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Cryo-EM images have extremely low signal-to-noise levels because biological

macromolecules are highly radiation-sensitive, requiring low-dose imaging, and

because the molecules are poor in contrast. Confident recovery of the signal

requires the averaging of many images, the iterative optimization of parameters

and the introduction of much prior information. Poor parameter estimates,

overfitting and variations in signal strength and resolution across the resulting

reconstructions remain frequent issues. Because biological samples are real-

space phenomena, exhibiting local variations, real-space measures can be both

more reliable and more appropriate than Fourier-space measures. Real-space

measures can be calculated separately over each differing region of an image or

volume. Real-space filters can be applied according to the local need. Powerful

prior information, not available in Fourier space, can be introduced in real space.

Priors can be applied in real space in ways that Fourier space precludes. The

treatment of biological phenomena remains highly dependent on spatial

frequency, however, which would normally be handled in Fourier space. We

believe that measures and filters based around real-space operations on

extracted frequency bands, i.e. a series of band-pass filtered real-space volumes,

and over real-space densities of striding (sequentially increasing or decreasing)

resolution through Fourier space are the best way to address this and will

perform better than global Fourier-space-based approaches. Future develop-

ments in image processing within the field are generally expected to be based on

a mixture of both rationally designed and deep-learning approaches, and to

incorporate novel prior information from developments such as AlphaFold.

Regardless of approach, it is clear that ‘locality’, through real-space measures,

filters and processing, will become central to image processing.

1. Cryogenic electron microscopy (cryo-EM) yields
exceptionally noisy, unreliable images of the electron
scattering density, from which information is recovered
by averaging

Imaging of biological samples is usually limited by the effects

of radiation on the sample. Radiation damage occurs quickly

in macromolecules since they are radiation-soft and rely on

weak forces for their stability (Glaeser, 1971; Knapek &

Dubochet, 1980). Richard Henderson established that elec-

trons were the best practical form of radiation to use for the

imaging of biomolecules in terms of the amount of informa-

tion gained before substantial radiation damage occurs,

provided that the sample can be prepared as a thin film in

vacuum, in order to avoid multiple scattering events, and can

be considered a weak-phase object for elastic scattering

(Henderson, 1995; Peet et al., 2019). Direct electron detectors

are approaching near-perfect electron imaging, in which the

impacts of essentially all electrons are recorded and well

localized at the detector (Li et al., 2013; McMullan et al., 2014).
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Even when using electrons and detecting them with high

accuracy, however, the dose that can be tolerated before the

sample is destroyed is tiny, leading to very imperfect images.

This low dose translates directly into a low signal-to-noise

ratio (SNR). The principal contributor to this is shot noise

because, while the scattering probability of electrons is best

described as a waveform, the electrons that contribute to the

image are detected as individual particles (Baxter et al., 2009).

Radiation damage from inelastic scattering is also a major

contributor to the poor SNR, accumulating over the course of

an exposure and contaminating the signal from earlier frames.

In order to recover the desired information from low-SNR

images it is necessary to average similar samples together

(Frank et al., 1981). Because the stochastic noise is zero-mean

in Fourier space, the average will tend to the original signal

given correction for the contrast transfer function (CTF;

Zemlin, 1978).

