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Stroke is a leading cause of death and long-term disability worldwide. Tissue

plasminogen activator (tPA) is an e�ective treatment for ischemic stroke.

However, only a small part of patients could benefit from it. Therefore, finding a

new treatment is necessary. Bonemarrowmesenchymal stromal cells (BMSCs)

provide a novel strategy for stroke patients. Now, many patients take stem

cells to treat stroke. However, the researches of the precise inflammatory

mechanism of cell replacement treatment are still rare. In this review, we

summarize the immune response of BMSCs treated to stroke and may provide

a new perspective for stem cell therapy.
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Introduction

Stroke is a leading cause of death and long-term disability worldwide (1). Every

year ∼15 million people suffer from stroke in the world (2). Immune response plays

a key factor in stroke progression. Neuroinflammation is an inflammatory response

within the central nervous system (CNS), involving many different mediators such as

cytokines, chemokines, reactive oxygen species and secondary messengers (3). Oxygen

and glucose deprivation following brain tissue damage results in necrosis of neurons

and released the different damage-associated molecular patterns (DAMP) which trigger

neuroinflammation (4). DAMP include a wide variety of endogenous molecules released

on tissue injury, which alter the blood-brain barrier (BBB) permeability, promote

peripheral immune cell infiltration, and accelerate tissue edema and brain injury (5).

Then microglia are activated and polarize M1 and M2 phenotypes. M1 microglia

upregulate a variety of pro-inflammatory mediators which continually damage BBB

integrity (6). In the periphery, spleen plays a pivotal role in humoral immunity. Following

compromised BBB, spleen releases a mass of peripheral immune cells and inflammatory

cytokines infiltrating brain insult. Those different pathways collectively exacerbate the

secondary progression of ischemic brain injury (7). We summarize the inflammatory

mechanism after stroke (Figure 1).
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By now tissue plasminogen activator (tPA) is a proven

treatment for acute ischemic stroke (8). However, the use

of tPA is restricted by the narrow time window of 4.5 h

after ischemic stroke onset, which has limited its use

to only a small minority of patients (9). Thrombectomy

also is an available approval therapy, which has restricted

therapeutic outcome (10). Hence finding a novel effective

treatment that could ameliorate the secondary progression of

ischemic stroke injury will benefit stroke patients who cannot

use tPA (11).

Bone marrow mesenchymal stromal cells (BMSCs) offer an

innovative strategy. Stem cell is a kind of special cell which

could self-renew, proliferate, and differentiate into specialized

cells for cell replacement treatment to stroke (12). Many

researches showed that transplanted BMSCs home to sites

of injury, which may depend on chemotactic signals (13).

Zheng et al. observed that intravenously delivered BMSCs

are entrapped in lung microvasculature and are cleared

to the liver in 1 day (14). Other researches demonstrated

that injected BMSCs preferentially migrate to spleen after

stroke (11). Cells through intracerebral transplantation could

directly migrate into the infract brain tissue, however, it

is more invasive (15). BMSCs take effects through different

pathways after stroke, including migrating into ischemic

infarction (11), proliferating neuroblasts, replacing impaired

cells (16), promoting angiogenesis and neurogenesis (17) and

secret a great bunch of neurotrophins. However, BMSCs also

cause thrombus and increased intracranial hypertension (15).

From many recent researches, except the effects mentioned

above, BMSCs could mediate neuroinflammation to accelerate

neurofunctional recovery. Therefore, the present review teases

out the immunomodulatory effects of BMSCs transplantation

after stroke.

BMSC and central nervous system

With the release of DAMPs following stroke, the microglia

become activated, polarizing M1 and M2 phenotypes (18).

