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Abstract: Sickle cell disease (SCD) is a chronic hemolytic anemia affecting millions worldwide with
acute and chronic clinical manifestations and early mortality. While hydroxyurea (HU) and other
treatment strategies managed to ameliorate disease severity, high inter-individual variability in
clinical response and a lack of an ability to predict those variations need to be addressed to maximize
the clinical efficacy of HU. We developed pharmacokinetics (PK) and pharmacodynamics (PD) models
to study the dosing, efficacy, toxicity, and clinical response of HU treatment in more than eighty
children with SCD. The clinical PK parameters were used to model the HU plasma concentration
for a 24 h period, and the estimated daily average HU plasma concentration was used as an input
to our PD models with approximately 1 to 9 years of data connecting drug exposure with drug
response. We modeled the biomarkers mean cell volume and fetal hemoglobin to study treatment
efficacy. For myelosuppression, we modeled red blood cells and absolute neutrophil count. Our
models provided excellent fits for individuals with known or correctly inferred adherence. Our
models can be used to determine the optimal dosing regimens and study the effect of non-adherence
on HU-treated individuals.

Keywords: sickle cell disease; hydroxyurea; PK-PD; fetal hemoglobin; mean cell volume

1. Introduction

Sickle cell disease (SCD) is a hereditary disorder caused by a single gene mutation
in the β-globin gene that produces sickle hemoglobin (HbS) [1]. HbS polymerizes when
deoxygenated and is the nidus for the complex downstream pathobiology observed in indi-
viduals with SCD, including acute SCD-related complications (vaso-occlusive pain, acute
chest syndrome, priapism, etc.) and the onset and progression of end-organ damage [2].
SCD affects approximately 100,000 people in the United States and millions globally, and
every year an estimated 300,000 children are born with sickle cell anemia (SCA) across
the globe [3,4]. Hydroxyurea (HU) is approved by the Food and Drug Administration for
adults and children aged 2–18 years with SCD, but it is widely utilized in children begin-
ning as early as 9 months of age [5,6]. Although HU has multiple therapeutic benefits in
individuals with SCD, the primary benefits are through increasing fetal hemoglobin (HbF)
and additionally increasing mean cell volume (MCV) and reducing absolute neutrophil
count (ANC) and total white blood cell (WBC) counts. Clinically, HU reduces the frequency
of vaso-occlusive pain crises, acute chest syndrome, number of transfusions required, and
total hospitalizations [7–10]. However, there are challenges associated with HU treatment:
significant interpatient variability in PK-PD, the need for timely prediction of the optimal
dose, and low rates of adherence [11,12]. The first challenge is addressed in this work
through PK-PD model formulation. The successful formulation of PK-PD models allows
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the following things: the model can be used to test for various dosing regimens, incorporate
non-adherence, study drug–drug interactions, and analyze the synergistic effect of the drug
with other treatment methods.

Substantial inter-individual variability (IIV) has been reported in the PK of HU in
several cohorts with a large coefficient of variation in clinical PK parameters, such as
49% for AUC and 39% for Cmax in children in one study [13–15]. The hematologic response
to HU treatment varies widely across individuals with SCD [16–18]. The variation observed
could be partially due to variation in PK [19] and PD. Additionally, genetic polymorphisms
may contribute to the variation observed in treatment response for a given exposure. Single
nucleotide polymorphisms (SNPs) in the SAR1A promoter have been associated with
variation in the HbF response of HU-treated individuals [20,21]. Other studies indicated
the role of polymorphisms in genes regulating HbF production, HU metabolizing enzymes,
and erythroid progenitor proliferation in the varying treatment responses of HU [22–24].

Mathematical models of HU have focused on modeling PK with a one or two-
compartment model where a first-order absorption and first-order or metabolic or both
elimination were used to describe the drug dynamics in the plasma [25–27]. Previous stud-
ies have performed population modeling of HU to model the individual subject behavior
besides retaining the average population behavior using non-linear mixed effect mod-
els (NLME) [15,28–30]. These studies have identified weight as the significant covariate.
Paule et al. also attempted to model the HbF and MCV dynamics using indirect response
models [28]. Most of these studies have successfully modeled the PK without including PD.

The half-life of HU is 2–6 h, but the drug’s effect is seen on a timescale of weeks
and takes months to stabilize [18]. Previous mathematical models of HU have focused
on understanding the drug PK individually and on a population level in individuals
with SCD [28,29]. There have been a few attempts to model the long-term effect of HU
on the dynamics of hematologic parameters (MCV, Hb, HbF, etc.) and mathematically
link drug exposure with drug response [28]. In addition, no toxicity model has been
considered, which is important for identifying the optimal daily dose of HU. Recently, a PK-
guided dosing strategy was employed to reduce the time to reach the maximum tolerated
dose (MTD) to 4.8 months, starting at an average higher dose of 27.7 mg/kg/day [31]
without showing hematological toxicity. However, this PK-based dosing strategy did not
incorporate the role of PD variables in dose determination. It is imperative to include the
PD model, which can capture the long-term cumulative effect of the drug and explain why
the change in HbF and MCV is slow compared to the change in drug concentration.