2. The low SNR of cryo-EM images substantially hinders
parameter estimation and thereby all further
reconstruction steps

If high-SNR images could be recorded, every step in cryo-EM

image processing would be effectively trivial. Even for low-

SNR images, with appropriate correction of the CTF (Zemlin,

1978) averaging of correctly weighted particle images in the

correct orientation should yield structures to the limit of the

information present in the data (Frank et al., 1981). However,

at low SNR the estimation of these parameters is fraught with

difficulty and error, and the effects of low SNR on parameter

estimation therefore represent the fundamental issue in cryo-

EM (van Heel, 1987; Radermacher et al., 1987; Penczek et al.,

1994). These difficulties are exacerbated by the number of

parameters requiring estimation. During image collection

there is frequency-dependent radiation damage (Grant &

Grigorieff, 2015) and three-dimensional movement of the

sample, the two in-plane dimensions of which are represented

as offsets (Li et al., 2013) and the third of which is incorporated

into the contrast transfer function, which represents a further

three parameters (Mindell & Grigorieff, 2003). For each image

or particle, three angles and two offsets relative to the object

of interest must be calculated [which are estimated differently

for tomography, subtomogram averaging and single-particle

analysis (SPA)]. Finally, the spectral SNR curve of the objects

is required for deconvolution of the CTF from the sample

through Wiener filtering or a similar process (Wiener, 1942;

Kirkland et al., 1980; Scheres, 2012a).

3. Noise and uncertainty in cryo-EM has traditionally
been handled globally as a ‘resolution’ and a
concomitant global low-pass filter

Inaccurate parameter estimation results in substantial noise

error in any reconstruction from cryo-EM. Because recon-

struction of a three-dimensional volume from two-dimensional

images is an ill-posed problem, it is typically handled by a

regularized, iterative process seeking a local minimum. In such

processes output from the previous iteration is used as input

for the next, and incorporation of noise is highly problematic.

Any noise that is retained will become part of the target in

subsequent iterations, indistinguishable from the signal and

thereby becoming fixed in the resulting reconstructions. This

problem is referred to as ‘overfitting’. The diagnosis of such

issues requires some way to separate the signal from the noise,

and therefore the practice of splitting data into ‘half sets’ has

been adopted, making reconstructions from each half of a data

set and comparing the two to estimate their similarities and

differences. To avoid overfitting, these reconstructions must

remain truly independent, with the entire parameter estima-

tion and reconstruction process performed separately for each

set (Grigorieff, 2000). The standard way to measure the

similarity between the half-set reconstructions is with the

Fourier shell correlation (FSC), which is calculated in Fourier

space and therefore represents a weighted average of the

estimate of the SNR over the entire volume in each resolution

shell (Harauz & van Heel, 1986). As an indicator of inter-

pretability, a resolution value for the reconstruction is typi-

cally assigned based on the point at which the FSC curve drops

below a certain threshold value. [A figure of 0.143 is often

used for this threshold, although the details have remained

somewhat controversial. A detailed consideration of these

problems as they apply to locality can be found in Rohou

(2020).] Usually, the final reconstruction is low-pass filtered

at the assigned resolution, either simply with a standard

fall-off, or in a more sophisticated advance, through a global

weighting based on the FSC curve itself (Rosenthal &

Henderson, 2003).

4. The samples most commonly investigated by
cryo-EM typically exhibit large local variations in signal
in three dimensions

For independent cryo-EM micrographs, the SNR within the

field of view tends to be relatively similar throughout. Varia-

tions in ice thickness and sample scattering density result in

local differences; however, the process of image generation is

similar unless there is substantial variation in defocus across

the field of view, such as when a tilt has been applied during

tomography. The specimens investigated by cryo-EM,

however, are unrestrained, flexible and frequently dissimilar

at a structural level. They range from unique assemblages such

as cells and organelles, which cannot be averaged as whole

bodies, through partially similar assemblies such as focal

adhesion complexes and cytoskeletal elements, which will

have substantial compositional variation, to well ordered and

homogenous individual particles. Even when the chemical

composition of a series of samples is identical, there will still

be some degree of conformational heterogeneity, and their

three-dimensional structures will vary. As a result of this

variation, when such particles are averaged together those

regions with higher similarity will produce a stronger signal,

while less similar regions will have a weaker signal and

comparatively higher noise levels.
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5. Global assessment and filtering in Fourier space
cannot correctly account for local variations within the
sample

The requirement to average low-SNR images of structurally

different samples to generate a cryo-EM reconstruction

implies that the output, a single structure, will not be an

accurate three-dimensional representation. All regions of

variation will be represented as an average of the input

conformers or compositions. Moreover, as explained above,

any volumes resulting from averaging will exhibit differences

in local SNR in their different regions. Because both signal

and noise in cryo-EM are ‘coloured’, i.e. they vary with

frequency, resolution-based methods are essential to separate

high-fidelity from low-fidelity features. Assessment of the

reconstruction in Fourier space (for example calculation of the

FSC curve) cannot account for local variations in real space.

