induction of pulmonary TNF-α prior to IV infection actually 
reduces lung inflammation and damage [75]. SPC-GM mice adminis
tered GM-CSF intranasally demonstrate early elevated MCP-1 and 
TNF-α, accompanied with low histological evidence of lung injury [73, 
78]. Thus, in this model, GM-CSF initiates a potent early innate immune 
response to IV, controlling viral replication. Moreover, a recent study 
further elucidated a role of GM-CSF produced by IV-infected AECs in 
coordinating pulmonary DC antiviral functions by regulating the acti
vation and proliferation of CD103+ migratory DCs [7]. In turn, GM-CSF 
will also help increase the recruitment of IFN-γ producing CD8+ and 
CD4 + T cells to the respiratory tract to efficiently clear IV [73]. Thus, 
GM-CSF enables enhanced viral clearance and antigen-specific recruit
ment of T cells. 

3.1.2. GM-CSF in respiratory syncytial virus (RSV) infection 
The rationale for employing GM-CSF in combatting RSV infection is 

based on the premise that it helps the maturation of AMs and induces the 
expression of various pro-inflammatory cytokines with associated anti
viral activities. Researchers have introduced GM-CSF as a vaccine 
adjuvant expressed in recombinant RSV (rRSV) during immunization 
[83–85]. This vaccine preparation attenuated viral replication, stimu
lated pulmonary CD4 + T cells, and augmented the proliferation and 
activation of pulmonary antigen-presenting cells during a challenge 
with the infectious agent [83]. The enhanced CD4 + T cell stimulation 
results in an increased production of IFN-γ, which is a key cytokine 
responsible for reducing RSV infections [83,86]. 

RSV infections are involved in severe asthma exacerbation reactions 
in asthmatic patients [87]. GM-CSF has demonstrated success in 
improving the hyperinflammatory response in asthmatic lungs exposed 
to RSV infection [88]. Although the exact mechanism was not 
completely defined, the authors attributed the effects observed by 
GM-CSF to its role in AM maturation, which helped reduce viral titers in 
the lungs of adult mice. In asthmatic airways, AMs have been identified 
as immature and hyperinflammatory, especially in the context of a 
subsequent RSV infection [88,89]. Thus, the use of GM-CSF in mice for 
this particular situation is advantageous as it allows for the full matu
ration of AMs to control the inflammatory status and clear the viral 
infection. 

3.1.3. GM-CSF in HIV infection 
HIV is known to preferentially infect CD4 + T cells, using CD4 as its 

primary receptor, with either CCR5 or CXCR4 chemokine receptors as 
coreceptors to enter cells [90]. In addition to CD4 + T cells, HIV targets 
myeloid cells including blood monocytes, DCs, macrophages, and oste
oclasts [91]. Cytokines such as GM-CSF in the environmental milieu play 
an imperative role in regulating cells of the myeloid lineage including 
their phenotype and response to pathogens. During an HIV infection, 
GM-CSF is among one of the cytokines that is affected, with its pro
duction being drastically reduced [92,93]. This has been one of the 
earliest rationales for investigating the role of GM-CSF in fighting 
against HIV. Since this finding, many anti-HIV roles have been revealed 
for GM-CSF. For example, GM-CSF is involved in the maturation of 
monocytes into macrophages. An in vitro study reported that GM-CSF 
suppresses the expression of CXCR4 and CCR5 mRNA through the dif
ferentiation of monocytes into macrophages [94]. Ultimately, this sug
gests that GM-CSF allows macrophages to become more resistant to 
infection by HIV. However, other studies have shown that exposure of 
fresh monocytes and monocyte-derived macrophages to GM-CSF actu
ally results in an increase in CCR5, but not CXCR4 expression, which 
contrasts these findings by indicating that HIV entry is enhanced in 
macrophages [95,96]. Regardless of these controversial findings, Ked
zierska et al. reported that the inhibitory effect of GM-CSF is unrelated to 
the level of maturation of monocyte-derived macrophages at the time of 
GM-CSF stimulation during HIV infection [95]. This same study 
concluded that macrophages exposed to GM-CSF and HIV infection 
displayed a three- to ten-fold decrease in HIV-1 mRNA compared to 
infected macrophages not exposed to GM-CSF [95]. These findings agree 
with others investigating HIV mRNA levels in infected macrophages 
exposed to GM-CSF [97–100] and also suggests that HIV replication is 
inhibited by GM-CSF actions before or at viral transcription. 