M1 microglia secrete pro-inflammatory mediators, such as

IL-1, IL-6, IL-12, TNF-α, and aggravate brain damage. In

Abbreviations: BBB, blood-brain barrier; BDNF, brain-derived

neurotrophic factor; BMSCs, bone marrow mesenchymal stromal cells;

CNS, central nervous system; DAMP, damage-associated molecular

patterns; FGF, fibroblast growth factor; HGF, hepatocyte growth

factor; IFN-γ, interferon gamma; IGF-1, insulin-like growth factor-1;

IL-1, interleukin-1; IL-6, interleukin-6; IL-10, interleukin-10; MCAO,

middle cerebral artery occlusion; MSC, mesenchymal stem cell; OPCs,

oligodendrocyte precursor cells; SDF-1, stromal derived factor-1; TGF-β,

transforming growth factor-β; TNF-α, tumor necrosis factor-α; tPA,

tissue plasminogen activator; Treg, regulatory T cells; VEGF, vascular

endothelial growth factor.

contrast, M2 microglia secrete anti-inflammatory cytokines,

such as TGF-β and IL-10, accelerating neural repair (19).

Stromal derived factor-1 (SDF-1) is mainly produced in

microglia/macrophage in a rat middle cerebral artery occlusion

(MCAO) model. Shiota et al. found a mesenchymal stem

cell (MSC) line (B10) transplantation increased SDF-1

mRNA level from an early time point that persisted until

14 days after MCAO (20). Some researchers found that

transplanted BMSCs reduced microglia activation, conferring

immunomodulatory effect (21, 22). A study by Nijboer

et al. indicated that the number of M2-like (CD206+)

microglia was highly increased through intranasal MSC

administration (23). In another article, Yang et al. confirmed

those findings that BMSCs transplantation promoted M2

phenotype polarization, and decreased the expression of M1

maker in vivo and in vitro (24). Those researches suggest

that BMSCs transplantation could impact M2 polarization

meditating inflammatory response.

Astrocytes maintain structure for neurons and contribute

to keeping homeostasis of the extracellular environment

(25). Also, activated astrocytes play a key participant in

neuroinflammation by secreting a large number of inflammatory

mediators. The activation of astrocytes could result in

dense glial scars, exacerbating neurological deterioration and

affecting long-term neuronal recovery (26). Shiota et al.

also found B10 transplantation increased the differentiation

of neuronal progenitor cells to astrocytes (20). A group

of researchers found that BMSCs co-culture enhanced the

resistance of astrocytes to hemin neurotoxicity. And they found

that BMSCs transplantation promotes astrocytes vimentin

expression, and enhance astrocytes antioxidation (26). Zhang

et al. co-cultured BMSCs with neurons and astrocytes which

exposed to oxygen-glucose deprivation, and found that BMSCs

exerted neuroprotection through hindering the apoptosis of

neurons and astrocytes (27). Those evidences showed that

BMSCs diminished the apoptosis of astrocytes and enhanced

its neuroprotection.

Oligodendrocyte precursor cells (OPCs) are immature forms

of oligodendrocytes which are essential for repair of damaged

white matter after ischemic injury (28). After brain ischemia,

immature oligodendrocytes proliferate in the peri-infract areas.

Then newly created oligodendrocytes establish contact with un-

myelinated axons and form functional myelin sheaths around

them (29). BMSCs could reduce the expression of IL-1β protein

that could impede the recruitment of OPCs (30). It’s reported

that BMSCs treatment increased oligodendrogenesis after

MCAO, and elevated the number of Nissl-stained neurons in the

cortex. Hence, researchers indicated that BMSCs transplantation

protects themyelin sheath and promotes axonal restoration (31).

In the study by Zarriello et al., OPCs co-cultured with BMSCs

increased myelination compared to control group (32). There

are some reports that M2 phenotype microglia promoted OPCs

differentiation (33). It suggested that BMSCs facilitated OPCs
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FIGURE 1

Inflammatory mechanism after stroke.

differentiation through promoting M2 phenotype polarization

and improved myelination.

BMSC and peripheral immune
system

Spleen is a critical organ in peripheral immune system.

After brain damage, spleen could release immune cells and pro-

inflammatory mediators which permeate BBB and exacerbate

the secondary injuries of cerebral tissue (34). Chiu et al. found

that spleen volume decreased over 48 h, then progressively

increased following stroke (35). In the research studied by Yang

et al., MCAO model rats received human multipotent adult

progenitor cells derived from bone marrow. They found that the

grafts restored spleen mass reduction (36). Acosta et al. showed

that intravenous BMSCs transplantation preferentially migrated

to spleen and mitigated inflammation after chronic stroke (11).

