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Abstract: Thyroid cancer (TC) is the most common endocrine malignancy without reliable preventive
agent. Resveratrol possesses in vitro anti-TC activities; while its effect(s) on thyroid tumorigenesis
remains unknown. This study aims to address this issue using DEN/MNU/DHPN-induced rat
carcinogenesis model. 50 male Sprague-Dawley rats were separated into four groups as Group-1
(5 rats); normally fed; Group-2 (15 rats); DEN/MNU/DHPN treatment only; Group-3 (15 rats) and
-4 (15 rats); DEN/MNU/DHPN treatment; followed by resveratrol intragastric (IG) injection and
intraperitoneal (IP) injection; respectively; in two-day intervals for 30 weeks. The results revealed
that the average resveratrol concentration in thyroid tissues was 1.278 ± 0.419 nmol/g in IG group
and 1.752 ± 0.398 nmol/g in IP group. The final body weights of Group-3 and Group-4 were lighter
than that (p > 0.05) of Group-1; but heavier than Group-2 (p < 0.05). TC-related lesions (hyperplasia
and adenomas) were found in 53.3% of Group-2; 33.3% Group-3 and 26.7% Group-4. Lower serum
carcino-embryonic antigen (CEA) and thyroglobulin (Tg) levels; down-regulated expression of IL-6
and cyclooxygenase-2 (COX-2); reduction of NF-κB/p65 nuclear translocation; and elevated IkBα

expression were found in the thyroid tissues of Group-3 and Group-4 in comparison with that of
Group-2. These results demonstrate that IG and IP administered resveratrol efficiently reduces the
frequency and severity of DEN/MNU/DHPN-caused TC-related lesions and would be of values in
thyroid tumor prevention.
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1. Introduction

Thyroid cancer (TC) is one of the commonest endocrinal malignancies in worldwide [1].
For instance, Chinese TC incidence keeps increasing in the last 30 years, irrespective to the improved
health care and popularization of iodized salt consumption [2]. Many factors are supposed to be
related with thyroid carcinogenesis such as genetic mutations, environmental factors, life style, obesity,
and ionizing radiation, while their implications in TC prevention and treatment remain uncertain [3–6].
Thyroidectomy assisted by radioactive iodine therapy has become the mainstream of TC treatment
and achieved promising therapeutic outcome [7]. However, the post-operation complications such
as parathyroid and recurrent laryngeal nerve, laryngeal nerve injury, seriously affect the quality of
life of patients. In addition, the life-long thyroid-hormone supplementation or replacement therapy is
a heavy financial burden to TC patients and society [8]; secondary risk of malignant tumors and cancer
recurrence of the diagnosis of patients also bring a psychological burden [9]. In this context, it would
be more valuable to explore the safer and reliable approach to prevent thyroid tumor formation.
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Resveratrol in the chemical name of 3,4′,5-trihydroxystilbene has a wide range of health benefits
for the coronary, nervous, liver, and cardiovascular systems [10]. Resveratrol also exerts suppressive
effects on many types of cancers including thyroid cancers by inducing differentiation and apoptosis
via inhibiting cancer-related gene expression and cancer-associated signaling [11]. More importantly,
the anticancer doses of resveratrol are not harmful to normal cells and tissues [12]. Our recent studies
reveal that resveratrol effectively suppresses in vitro growth and overcomes the retinoic acid resistance
of anaplastic TC cells [13], suggesting the potential values of this nontoxic compound in TC prevention
and treatment if its anti-TC effects can be further confirmed in vivo.