Mechanistically, this antiviral activity of GM-CSF against HIV results 
from signalling through the β-chain of the GM-CSFR, irrespective of 
signalling from the α-chain. Albeit, the reduction of HIV mRNA by GM- 
CSF is not a universal finding as other clinical trials conclude GM-CSF 
has no effect on viral mRNA levels [101–103]. However, within one of 
the aforementioned trials, GM-CSF treated patients maintained un
changed HIV mRNA levels for a longer period while levels increased in 
placebo patients, demonstrating GM-CSF as a useful anti-HIV agent 
[101]. The other trials that contrast the success of GM-CSF in reducing 
HIV mRNA may have reported so due to too low of a GM-CSF dosage 
[102]. Nonetheless, a finding that is universal throughout the literature 
is that GM-CSF increases CD4 + T cell counts [97,101,104,105], which 
would be beneficial to the patient during the infection. GM-CSF has also 
been demonstrated to augment the effectiveness of the antiretroviral 
agent, zidovudine (AZT), in HIV infected macrophages in vitro [106, 
107] by upregulating thymidine kinase [107,108] to increase intracel
lular phosphorylation of AZT into its active triphosphate form [109]. 

In the context of HIV-1 infection of macrophages, other cellular 
markers in addition to CD4 have been investigated for their role in 
enabling HIV-1 infection of cells. Remarkably, Siglec-1 has been iden
tified as a facilitator for HIV-1 infection of DCs and macrophages 
through binding sialoglycans on the gp120 envelope of the virus [110, 
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111]. Recently, Jobe et al. reported that GM-CSF-derived macrophages 
have reduced surface expression of Siglec-1, rendering them less 
permissive to HIV-1 infection [112]. Ultimately, this group showed that 
GM-CSF-derived macrophages allowed significantly less virus particles 
to enter the cells and subsequently undergo replication as opposed to 
M-CSF-derived macrophages [112]. 

3.1.4. Virus encoded inhibitors interfere with GM-CSF signalling 
Viruses employ multiple strategies to interfere with the induction 

and functions of IFN-inducible proteins, such as ISGs. In the case of GM- 
CSF, its actions are antagonized by a number of viruses including HIV-1 
and orf virus [113–115]. In particular, the orf virus encodes a protein 
called GM-CSF/IL-2-inhibition factor, which acts to inhibit ovine 
GM-CSF and IL-2 through functioning as a competitive decoy receptor 
[113,114]. However, further studies are required to determine the 
function of this inhibitor in murine or human orf virus infections. 

Interestingly, HIV-1 antagonizes the activation of GM-CSF-induced 
STAT5A in human monocyte-derived macrophages [115]. Warby 
et al., reported that HIV-1 inhibits the activation of STAT5A, without 
impeding expression of the STAT5A mRNA, protein, or other known 
members of the associated signalling pathway [115]. Altogether, these 
data provide foundation for the involvement of GM-CSF in antiviral 
functions. 

3.2. Potential mechanisms of how GM-CSF can support antiviral 
functions 

The exact molecular mechanisms responsible for antiviral activities 
involving GM-CSF have yet to be fully elucidated. It is possible that GM- 
CSF exerts its actions through similar mechanisms as other pro- 
inflammatory cytokines like IL-1β, TNF-α, and IL-6 via signalling mol
ecules common with type I and type III IFN pathways. [56–60].Evidence 
supporting this idea come from studies where human macrophages 
treated with GM-CSF have demonstrated greater receptor expression 
and sensitivity to type III IFN signalling, promoting the generation of a 
robust antiviral and immunostimulatory gene signature [43]. 

Furthermore, GM-CSF, type I and type III IFNs signal via JAK/STAT 
pathways, which are vital to the antiviral state [42]. The JAK family 
members JAK1, JAK2, and TYK2 activate the STAT transcription factors 
to induce antiviral ISG production [116]. Thus, it is possible that the 
involvement of JAK2 in GM-CSF signalling contributes to the antiviral 
activity of GM-CSF. JAK2 transphosphorylation activates pathways 
other than JAK/STAT including PI3K and MAPK pathways (Fig. 1), the 
latter was also shown to confer antiviral protection [117]. 