Fourier-space approaches to filtering and weighting of cryo-

EM reconstructions (such as the FSC weighting discussed

above) inherently have a global effect in real space, affecting

all local regions equally. However, because the SNR varies

between regions, global filtering is inappropriate, leading to

excessive blurring of high-resolution regions and over-

sharpening of noisy low-resolution regions. Therefore, both

global assessment and global weighting of cryo-EM densities

are problematic; they can be misleading and in many cases

harmful to the final reconstruction. It remains essential to

retain the resolution-based aspects of Fourier-based methods;

however, real-space variations cannot be ignored.

6. Several methods of achieving locality for Fourier
space have been defined; however, real-space
measures and operations on extracted frequency bands
are superior in performance

It would be natural to handle local variations by working

directly in real space. However, many important phenomena

in cryo-EM, including signal and noise strength, radiation

damage and the CTF of the microscope, are directly depen-

dent on spatial frequency. It is much easier to account for

these in Fourier space, and so global Fourier-space approaches

have generally been preferred. Accurate treatment of cryo-

EM images requires working in a way that is both local and

frequency-dependent. This is not trivial, and several different

approaches have been tried (Fig. 1). For a long time, experi-

menters in SPA have achieved a degree of locality by using a

binary mask to separate the particle from the surrounding

solvent and restricting the calculation of the FSC to the

particle alone. Cardone et al. (2013) extended this approach to

measure resolution locally by convolving a mask with each

point of the reconstructed volume (Fig. 1a). At each point in
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Figure 1
Three approaches to local evaluation and filtering: real-space windowing with Fourier evaluation, real-space kernel convolution and Fourier-shell real-
space mapping. (a) Convolution of a real-space window, followed by Fourier transformation and evaluation or filtering. (b) Convolution of a series of
real-space kernels corresponding to a basis for evaluation and/or filtration. (c) Generation of real-space maps from individual Fourier bands, rings or
shells, followed by evaluation or final summation. We believe this method to be the most promising approach.



the map, the mask is applied to both half-maps, the respective

Fourier transforms are calculated and the resolution is

measured using the standard FSC curve method.

This achieves locality well, but is extremely computationally

intensive because it requires Fourier transforms to be calcu-

lated for each point, and despite the name fast Fourier

transformation is not so fast when calculated thousands of

times. Furthermore, the results become highly dependent on

the properties of the mask, and the statistics are hampered by

the relatively small number of pixels or voxels within each

region (Cardone et al., 2013; Chen et al., 2013). A computa-

tionally more tractable approach was adopted through the use

of real-space kernels allowing the estimation of components at

each resolution (Kucukelbir et al., 2014; Fig. 1b); however, pre-

processing and the relative sharpness of the map have large

effects on the output of these approaches, making the results

somewhat inconsistent and unreliable.

The most promising approach to achieving locality is the

application of band-pass filters and subsequent transformation

of each band into real space for operations, or equivalently

consideration of the real-space differences between successive

low-pass filtered densities (Vilas et al., 2018; Ramlaul et al.,

2019; Ramlaul, Palmer et al., 2020; Penczek, 2020). This has

the benefit of being more computationally tractable than

mask-convolution approaches, because Fourier transforms

only need to be calculated at each frequency considered rather

than for each real-space point. It also avoids spurious effects

of the mask size and shape, and allows direct comparison of

densities over the entire map, but retains independence from

the effects of sharpening or differences in power between

frequency shells that are so problematic for purely real-space

kernel-convolution-based approaches. Furthermore, para-

meter estimates from this approach can often be better than

standard estimates in Fourier space for a number of reasons.