Chemoprevention aims to use natural or synthetic compounds to intervene against development of
early precancerous stages and tumor formation in stepwise carcinogenesis [14]. Carcinogen-induced animal
tumor models are indispensable tools for investigating the new therapeutic and chemopreventive
approaches for cancers [15]. DMD is constituted by three different genotoxic carcinogens:
diethylnitrosamine (DEN), N-methyl-N-nitrosourea (MNU) and Dihydroxy-di-N-propyl-nitrosamine
(DHPN). DEN is a specific carcinogen of liver [16], DHPN is main induction of lung and thyroid
carcinogenesis [17,18], and MNU targeted for breast and gastrointestinal tract [19,20]. Based on the
initiation-promotion concept, this DMD carcinogenic model (shown in Figure 1) was adopted to
evaluate the preventive potential of resveratrol on stepwise thyroid carcinogenesis [21].
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Figure 1. Experiment protocol for DMD-induced rat carcinogenic model. Rats in G2–G4 were
sequentially treated with DEN (100 mg/kg body weight, IP, single dose), MNU (20 mg/kg body
weight, IP, four times, on days 5, 8, 11, 14) and DHPN (0.1% in the drinking water, during weeks 1
and 3). Rats in G3 received resveratrol (20 mg/kg by body weight) via intragastric route (IG) in two
day intervals for 30 weeks. Rats in G4 received resveratrol (20 mg/kg body weight) via intraperitoneal
route (IP) in two day intervals for 30 weeks. The rats in G1 were given vehicle alone.

2. Materials and Methods

2.1. Animals

Five-week-old male Sprague-Dawley (SD) rats were obtained from Animal Center of Dalian Medical
University. They were housed in polycarbonate cages with hard wood chips at a temperature of 23± 2 ◦C
and a humidity of 55± 5% with a 12 light/dark cycle. Diet and drinking water were available ad libitum.
After a one-week acclimation period, the animals were subjected to the treatments. All of the animal
experimental protocols were approved by the Committee of Animal Care and Welfare, Dalian Medical
University. All work involving experimental animals was performed in full compliance with NIH (National
Institutes of Health) Guidelines for the Care and Use of Laboratory Animals. The animal experiments
were performed under chloralhydrate anesthesia and all efforts were made to minimize suffering.

2.2. Chemicals

DEN (Diethylnitrosamine, CAS No. 55-18-5), MNU (N-methyl-N-nitrosourea, CAS No. 684-93-5)
and DHPN (Dihydroxy-di-N-propyl-nitrosamine, CAS No. 53609-64-6) were purchased from J & K Scientific
Ltd., (Beijing, China). Resveratrol, dimethyl sulfoxide (DMSO), HPLC-grade acetonitrile, methanol, acetic
acid, and 1,8-dihydroxyanthraquinone were purchased from Sigma-Aldrich (St. Louis, MO, USA).
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2.3. Experimental Design

As shown in Figure 1, the experimental procedure was undertaken when the rats were six weeks
old. Fifty male SD rats were randomly divided into four groups. Animals of groups 2–4 were subjected
to the DMD initiation, consisting of DEN (dissolved in physiological saline solution, 100 mg/kg by
weight, a single intraperitoneal injection, at the commencement of the experiment), MNU (dissolved
in citrate-buffered solution pH 6.0, 20 mg/kg by weight, intraperitoneal injection, four times at days
5, 8, 11, and 14), and DHPN (0.1% in the drinking water for two weeks during weeks 1 and 3).
Non-initiation controls (Group-1) were given vehicle in the drinking water instead of the carcinogen
injections. The rats in Group-3 and Group-4 were treated by resveratrol in the dose of 20 mg/kg body
weight via intragastric and intraperitoneal routes in two day intervals for 30 weeks. Rats in Group-1
without DMD and resveratrol treatment were cited as control. The animals in each group were sacrificed
under ether anaesthesia at the 30th week and their body weights and relative organ weights were
recorded. Portions of the tumor-containing tissues were snap frozen with evaporated liquid nitrogen
(−80 ◦C) for frozen sectioning and protein preparation; the remaining tissue was fixed in 10% formalin,
embedded into paraffin and sectioned for morphological and immunohistochemical examinations.
The serum samples were obtained from the inferior vena cava blood. Blood samples for serum isolation
(1 mL) were maintained for 15–20 min at room temperature after extraction to allow for clotting and
then centrifuged at 2000 rpm for 10 min. The supernatants were stored at −80 ◦C until use.