GM-CSF induces homodimerization and signalling through STAT5, 
facilitating the transcription of genes for myeloid cell differentiation and 
survival (Fig. 1) [28]. Interestingly, the antiviral type I IFNs have been 
reported to induce the phosphorylation and dimerization of various 
STAT proteins outside of the canonical STAT1 and STAT2, which in
cludes STAT5 [36]. Do these associations imply crosstalk amongst the 
signalling pathways facilitated by type I IFNs and other cytokines, 
including GM-CSF? Further investigations into the molecular signalling 
between GM-CSF and the type I IFNs are required to answer such 
questions. Nonetheless, additional evidence for the potential involve
ment of STAT5 against viral infections arises from the inhibition of its 
activation during HIV-1 infection because inhibition of STAT5 activa
tion by the virus enhances its ability to establish infection [115]. 

Additionally, the IRF family of factors, mainly IRF1, IRF3, IRF5, and 
IRF7 can function in conjunction with STAT transcription factors to 
establish the events that lead to the antiviral state [118]. For example, 
IRF5 is an important downstream target of GM-CSF signalling, as it is 
involved in the polarization of an M1 phenotype in macrophages [22, 
34]. M1 macrophages have been reported to demonstrate antiviral 
characteristics [110]. This is partly a result of upregulated iNOS and NO, 
which are vital for antimicrobial and antiviral defenses [45,50,119]. 
Furthermore, IRF5 has demonstrated numerous antiviral functions in 

vitro due to upregulation of IFN-α as well as early inflammatory cyto
kines [120]. Therefore, it is possible that IRF5 activation and an overall 
M1-like phenotype are likely implicated in the induction of an antiviral 
state engendered by GM-CSF signalling. Support of this postulation is 
provided by a recent study that performed an in-depth gene expression 
analysis on ex vivo isolated human monocytes differentiated in GM-CSF 
versus M-CSF [121]. The findings revealed that macrophages polarized 
by GM-CSF have significantly upregulated expression of genes involved 
in the IFN response. The genes detected include ISG15, interferon 
induced protein with tetratricopeptide repeats 1–3 (IFIT), MX1, and 
OAS2/3, which all function as key antiviral molecules [121]. 

4. GM-CSF in clinical trials and immunotherapy 

Cytokines play a vital role in regulating the immune response. As 
such, several cytokines have been tested and used in immunotherapies 
to treat cancers, infections, inflammation, and autoimmune diseases. IL- 
2, IFN-α, and GM-CSF are cytokines that can potentiate immune re
actions, promote anti-tumour activities, and help clear infections [122]. 
For example, IL-2 stimulates T-lymphocyte and natural killer (NK) cell 
proliferation, and can act synergistically with GM-CSF to enhance the 
immune response against foreign antigens [122]. Immunotherapies 
have also focused on inhibiting pro-inflammatory cytokines such as 
GM-CSF and TNF-α to reduce inflammation in cases of excessive 
pro-inflammatory cytokine release, which can occur in many autoim
mune diseases and some viral infections [122]. In this section, we 
highlight how GM-CSF has been targeted in the recent years with regard 
to clinical immunotherapeutic interventions. 

4.1. Interfering with GM-CSF functions to lessen inflammation 

Several diseases can occur from excess inflammation, in which case 
the pro-inflammatory properties of GM-CSF can exacerbate the condi
tion [123]. This is the case in several autoimmune diseases such as RA, 
MS, and psoriasis, as well as the state of hyper-inflammation seen in 
some viral infections such as COVID-19 [123]. Anti-GM-CSF immuno
therapies have been tested in animals and human subjects to suppress 
GM-CSF pro-inflammatory pathways in conditions like these. There are 
several monoclonal antibodies (Abs) such as Namilumab that can 
neutralize GM-CSF to reduce the inflammation by binding directly to 
GM-CSF, impeding interaction with its receptor and blocking any 
downstream pro-inflammatory effects [124]. Mavrilimumab is another 
human monoclonal Ab that targets the GM-CSF receptor-α rather than 
GM-CSF itself [124]. Mavrilimumab competes with GM-CSF for binding 
to its receptor thereby preventing activation of GM-CSF-mediated in
flammatory pathways [124]. 

RA is a chronic autoimmune disease associated with the production 
of autoantibodies causing systemic inflammation in the joints. Elevated 
levels of GM-CSF have been reported in the synovial fluid of RA patients 
and were implicated in the observed inflammation [9]. Mavrilimumab 
was employed in a clinical trial (NCT01706926) for the treatment of RA 
where subjects received 30− 150 mg of Mavrilimumabevery other week 
for 24 weeks [125]. The results revealed a significant decrease in RA 
disease activity, measured by the erythrocyte sedimentary rate and 
C-reactive protein [126]. 