Our previous study first demonstrated that intracerebral human

BMSCs migrated from brain to spleen via lymphatic vessels,

led by inflammatory signals (37). Those suggested that BMSCs

perhaps exert an important role in peripheral immune response

via spleen.

Following ischemic brain injury, T lymphocytes are

activated, infiltrating into damaged brain tissue, and

accumulating in the necrotic core (38). Then T cells release

many pro-inflammatory cytokines, such as IL-1, IL-6, etc.,

which induce secondary injuries in the CNS (39). Some

researchers demonstrated that T cells also had a detrimental

effect on early stroke evolution (40). Oppositely, regulatory T

cells (Treg), a special subset of T cells, exert a protective function

in neural repair. Much evidence showed that Treg protected

compromised BBB (41), intensified white matter repair

(42) and promoted M2 microglia polarization to diminish

neuroinflammation after stroke (43). Some investigators found

that BMSCs with the population of Tregs conferred maximal

neuroprotection. In their study, as the immune mediator, the

existence of a minority Tregs population within the therapeutic

BMSCs population exerted the immunomodulatory and

neuroprotective function provided by BMSCs transplantation

(44). In another article, Zarriello et al. reported that the native

Treg population presented about 0.4% percent of BMSCs,

which influenced macrophage polarization toward the more

regenerative M2 phenotype. And they cultured oligodendrocyte

progenitor cells (OPCs) with BMSCs containing their native

Tregs. The result showed that Tregs conferred increased

myelination by increasing myelin production (32). The exact
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TABLE 1 List of important immune factors and their e�ects.

Immune factor Effect Outcome after

BMSCs

transplantation

IL-1 Pro-inflammation Decrease (36, 46, 47)

IL-6 Pro-inflammation Decrease (22, 26, 47)

IL-10 Anti-inflammation Increase (26, 36, 48)

TNF-α Pro-inflammation Decrease (11, 22, 26, 48)

IFN-γ Pro-inflammation Decrease (47)

TGF-β Anti-inflammation Increase (49)

molecular mechanisms of how BMSCs influence on Treg is still

needed to be further studied.

BMSC and immunomodulatory
molecules

Both central neural cells and peripheral immune cells

secret immune factors which play critical roles in central

and peripheral system. Immune factors activate inflammatory

cascades following cerebral damage (45). Cells transplantation

changes the expression of inflammatory cytokines. Few articles

systematically summarized the variations of immune factors

after BMSCs therapy. Therefore, we reviewed the relevant

literature for a summary (Table 1).

Interleukin-1 (IL-1) is a typical pro-inflammatory cytokine,

first identified as the endogenous pyrogen. The main IL-

1 family are IL-1α and IL-1β, which show high sequence

homology despite being products of different genes. When

brain injury occurred, the up-regulation of IL-1 level were

observed (50). Many evidences showed that high levels of IL-1

exacerbated post-stroke damage, though mechanisms involved

still unclear (51). Interleukin-6 (IL-6) is identified as a B-

cell differentiation factor. IL-6 was observed to be significantly

upregulated in Muridae and human patients after stroke (52).

Tumor necrosis factor-α (TNF-α) is another important pro-

inflammatory cytokine in neuroinflammation. The levels of

TNF-α were improved in the damaged brain tissue after an

ischemic insult. After brain damage, TNF-α penetrate impaired

BBB (53). A number of articles reported the detrimental

effects of TNF-α on both glia and neuronal functioning during

ischemic stroke (54). As mentioned above, spleen plays a

crucial role in neuroinflammation. Interferon gamma (IFN-γ)

is associated with the splenic response, which enhances neural

injury following middle cerebral artery occlusion (55). The

evidences mentioned above unraveled that pro-inflammatory

cytokines could lead further cerebral damage.