2.4. Elucidation of Resveratrol Availability in Thyroid Tissues and ATC Cells

2.4.1. Sample Collection and Treatments

Ten rats were randomized into two groups: Group-1, treated with resveratrol intragastric
ingestion; and, Group-2, treated with resveratrol intraperitoneal injection. 30 min after 20 mg/kg
resveratrol intragastric or intraperitoneal administration, the rats were painlessly sacrificed by cervical
spinal dislocation and their thyroids were immediately collected. Briefly, thyroid tissues were dissected
on an ice bed, wrapped in aluminum foil, snap frozen in liquid nitrogen and stored at –80 ◦C until
use. To evaluate of the efficacy of drug uptake, 100 µM resveratrol-treated human anaplastic thyroid
cancer THJ-16T cells [13] were employed as effective control. THJ-16T cells was cultured in RPMI
1640 medium (Gibco, Grand Island, NY, USA) supplemented with 5% fetal bovine serum (Gibco,
Grand Island, NY, USA) at 37 ◦C in a humidified atmosphere containing 95% air and 5% CO2 [22].
Resveratrol was dissolved in DMSO to a stock concentration of 100 mM, and stored in darkness at
−20 ◦C. THJ-16T cells were treated with 100 µM resveratrol for 60 min and then collected. The cells
and thyroid tissues without resveratrol treatment were cited as background control.

2.4.2. Sample Preparation and HPLC Analyses

Sample tissues and cells were extracted with 416µL methanol and 84µL 1,8-dihydroxyanthraquinone
(internal standard, IS, 200 µg/mL) in a centrifuge tube. The tissue homogenates were centrifuged at
12,000 rpm for 10 min at 4 ◦C and the supernatant was transferred to a clean tube. The combined organic
solvent of the supernatants was evaporated to a final volume of 400 µL, and subsequently placed in
a sealed amber vial for HPLC analysis [23]. To improve the sensitivity and precision of quantification,
we purified the samples and cited 1,8-dihydroxyanthraquinone (Sigma-Aldrich, St. Louis, MO, USA)
as the internal standard and trans-resveratrol (Sigma-Aldrich) as the standard for drawing a standard
curve by the methods described elsewhere [24].

2.5. ELISA Assay for Thyroid Cancer-Related Markers

Serum CEA and Tg levels were determined using a ELISA kits (Lengton Bioscience Co., Ltd.,
Shanghai, China). Briefly, serum samples were incubated in 96-well microplates coated with anti-mouse
primary antibodies against CEA or Tg. Samples were developed with horseradish peroxidase-conjugated
secondary antibodies. After adding the substrate and stop solution, the plates were read on a microplate
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reader (Thermo Fisher Scientific, Waltham, MA, USA) using a test wavelength of 450 nm. The results
were calculated based on the absorbance of complex cytokines–antibodies. The concentrations were
obtained from model curves with 0.1 and 0.2 ng/mL detection limits for Tg and CEA, respectively.

2.6. Histological Staining and Examination

Paraffin-embedded thyroid as well as liver, colon, lung tissues of the four experimental groups
rats were sliced into 5 µm sections and then subjected to hematoxylin and eosin (HE) staining for
histological examination. Thyroid lesions were pathologically classified into focal follicular cell
hyperplasias (FFCHs), adenomas, and carcinomas, according to the published criteria [25]. Pathological
sections were double-blindly read by two pathologists.

2.7. Immunohistochemical Staining

Immunohistochemical (IHC) staining was conducted using DAB substrate kit (ZSGB-BIO, Beijing,
China) and the antibodies against Ki-67 (rabbit IgG, 1:150 dilution; Proteintech Group, Inc., Rosemont,
IL, USA), PCNA, TTF-1 and Tg (Mouse monoclonal IgG, 1:50 dilution; Santa Cruz Biotech, Santa Cruz,
CA, USA), NF-κB, COX-2 and IL-6 (Mouse monoclonal IgG, 1:50 dilution; Santa Cruz Biotech,
Santa Cruz, CA, USA) and IkBα (1:100 from Cell Signaling, Cat., Danvers, MA, USA), respectively [26].
The results were evaluated according to the labeling intensity and scored as negative (−), weakly
positive (+), moderately positive (++), and strongly positive (+++).