Firstly, the number of data points (in real space) available for

calculations at each frequency is much larger, simplifying the

estimation of distributions, and is consistent between

frequency bands, facilitating direct comparisons between

parameters estimated at different resolutions. Secondly, direct

comparisons between Fourier transforms require working in a

four-dimensional space because the Fourier coefficients are

complex numbers, whereas real space limits the joint distri-

bution to two dimensions. Finally, working in narrow

frequency bands avoids the large (logarithmic) variations in

signal power which are a natural consequence of working in

Fourier space. One last advantage of this approach is that it

can be applied at arbitrarily high (subpixel) resolution in

either Fourier space or real space. This allows the smooth

treatment of, for example, real-space differences within a

tilted micrograph at the correct defocus, or equiphase bands of

Fourier voxels according to the phase of the CTF through

padding.

There are, of course, constraints upon the resolution that

can be achieved in Fourier space when one is converting to

real space in this way, although it is important to note that

these apply to any method of attaining locality involving

Fourier space. While the real-space representation of any

resolution-based calculation can be considered as a simple

summation of waveforms, allowing appropriate weighting to

be performed in either space, the behaviour of such waveform

summations can be counterintuitive, especially at disconti-

nuities in either space. A widely known example of this in real

space is Gibbs’ phenomenon, whereby the partial summation

of a Fourier series exhibits an overshoot at jump disconti-

nuities. While biological macromolecules can generally be

considered to exhibit smooth, continuously differentiable,

densities, such phenomena limit how narrow the bandpass or

low-pass filters in use may be, as such an overshoot or ringing

will make the real-space values unrepresentative for further

calculations.

7. Acceptance of these issues as they apply to
resolution calculation necessitated the beginning of a
real-space ‘local’ perspective in cryo-EM

The identification of real-space problems in SPA led to the

definition of ‘local’ resolution maps (Cardone et al., 2013;

Kucukelbir et al., 2014), which defined a similar approach to

the global FSC cutoff and filtering previously established for

reconstructions. Within each region of a map, a resolution

cutoff figure is ascribed, providing a baseline for interpreta-

tion. There are several issues with this approach, some of

which are inherited directly from approaches to global reso-

lution measurement. Firstly, the choice of which resolution

threshold to use remains contested. In smaller regions of the

map, the number of samples available is much reduced and so

such locally calculated statistics are inherently more noisy and

variable. Furthermore, a single resolution figure does not

provide a secure foundation for interpretation; the complete

shape of the spectral SNR curve is required for a meaningful

understanding of the reliability of features in real space.

8. Defining local resolution is insufficient for proper
interpretation and processing; local filtering or density
modification is essential for the effective use of such
information

Measurement of local SNR variation gives some insight into

the quality of a reconstruction, but it is of limited usefulness

without treatment. In spite of knowledge of the reliability, or

lack thereof, in each region, it is difficult for an experimenter

to visualize such issues when interpreting their density.

Furthermore, for further computational processing, including

for further parameter estimation, it is essential to account for

these local SNR variations or overfitting will occur. This issue

is obvious during interpretation by the scientist and has been

shown to be a substantial issue in the refinement of particle

orientations (Punjani et al., 2020; Ramlaul, Palmer et al., 2020).

As well as improving the map reconstruction itself, the

appropriate treatment of local SNR variations can improve

the results of other key processing steps in cryo-EM [e.g.

particle picking, see Bepler et al. (2020)].
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9. Different approaches are required when filtering for
optimal signal recovery rather than interpretation

Because of the low-SNR aspects of local filtering, it is

important to apply different targets for filtering intended for

downstream averaging in comparison to filtering for down-

stream interpretation or for use as prior information in

processing (Fig. 2). For averaging, ‘noise suppression’ is

required; in such cases it is best to weight the input according

to an accurately estimated SNR for maximum information

recovery. Further averaging of such images or volumes

benefits from accounting for the local SNR and therefore

‘Wiener’-like weighting is the most appropriate target.