Currently, with the COVID-19 pandemic, studies have begun inves
tigating the use of monoclonal Abs against GM-CSF to treat the hyper- 
inflammatory state experienced by some severe COVID-19 pneumonia 
patients [123]. GM-CSF plays an important role in normal lung health as 
it is synthesized at low levels in lung alveoli for macrophage develop
ment, maintenance, and host defenses [65]. Zhou et al., reported on 
elevated levels of GM-CSF in the blood of COVID-19 patients and those 
with severe pneumonia were found to have an even higher percentage of 
GM-CSF + CD4 + Th cells [127]. One study administered 6 mg/kg of 
Mavrilimumab intravenously along with standard care to patients with 
severe COVID-19 pneumonia, hypoxia, or systemic inflammation 
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(NCT04318366) [128]. Preliminary data indicate improved respiratory 
function and quicker resolution of inflammation, resulting in reduced 
morbidity of the patients in the trial. Several other trials using different 
monoclonal Abs against GM-CSF are currently underway where the 
outcomes are still pending. 

4.2. GM-CSF as an adjuvant component in vaccine preparations 

As a vaccine adjuvant, GM-CSF increases the immunogenicity of the 
vaccine to mount an efficient immune response. GM-CSF has been tested 
in numerous animal and human trials as a vaccine adjuvant for anti- 
tumour immunotherapy in prostate, skin, breast, and lung cancers 
with variable outcomes. Many prostate cancer vaccines are peptide 
vaccines that elicit limited immune activation. Consequently, GM-CSF 
has been used as an adjuvant with these vaccines to increase the anti- 
tumour immune response, via increased tumour-specific antigen pre
sentation to induce better cross priming of T cells [129]. 

In an active study that began in 2012, patients with prostate cancers 
were given intradermal injections of a prostate-specific antigen (PSA) 
together with IL-2 and GM-CSF as a vaccine combination over 14 weeks 
(NCT02058680) [130]. Interim results indicated that 8 out of 11 par
ticipants exhibited increased immune responses to PSA by week 19 with 
several patients exhibiting slower cancer progression [131]. However, 
in a different prostate cancer clinical trial (NCT01322490) using 
GM-CSF as an adjuvant to the PROSTVAC vaccine [132], there was no 
change in overall survival in the GM-CSF treated group compared to 
controls. This lack of effectiveness was likely due to induction of weak 
immune responses in this trial [133]. 

GM-CSF has also been given preoperatively as a neoadjuvant to 
induce an anti-tumour immune response for cancer treatment. In a pilot 
study (NCT00305669) using GM-CSF as a neoadjuvant before radical 
prostatectomy in people with prostate cancer, patients were given 
250 mg/m2/day of GM-CSF subcutaneously over 28 days [134]. In this 
study, the neoadjuvant GM-CSF enhanced CD4+ and CD8 + T cell 
infiltration to the prostate, but the expected amelioration in antigen 
presenting cell (APC) recruitment did not occur. Although there was no 
long-term follow-up for patients in this study, the increased T cell 
infiltration to the tumour microenvironment is promising for tumour 
suppression [126]. 

The mixed results published in GM-CSF adjuvant cancer trials could 
be attributed to different dose regimens. Under certain conditions, GM- 
CSF can exhibit immunosuppression effects via increasing the numbers 
of myeloid-derived suppressor cells (MDSCs) and regulatory T cells 
(Tregs) [135], that actually aid tumour growth rather than halt it [135]. 
Serafini et al., performed a study on mice that revealed an upper 
threshold of 1500 ng /106 / day of GM-CSF being responsible for 
immunosuppression allowing for potent tumour growth [136]. Another 
study found that high doses (>100 μg/day) of GM-CSF resulted in 
negative outcomes in skin and colon cancer patients [135]. However, 
more recently Butterfield et al., used 250 μg/day in combination with a 
peptide vaccine for patients with melanoma and found that only a mi
nority had increased levels of MDSCs [137]. Therefore, while there is 
evidence that GM-CSF can have opposing effects at different doses, no 
optimal dosing regimen has been fully determined to date. 