2.8. Western Blot Analysis

For Western blotting, total cellular proteins were prepared from the thyroid tissues by the
method described previously [27]. Fifty micrograms of sample protein was separated with 12%
SDS/PAGE, and transferred to polyvinylidene difluoride membrane (Amersham, Buckinghamshire,
UK). The membrane was blocked with 5% skimmed milk in NaCl/Tris-T (10 mM Tris-Cl, pH 8.0,
150 mM NaCl, and 0.5% Tween-20) at 4 ◦C overnight. It was rinsed three times (10 min each) with
NaCl/Tris-T, and this was followed by 3 h of incubation with the same first antibodies that were used in
immunohistochemical staining in the appropriate concentrations (IL-6, 1:500; COX-2, 1:500; NF-κB/p65,
1:500; β-actin, 1:3000, and IkBα, 1:1000) and 1 h of incubation with horseradish peroxidase-conjugated
anti-rat IgG (Zymed Laboratories, San Francisco, CA, USA). Immunolabeling was detected with an
enhanced chemiluminescence system (Roche, Mannheim, Germany), and visualized with the UVP
Bio-spectrum Imaging System (UVP, Upland, CA, USA). β-actin was used as the internal quantitative
control in densitometry analyses.

2.9. Statistical Analysis

Statistical analyses were completed with SPSS statistical package 16.0 (Chicago, IL, USA).
Data shown are mean ± SD values. The incidences of pathological lesions between groups were
determined by use of Fisher’s exact probability tests. Differences of the mean values were analyzed
using one-way ANOVA (LSD t-test) and Student’s t-test. The criterion for the differences was
considered to be significant at p < 0.05.

3. Results

3.1. Sufficient Resveratrol Availability in Thyroids

HPLC/DAD analysis of resveratrol in rat thyroid tissue samples was conducted 30 min
after injection with 20 mg/kg resveratrol by IG or IP. As shown in Figure 2A, the average
resveratrol concentration of thyroid tissues was 1.278 ± 0.419 nmol/g (0.256 µM) in IG group and
1.752 ± 0.398 nmol/g (0.351 µM) in IP group (Figure 2A). The intracellular concentration of resveratrol
in 5× 106 THJ-16T cells was 0.362± 0.126 µM after 100 µM resveratrol treatments for 60 min (Figure 2B).
Only one peak corresponding to trans-resveratrol was detected in both the thyroid tissues and THJ-16T
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cells extracts (Figure 2A,B). Cellular resveratrol uptake of 100 µM resveratrol-treated THJ-16T cells
was about 41.4% and 3.1% higher than that of thyroid tissues treated by resveratrol through IG and IP
routes, respectively.
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thyroid cancer cells. (A) HPLC/DAD chromatograms of normal rat thyroid tissue (black line), thyroid
tissue obtained from the rat 30 min after 20 mg/kg resveratrol injection through IG (red line) and
IP (green line), normal rat thyroid tissue spiked with 1.0 µM resveratrol and internal standard/IS
(blue line); (B) HPLC/DAD chromatogram of control cell lysates (black line), cells treated with 100 µM
resveratrol for 60 min (red line), and control cell lysates spiked with 1.6 µM resveratrol and internal
standard/IS (blue line). Peaks: 1. trans-resveratrol; 2. 1,8-dihydroxyanthraquinone (IS).

3.2. Safety of Long-Term Resveratrol Treatment

No rat is dead during 30 weeks of repeated resveratrol treatment in two-day intervals. As shown
in Table 1, the average final body weights of the resveratrol IP group (591.3 ± 38.4 g) and resveratrol
IG group (580.5 ± 37.7 g) are higher than that of Group-2 (549.1 ± 42.1 g) with statistically significance
(p < 0.05). No significant difference of the final body weights and relative weights of the thyroids,
liver, lungs, kidneys, and spleen are established either between resveratrol IP group and resveratrol IG
group or the control group and the two resveratrol-treated groups (p > 0.05).