However, for downstream interpretation or use as a prior, full

‘denoising’ is more apt; in such cases one wishes to exclude as

much noise as possible to prevent overfitting caused by the

stable incorporation of noise into models or parameters.

Probabilistic weighting according to significance is most

sensible in these cases (Beckers et al., 2019; Ramlaul et al.,

2019), although a wide variety of denoising algorithms are

available. It is important to note that data filtered in such a

manner should no longer be averaged, as the weighting will

not be linear with the signal.

10. Mixed real- and Fourier-space techniques have only
recently begun to allow the proper decomposition of
conformational heterogeneity

Ideally, rather than averaging over differences, one would

prefer to account for them in the reconstruction process.

Compositional heterogeneity is ideally resolved by sorting

particles or subtomograms into complexes of different

chemical composition. This works well in the case of the

presence or absence of large macromolecules, but is proble-

matic for small ligands or side chains exhibiting radiation

damage. Conformational flexibility, on the other hand, is a key

feature of most macromolecules, often representing the raison

d’être for molecular machines, and is a rather more important

contributor to local variation in SNR than compositional

variations. By its nature it can only be resolved in real space.

Fundamentally, however, every macromolecule imaged is

likely to lie in a class of one: differences will remain, the only

variable is their scale and significance, and therefore local

filtering will remain key. Current techniques to handle flex-

ibility rely on either the deconvolution of the sample into

different rigid regions with separate parametrizations [as

multiple bodies, for example, RELION multibody refinement
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Figure 2
A comparison of linear noise-suppression and nonlinear denoising approaches for local filtering. (a) A set of noisy input images were generated (blue
line; true signal, dashed orange line). A noise-suppression approach (Wiener filtration: weighting according to the SNR in Fourier space) reduces the
noise (b), whereas a denoising approach (total variation regularization: optimization to minimize the magnitude of the gradient while retaining
maximum fidelity) removes much more visible noise and flattens spurious features (c). On averaging, the raw images (d) and Wiener filtered images (e)
tend towards the true signal, however, the denoised images (f) do not. Therefore, if images are to be used for further averaging, only a linear weighting,
noise-suppression approach is appropriate.



(Nakane et al., 2018), or through serial subtraction] or through

the computational generation of manifolds of greatly reduced

dimensionality onto which the different particles can be

placed (Frank & Ourmazd, 2016; Zhong et al., 2020; Punjani &

Fleet, 2021b). In the case of separate parametrizations, this is

functionally equivalent to performing multiple, restrained

independent reconstructions of subregions of the sample in

question. The manifold approach, on the other hand, is rela-

tional, matching particles or subtomograms to a position

within a continuum of structures. It provides more information

on the motions resolved, but typically attains lower overall

resolution because information is spread over a continuum.

Recently, however, the combination of deep learning with the

introduction of real-space prior information has begun to

allow per-object treatment of flexibility for the first time

(Punjani & Fleet, 2021a).

11. Introducing prior knowledge is trivial in real space
but is very difficult in Fourier space

Because reconstruction is an ill-posed problem, restraints are

usually incorporated in Fourier space to regularize the

refinement process. However, the available prior information

that can be readily incorporated in Fourier space is extremely

limited: either ‘smoothness’ or an explicit Gaussian prior are

the typical restraints implemented in current software

(Scheres, 2012b; Punjani et al., 2017). In real space a large

number of other restrictions on the nature of the density can

be implemented as constraints (Fig. 3). Many have been of

great utility in crystallographic reconstruction and have equal

potential in cryo-EM. Macromolecular densities are

connected, can be divided into a binary solvent and macro-

molecule regions, are effectively positive definite against a

solvent background, exhibit a reliable scattering density

difference from solvent and typically have an expected scat-

tering mass, all of which can be incorporated into restraints

(reviewed in Podjarny et al., 1996; Jakobi et al., 2017; Terwil-

liger et al., 2020). The use of such restraints based on the

simple division of particles into solvent and sample of

constrained density has allowed the first treatment of

conformational flexibility by Punjani & Fleet (2021a). Using

coarse-to-fine low-pass resolution extension, they were able to

train a neural network to generate 3D deformation fields best

matching an input structure to flexible particles. Optimization

of this ‘canonical’ volume in real space then partially resolves

the flexibility of the particles, recovering significantly higher

resolution than the input.