Salehi et al. found that BMSCs transplanted in rat middle

cerebral artery occlusion, resulting down-regulation of IL-1 (46).

Huang et al. demonstrated that treated intracerebral hemorrhage

rats with BMSCs showed significantly abated expression of

IL-1α, IL-6 and IFN-γ (47). In the study by Acosta et al.,

human BMSCs therapy to MCAO rats reduce TNF-α density

(11). Tobin et al. also reported that microglia co-cultured

with BMSCs reduced the secretion of IL-6, TNF-α (22). These

reports suggested that BMSCs could alleviate inflammation via

decreasing pro-inflammatory cytokine, such as IL-1, IL-6, TNF-

α and IFN-γ.

In contrast, interleukin-10 (IL-10) is a key anti-

inflammatory cytokine following ischemic stroke. In vitro and

in vivo models of ischemic stroke showed the neuroprotection

of IL-10. Expression of IL-10 in the cerebrum boost neuronal

and glial cell survival and dampen of inflammatory responses

though a range of signaling pathways (56). Current evidence

demonstrated that IL-10 is increased in the brain after stroke

(57). Transforming growth factor-β (TGF-β) is another classic

anti-inflammatory mediator in brain injury. After stroke,

TGF-β was observed in the ischemic brain lesions (58). Many

evidence showed that TGF-β mediated microglial phenotype

and facilitate neural repair after stroke (59). The finding by

Islam et al. demonstrated that TGF-β in ischemic brain exerted

sustained anti-inflammatory effects (60). Accordingly, anti-

inflammatory cytokines could alleviate inflammatory reaction

in the brain.

Liu et al. elucidated that BMSCs treated to MCAO

rats increased the expression of IL-10 (48) and Yang et al.

confirmed those results (36). In the article by Nakajima

et al., BMSCs overexpressing IL-10 exert neuroprotection

in acute ischemic stroke (61). Moisan et al. indicated the

overexpression of TGF-β in human BMSCs treat MCAO

rats (49). These articles supported that BMSCs therapy

could ameliorate neuroinflammation though modulating anti-

inflammatory cytokine, like IL-10 and TGF-β.

Except mediating immune factors, BMSCs promote

angiogenesis and neurogenesis to reduce inflammation by

secreting a multitude of growth factors or neurotrophins such

as brain-derived neurotrophic factor (BDNF), hepatocyte

growth factor (HGF), insulin-like growth factor-1 (IGF-1)

and vascular endothelial growth factor (VEGF) (62, 63).

Many evidences showed that growth factors have the potential

of immunomodulation (64–66). It was reported that HGF

therapy could inhibit the disruption of BBB and exert anti-

apoptotic and anti-inflammatory effects after cerebral ischemia

(67). BDNF signals involved in regulating the production of

inflammatory cytokines and oxidative stress (68). IGF-1 could

facilitate anti-inflammatory phenotypes on both microglia and

astrocytes (69) and decrease the inflammatory cascade (70).

And VEGF binds to its receptor to activate downstream signals

involved in endothelial activation and vascular inflammation

(71). Some researcher found that BMSCs therapy could

increase the expression of VEGF and HGF in MCAO model

(72, 73). Similarly, Cho et al. observed that the proportions of
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VEGF-positive cells were higher in the therapy group (74). An

article form Li et al. unraveled that concentrations of BDNF

and IGF-1, which were mainly derived from transplanted

BMSCs, were markedly higher than control group (75). Kim

et al. observed similar results (76). Those researches indicated

that BMSCs may regulate neuroinflammation through growth

factor pathways. However, the exact mechanism still needs to be

further investigated.

Conclusions

To date, growing proof shows the potential for cell

replacement therapies to treat stroke. But still many difficulties

must be overcome. The precise molecular mechanism of BMSCs

treated to stroke is still elusive, which needs to be further

studied. Even so, the current studies reported that BMSCs

conduct neuroprotective effects after stroke and many patients

benefit from it. Immune system is a crucial part to repair

the injury. These wide variety of inflammatory pathways may

provide new therapeutic targets, thereby giving stroke patients

another chance.
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