Table 1. The average weights (g) of animal body and major organs.

Treatment
No. of Rats Body Weight Relative Organ Weights

0 w 30 w 0 w 30 w Thyroid Liver Lung Kidneys Spleen

Control 5 5 162.8 ± 5.4 610.1 ± 24.8 0.011 ± 0.000 2.49 ± 0.21 0.35 ± 0.03 0.59 ± 0.03 0.14 ± 0.01
DMD alone 15 15 162.6 ± 7.0 549.1 ± 42.1 0.013 ± 0.002 2.92 ± 0.65 0.36 ± 0.06 0.60 ± 0.06 0.14 ± 0.02

Res. IG 15 15 163.1 ± 7.7 580.5 ± 37.7 * 0.012 ± 0.002 2.73 ± 0.34 0.35 ± 0.04 0.62 ± 0.07 0.14 ± 0.01
Res. IP 15 15 163.9 ± 7.2 591.3 ± 38.4 * 0.012 ± 0.001 2.69 ± 0.39 0.35 ± 0.03 0.61 ± 0.07 0.14 ± 0.02

Data are expressed as Mean ± SD. *, p < 0.05 in comparison with the rats in DMD alone group.

3.3. Resveratrol Alleviated Thyroid Tissue Lesions

Histopathological examination was performed on each of the thyroid samples of the experimental
groups. As shown in Figure 3A, no histological alteration was observed in the specimens of normally
fed rats. Preneoplastic lesions (hyperplasia and/or adenomas) could be found in the DMD alone group,
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resveratrol IG group and resveratrol IP group in the incidences of 53.3%, 33.3%, and 26.7%, respectively.
Single and multiple adenomas was found in 13.3% (2/15) and 13.3% (2/15) of DMD alone group, 6.7%
(1/15) and 0% in the resveratrol IG group and 6.7% (1/15) and 0% in resveratrol IP group, respectively.
Adobe Photoshop CS5 software (Adobe Systems Incorporated, San Jose, CA, USA) was employed to
measure lesion area accurately by the method described elsewhere [27]. The average area of lesions
(hyperplasia/adenomas) of DMD alone group (0.599 ± 0.037 mm2) was 50.9% larger than that of
resveratrol IG (0.397 ± 0.062 mm2) and 87.8% larger than resveratrol IP group (0.319 ± 0.040 mm2)
with statistically significance (p < 0.05; Figure 3B,C).
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Figure 3. The incidences and areas of DMD-caused thyroid lesions in the four experimental groups.
(A) Incidences and severity of pathological alterations in the thyroids; (B) Representative morphological
findings from the thyroid tissues of the four experimental groups. The regions with morphlogical alteration
are defined for area calculation; (C) The average areas of the thyroid lesions (hyperplasia/adenomas)
were determined using Adobe Photoshop CS5. *, p < 0.05 in comparison with DMD alone group.

3.4. Pathological Abnormalities in Other Organs

As shown in Table 2, the incidences of hepatocellularcarcinomas were 26.7%, 6.7%, and 6.7%,
colon lymphadenosis were 46.7%, 26.7%, and 26.7% (p > 0.05) and lung fibrous hyperplasia were
20.0%, 13.3%, and 6.7% (p > 0.05) in DMD alone group, resveratrol IG group and resveratrol IP group,
respectively. Those incidences between the DMD alone group and the two resveratrol treated groups
were significantly different (p > 0.05).
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Table 2. Incidences and severity of pathological alterations in three major organs.

Organs
Control DMD Alone Res. IG Res. IP

(n = 5) a (n = 15) a (n = 15) a (n = 15) a

Liver carcinoma 0 4 (26.7) b 1 (6.7) b 1 (6.7) b

Colon lymphadenosis 0 7 (46.7) b 4 (26.7) b 4 (26.7) b

Lung fibrous hyperplasia 0 3 (20.0) b 2 (13.3) b 1 (6.7) b

a Number of rats; b Percentages in parentheses.