The incorporation of further prior knowledge about

macromolecular features from known protein structures has

also been suggested and has great potential. However, the
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Figure 3
Incorporation of prior information in real space. (a) Macromolecular density is positive definite, which provides a substantial restraint. (b) The densities
of protein and nucleic acids are known, and such information can be incorporated into cryo-EM real-space processing as a real-space prior. (c)
Macromolecules are composed of either sample or solvent, allowing binary restraints leading on from existing masking approaches. (d) For single-
particle analysis, connectivity can be assumed and provides a further restraint, which is already partially utilized in real space.



incorporation of such rich priors remains very difficult for

unknown structures, as this information is directly used for

interpretation and evaluation of the final density. There is a

substantial risk of severe overfitting because the prior alone

might produce realistic-looking features (Kimanius et al.,

2021). A promising alternative that has long been used in

crystallography, and for which validation methodologies have

been developed (Liebschner et al., 2019; Brown et al., 2015), is

the incorporation of information from partial and ensemble

structures. The success of AlphaFold (Jumper et al., 2021) has

rendered such input priors readily available. The ideal model

would be a three-dimensional structure of the individual

molecule(s) that can be deformed to fit each separate obser-

vation through, for example, molecular-dynamics simulations

or neural networks.

12. Future image-processing pipelines for isolated
macromolecules and in situ studies will converge, but
both must absorb local techniques

It seems highly likely that the SPA and subtomogram aver-

aging approaches will converge. Subtomogram refinement has

already adopted the techniques of SPA in order to reach high

resolution. SPA will similarly require techniques coming from

tomography to handle flexibility and variation in sample

height across the field of view, and to work effectively within

cells and with complex samples. A key requirement for

progress will be a substantial reduction in the number of

images that are required for a tomographic reconstruction,

because this is often limiting and engineering avenues to

address this are limited. At least two different images of each

individual object under consideration will of course be

required to resolve the relative positions of components in Z

for averaging; however, localization of objects may well prove

to be possible with many fewer images than are currently

collected, allowing more of the dose and imaging time to be

expended on useful imaging. This is possible both through

advances in the identification of components in projections

alone and in the low-resolution reconstruction of individual

tomograms from fewer images. Compressed sensing techni-

ques, in which structures are parametrized on a sparse basis

and L1-norm regularization is used to resolve ambiguities and

select the ‘simplest’ among numerous possible structures,

appear to have substantial promise for such advances. This will

allow the use of fewer observations and under-determined

reconstruction systems, and can be seen as a form of forma-

lized Occam’s razor (Candès et al., 2006; Ockham, c.1330).

It is generally accepted that future image-processing

development will be driven by a mixture of classical approa-

ches and novel deep-learning algorithms. Classical approaches

no longer represent the cutting edge of what can be achieved

with computational techniques and advances are often too

computationally intensive for ready utility, whereas deep-

learning techniques bring challenges for validation and

generalization, since it is difficult to establish what prior

information is being used and how reliable the resulting

structures are. Whatever the underlying approach, however,

we believe that real-space processing of image segments

isolated in Fourier space, and local approaches more generally,

will become central themes. Global Fourier-space approaches

are insufficient to handle the problems inherent in the aver-

aging of cryo-EM data, cannot readily incorporate the

necessary prior information, which is comparatively trivial in

real space, and cannot adequately account for flexibility or

heterogeneity as these are real-space phenomena.
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