GM-CSF has also been used as an adjuvant to combat viral infections 
such as HIV and COVID-19, based on its ability to enhance DC matu
ration, and their ability to present viral antigens [138]. Previous HIV 
trials employing GM-CSF as an adjuvant reported inconsistent results 
with various positive or negative outcomes including no effect compared 
to controls. A recent HIV trial (NCT01627678) [139], used Vacc-C5 (a 
peptide vaccine) with GM-CSF as an adjuvant to ameliorate the vac
cine’s immunogenicity and help increase T cell levels [138] reported 
only marginal changes. A trial in progress is assessing a vaccine 
composed of DC loaded with antigens from COVID-19 alongside GM-CSF 
as an adjuvant in non-infected participants to evaluate if it enhances 
anti-COVID-19 immunity (NCT04386252) [140]. This trial has only just 

started, and the results are pending. 

4.3. GM-CSF-dependent immunotherapies to combat infections 

GM-CSF was employed in a novel clinical investigation 
(NCT02601365) in 2019 to treat respiratory virus-associated pneu
monia [141]. This study (data yet to be published) was based on several 
human and mice trials that observed an increase in AMs and enhanced 
pulmonary innate immune reactions in response to GM-CSF treatment of 
the virus-associated pneumonia and pneumonia-associated acute respi
ratory distress syndrome (ARDS), respectively [74,142]. 

Few other trials have also used GM-CSF to prevent nosocomial in
fections. One trial is attempting to reduce hospital-acquired infections in 
ICU-patients by GM-CSF treatment (NCT02361528) [143]. In this study, 
GM-CSF is thought to promote the differentiation of granulocytes and 
macrophages and increase neutrophil levels to decrease the risk of 
nosocomial infection and reverse immunoparalysis caused by the 
down-regulation of innate and adaptive immune responses [144]. 
GM-CSF is also being tested in a trial (NCT03769844) to resolve 
immunoparalysis in pediatric sepsis-induced multiple organ dysfunction 
syndrome [145]. Here, GM-CSF is thought to increase TNF-α production 
and monocyte HLA-DR expression to improve clinical outcomes in 
children with immunoparalysis by mounting an inflammatory immune 
response [144]. Currently, ongoing trials (NCT04326920) [146] are also 
assessing GM-CSF as an immune stimulator to help clear the COVID-19 
infection by using recombinant GM-CSF (Leukine) over 5 days, along 
with standard of care to treat patients with ARDS caused by COVID-19. 
Leukine is expected to boost the host’s innate immune response moun
ted towards the virus by expanding cell populations of AMs and lung DCs 
to help clear the infection [142]. It has been used previously to improve 
oxygenation in patients with pneumonia-associated ARDS [142], and 
thus it is anticipated to improve COVID-19-associated ARDS. 

In summary, GM-CSF shows great potential as a novel immuno
therapy to treat many diseases and infections. However, the lack of 
consistency seen in the results from several studies reveals that much 
more research must be done before it is ready for widespread use. 
Interfering with GM-CSF functions seems to be effective in treating many 
diseases, so long as GM-CSF is significantly involved in the disease- 
associated inflammation. Understanding the conditions under which 
GM-CSF inadvertently exerts an immunosuppressive effect rather than 
an immunostimulatory response is important for ensuring future success 
in clinical trials using GM-CSF as an adjuvant. This is especially 
important as the use of GM-CSF in antiviral immunotherapies is largely 
rationalized by the fact that GM-CSF enhances innate antiviral immunity 
at the cellular level by increasing cellular proliferation, maturation, and 
antigen presentation. 

5. Conclusion 

GM-CSF serves many roles in the immune system including survival, 
differentiation, and proliferation of immune cells, exerting its actions 
through four main signalling pathways (JAK/STAT, PI3K, MAPK, and 
NF-κB). In this review, we focused on the antiviral roles that GM-CSF 
serves in association with other antiviral cytokines. GM-CSF’s antiviral 
activities have been studied in respiratory viruses such as IV and RSV. 
Insight into the functions of GM-CSF has led to the initiation of 
numerous clinical trials, the results of which appear to be promising on 
many fronts. These range from anti-GM-CSF immunotherapies to treat 
hyper-inflammatory disease states to vaccine adjuvant therapies to 
promote anti-tumour responses, and more recently to help prevent in
fections. Overall, the information presented in this review summarizes 
the recently reported data on how GM-CSF helps clear viral infections. 
Clearly, GM-CSF’s mechanisms of action should be further investigated 
in diverse viral models to determine its efficacies in various settings of 
immunotherapies. Whether the best immunotherapeutic strategies 
relying on GM-CSF will employ the individual cytokine alone, or use it in 
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combination with other antivirals drugs or vaccine adjuvants, remains to 
be revealed by future studies examining this exciting prospect. 
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