3.5. Lower Serum Tg and CEA Levels in Resveratrol-Treated Rats

Tg (thyroglobulin) is elevated in the patients with thyroid nodules and adenomas, which is
considered as a risk factor of thyroid cancers [28]. As shown in Figure 4A, the average serum Tg levels
in resveratrol IP group (3.327 ± 0.304 µg/L) and resveratrol IG group (3.512 ± 0.377 µg/L) were lower
than that of the DMD alone group (4.139 ± 0.628 µg/L; p < 0.05), but 9.0% and 15.0% higher than
the control group (3.053 ± 0.365 µg/L; p > 0.05). CEA (carcinoembryonic antigen) is a well-known
thyroid cancer biomarker [29]. The average serum CEA levels in resveratrol IP (8.111 ± 0.604 µg/L)
and IG group (8.280 ± 0.541 µg/L) were lower than that of DMD alone group (9.306 ± 1.049 µg/L;
p < 0.05) and 10.0% (p > 0.05) and 12.3% (p > 0.05) higher than the control group (7.373 ± 0.225 µg/L).
In the DMD alone group, the CEA and Tg levels of adenoma-bearing rats were higher than that of
the tumor-free rats (p < 0.05) as well as the rats with hyperplasia only (p < 0.05; Figure 4B). Within the
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with hyperplasia.



Nutrients 2018, 10, 279 8 of 14

3.6. Variable Levels of Growth-Related Factors in the Experimental Groups

TTF-1 (thyroid transcription factor 1) is a homeobox transcription factor essential for the
development of the thyroid, and plays a role in thyroid proliferation, migration, and tumorigenicity [30].
Ki67 and PCNA (proliferating cell nuclear antigen) are widely used in routine cancer investigation
as proliferation promoters [31,32]. Immunohistochemical staining for TTF-1, Ki67, and PCNA were
performed on rat thyroid specimens. As shown in Figure 5. TTF-1 was detected in the nuclei of
thyroid epithelial cells of all groups and its labeling density in the specimens, especially the regions
with pathological alterations, of the DMD alone group was stronger than that of other groups. Tg is
expressed in thyroid specimens of the control group, which is elevated in the that of resveratrol-treated
group and became more distinct DMD alone groups. The levels of Ki67 and PCNA in the DMD alone
group were higher than that of the resveratrol-treated groups and their levels in the hyperplasia and
adenoma tissues were stronger than the surrounding noncancerous tissues.Nutrients 2018, 10, x FOR PEER REVIEW  9 of 15 
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3.7. Resveratrol Inhibited NF-κB/p65 Signaling and IL-6 and COX-2 Expression

NF-κB plays active role in inflammatory response and cancer initiation and progression. Normally,
NF-κB is associated with IκBα and is retained in the cytoplasm inactively. Upon the stimulation
by extracellular or intracellular signals, such as carcinogens, NF-κB is activated by proteasomal
degradation of IkBα, leading to COX-2 and IL-6 expression [33]. The results of immunohistochemical
staining (Figure 6A) and Western blotting (Figure 6B) showed that NF-κB/p65, IL-6, and COX-2
expression levels were relatively low in the control group and distinctly upregulated in the thyroid
tissues of DMD alone group. NF-κB/p65, IL-6, and COX-2 levels in Res IG group and Res IP group
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were lower than that in DMD alone, but higher than that in the control group. IkBα was expressed in a
high level in the thyroid tissues of the control group and became downregulated in the experimental
groups, especially in the DMD alone one (Figure 6A,B).Nutrients 2018, 10, x FOR PEER REVIEW  10 of 15 
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Figure 6. Effects of resveratrol on NF-κB signaling and its associated protein production. (A) IkBα,
NF-κB, COX-2 and IL-6 immunohistochemical staining were performed on the Control, DMD alone,
Res. IG and Res. IP groups; (B) Western blot analysis of IkBα, NF-κB, COX-2, and IL-6 expression
in four groups. β-actin was used as quantitative control, and the results were statistically analyzed
relative to control group. *, p < 0.05; **, p < 0.01.
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4. Discussion

The incidence of thyroid cancer is dramatically increasing in the annual rate of 5.4% in men
and 6.5% in women, and is expected to be the fourth commonest cancer by 2030 [34]. TC can
be viewed as a gradually generated malignancy following the steps of initiation, promotion, and
progression [35]. During the carcinogenic processes, genetic and epigenetic alterations, oxidative
stress, chronic inflammation, and the activation of cancer-associated signaling pathways, leading
to continues cell proliferation and finally malignant transformation [36]. Thyroiditis and thyroid
nodule predispose to thyroid cancer [37–39], which are usually accompanied with activated NF-kB
signaling [40,41] and the elevated serum levels of Tg and CEA [28,42]. The results of our current study
are in agreement with the findings from the TC patients, because hyperplasia and adenoma(s) of rat
thyroids are induced 30 weeks after DMD treatment, and the severity of the lesions are correlated with
serum Tg and CEA levels. Moreover, the thyroid tissues of DMD-treated rats show TTF-1, PCNA,
and Ki67 upregulation, suggesting their increased cell proliferation activity and the potential risk of
malignant transformation [31,32]. Because the cancer-related pathological alterations are favorably
occur in the thyroids (53.3%), rather than other major organs of the DEN/MNU/DHPN-treated rats,
this cancer induction model would be more applicable to explore an agent that can suppress the
cellular and molecular alterations in stepwise thyroid carcinogenesis.

Resveratrol, a naturally polyphenolic agent, has a variety of beneficial biological effects, including
cancer prevention and treatment [43]. This nontoxic compound has multiple molecular targets,
including those that are involved in proliferation, survival, and death of cancer cells [44]. The in vitro
inhibitory effects of resveratrol on thyroid cancers have been documented. For instance, resveratrol
enhances the rates of 131I-induced cell death of thyroid cancer cell [45] and is able to suppress
growth and to overcome retinoic acid resistance of human anaplastic thyroid cancer cells [13].
However, the in vivo impact(s)/influences of resveratrol in stepwise thyroid cancer formation is
still lesser known. Because the preneoplastic lesions are successfully induced in the thyroids of
the DEN/MNU/DHPN-treated rats, this model is employed to elucidate the preventive values of
resveratrol in stepwise thyroid carcinogenesis by systemically administering resveratrol through IG
and IP routes.

Resveratrol has been used as a dietary supplement or functional food because of its beneficial
effects on health [12]. However, it has not yet been used for cancer prevention and treatment because of
the uncertainty of its bioavailability in the major organs when administered systemically [46]. For this
reason, the suitability of resveratrol in vivo application was evaluated by checking its concentrations
in thyroid tissues 30 min after IP and IG administration in the dose of 20 mg/kg by weight before
conducting further experiments. The results were compared with that of resveratrol-sensitive THJ-16T
cells that were treated by 100 µM resveratrol for 60 min. It was revealed that cellular resveratrol uptake
by THJ-16T cells was about 41.4% higher than the thyroid concentration of resveratrol administered
by IG and almost equal (3.1% higher) to the concentration of resveratrol administered by IP route.
Because 100 µM resveratrol is sufficient to causes growth arrest and apoptosis of THJ-16T cells,
IG and, especially, IP administered resveratrol may exert certain biological effects on rat thyroid
tissues although its actions may be relative mild than that in THJ-16T cells. Consequently, IG and IP
administration pathways are applicable to rat thyroid carcinogenic model.

To elucidate thyroid cancer prevention potential of resveratrol, DEN/MNU/DHPN-treated rats
were separated to untreated group as the control and the groups treated with resveratrol via IG and
IP routes for 30 weeks, respectively. Histopathological examination revealed that the incidences of
hyperplasia and adenomas of the DMD alone group are significantly higher than that of the two
resveratrol treatment experimental groups. Moreover, those pathological alterations are more severe in
the DMD alone group rats in terms of the extent of hyperplasia and the number and size of adenomas
in the individual thyroid glands. Focal papillary hyperplasia is a common hyperplastic lesion of
the thyroid and it continues proliferation may convert into adenoma and eventually carcinoma [47].
The pathological findings of current study reveal the potential of resveratrol to alleviate thyroid
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tissue lesions. It would be possible that resveratrol may delay the onset of thyroid tumorigenesis and
therefore malignant transformation. Furthermore, the safety of long-term resveratrol administration is
confirmed because all the rats of the two resveratrol-treated groups were kept alive during the 30 week
resveratrol treatment, and their average body weights are higher than that of the untreated ones and
without significant difference with the healthy rats.

CEA has been regarded as the general cancer-related protein [48] and elevated Tg levels are
associated with thyroid carcinogenesis [29]. PCNA and Ki67 are localized in nuclei and are strongly
associated with tumor cell proliferation and growth [49,50]. To further ascertain the inhibitory effects
of resveratrol on DEN/MNU/DHPN-induced pathogenesis, the serum Tg and CEA levels and Ki67
and PCNA expression in thyroid tissues of the three experimental groups were checked and compared
with that of the normal fed rats. It was found (1) that the average serum Tg and CEA levels of
resveratrol IP and IG groups were higher than that of normal rats but significantly lower than that
of the untreated group and (2) that their levels are in accordance with the severity of pathological
lesions. Because the serum levels of CEA and Tg are not significantly different between the rats with
and without patholigical alterations in other organs, their elevation would largely result from the
thyroid abnormalities. Although TTF-1, Ki67, and PCNA are upregulated in the thyroid specimens
of DMD-treated rats, especially in the regions with hyperplasia and adenoma formation, they are in
relatively lower levels in the two resveratrol-treated groups. The above findings further demonstrate
the effectiveness of resveratrol in attenuating the carcinogenic effects of DMD on rat thyroid tissues by
suppressing proliferative activity, and, therefore, delaying the onset of tumor formation. Because the
suppressive effects of IP and IG administered resveratrol have no significant statistical difference
(p > 0.05), the IG approach would be more suitable for long-term application.

Inflammation is a physiological process in response to tissue damage including the one caused
by chemical carcinogens [51]. It is causally linked to carcinogenesis and acts as a driving force in
premalignant and malignant transformation. NF-κB signaling pathway activated plays active roles
in the inflammation processes. When phosphorylation-mediated IκB-α degradated, NF-κB activates
gene transcription, such as COX-2 and IL-6 [52]. This case seems also holds true in thyroid cancer
because NF-κB activation is frequently found in both thyroid cancers and the thyroid tissues with
chronic inflammation [53]. Because anti-inflammation is one of the biological effects of resveratrol,
the statuses of NF-κB signaling and the expression of IL-6, COX-2, and IκB-α in the thyroid tissues
of the four experimental groups are elucidated. It is found that in comparison with the results that
were obtained from DMD-alone group, the levels of NF-κB/p65, IL-6, and COX-2 expression in the
thyroid tissues of the resveratrol treated groups are decrease, accompanied with the increased IκB-α
expression. These finding thus provide additional evidence of the preventive effects of this polyphenol
compound on thyroid tumor formation via suppressing DMD-caused and NF-κB/p65-mediated
inflammatory reaction.

5. Conclusions

Our study demonstrates that systemically administered resveratrol efficiently reduces the
frequency and severity of thyroid cancer-related lesions in DEN/MNU/DHPN-induced carcinogenic
model through inhibiting proliferation and suppressing NF-κB mediated inflammatory reaction.
Long-term resveratrol administration improves the general health of DMD-treated rat and alleviates
DMD-caused pathological lesions in the thyroids and other major organs. Oral administration
can achieve similar therapeutic consequence as the intraperitoneal approach. In this context, this
commercially available polyphenol compound would be favorable in the prevention of thyroid cancer.

Supplementary Materials: The following are available online at www.mdpi.com/2072-6643/10/3/279/s1, Figure
S1: ELISA evaluation of serum Tg and CEA levels in the rats of the four experimental groups without and with
pathological alterations in the liver, colon and lungs.
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