We developed a mathematical model of HU that captures individuals with SCD PK-PD
trajectories over longitudinal follow-up. The PK model is linked with the PD model to
capture treatment efficacy and adverse effect along with drug kinetics. The PD model
describes HU biomarker trajectories with a treatment period varying from less than 1 year
to 9 years. The treatment efficacy is characterized by the HbF and MCV of red blood cells
(RBC), both of which increase with HU treatment. The potential adverse effects of HU are
myelosuppression characterized by reductions in RBC and ANC.

2. Materials and Methods
2.1. Clinical Data
2.1.1. Observations from the Data

We retrospectively analyzed data from the HUSTLE trial (NCT00305175) that were
collected at St. Jude Children’s Research Hospital to study the long-term effects of HU
therapy in children with SCD. The data contained participants’ demographics, PK, PD,
and pharmacy refill records, as shown in Figure 1. The demographic data consisted of
participants’ gender, age, weight, height, etc. The number of males to females was 54 to 31.
At the start of treatment, the subjects’ ages ranged from 1.29 to 17.95 years old. The PK data
were collected for 87 participants over 8 h at the beginning of HU treatment. The PK data
did not include the exact plasma drug concentration versus time data. Instead, the PK data
consisted of the AUC and other clinical PK parameters available from non-compartmental
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analysis (NCA). The PD data were collected for a larger cohort of 253 participants, with
the data collection period ranging from less than 1 to 18 years across the population.
The data consisted of complete blood count (CBC), MCV, and hemoglobin fractions via
high-performance liquid chromatography such as hemoglobin A, F, and S versus time.
Table 1 lists the summary of participants with SCD demographics, clinical PK parameters,
and laboratory values of PD variables. The laboratory values were reported at the start
(±10 days), after 6 (±1) months, and after 12 (±1) months of HU treatment. The pharmacy
refill record provided the total dose given, the number of days for which it was given, and
the days between participant visits. If the number of days for which the capsules were
given was less than the number of days between participant visits, it indicated a clear case
of non-adherence.
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Figure 1. Description of HUSTLE participants’ data components.

Table 1. Summary of participants with SCD characteristics.

Demographics

Starting age of HU treatment (years) 10.12 (4.72) Mean (SD)

Male/Female 54/31

Clinical PK parameters Mean (SD)

AUC (µg·h/mL) 85.79 (19.64)

AUC∞ (µg·h/mL) 92.98 (23.37)

MRT∞ (h) 3.17 (0.78)

Tmax (h) 0.82 (0.47)

Cmax (µg/mL) 26.13 (6.83)

λz (h−1) 0.65 (0.23)

PD variables At baseline Mean (SD) After 6 months of treatment Mean (SD) After 12 months of treatment Mean (SD)

MCV (fL) 85.34 (6.958) 103.1 (10.46) 104.1 (10.06)

MCH (pg) 29.76 (2.842) 35.51 (3.866) 36 (3.876)

HCT (%) 23.46 (3.649) 26.9 (4.102) 27.12 (3.858)

Hb (g/dL) 8.151 (1.143) 9.246 (1.332) 9.364 (1.279)

HbF (%) 8.004 (5.978) 20.54 (8.854) 21.65 (9.129)

HbS (%) 72.92 (20.09) 68.65 (9.441) 67.34 (11.99)

ANC (cells/µL) 6814 (3384) 4449 (2779) 4007 (1891)

WBC
(
×103 cells/µL) 13.51 (4.981) 9.114 (3.273) 8.418 (2.864)

ARC
(
×106 cells/µL) 0.2711 (0.0958) 0.1563 (0.0840) 0.1522 (0.0615)

RBC
(
×106 cells/µL) 2.777 (0.5517) 2.636 (0.4918) 2.628 (0.4709)

Note: SD, standard deviation; HU, hydroxyurea; AUC, area under the concentration–time curve from time 0 to the
last time plasma concentration was measured; AUC∞, area under the concentration–time curve when extrapolated
to time ∞; MRT∞, mean residence time; Tmax, the time point at which the maximum plasma concentration is
observed; Cmax, maximum observed plasma concentration; λz, terminal elimination rate constant; MCV, mean
cell volume; MCH, mean cell hemoglobin; HCT, hematocrit; Hb, hemoglobin; HbF, fetal hemoglobin; HbS, sickle
hemoglobin; ANC, absolute neutrophil count; WBC, white blood cell; ARC, absolute reticulocyte count; RBC, red
blood cell.
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2.1.2. Data for Modeling

PK and PD data were available for 87 participants with SCD who were prescribed
HU, and 85 participants’ data were used to construct the model. Two participants were not
included in the model because one had only a single data point, and one had no pharmacy
data. Among the clinical variables, the key variables for modeling included MCV and HbF,
biomarkers to indicate treatment efficacy. Additionally, to capture myelosuppression, the
RBC and ANC profiles were modeled. Of particular interest to us was the ANC, as it helps
clinicians decide the maximum tolerated dose (MTD) of HU administered. The MTD is
determined when the ANC reaches the target range between 2000–4000 cells/µL.

In Figure 2, the average values and trends for the key variables of interest with HU
treatment are seen over the course of 1 year of treatment. The two biomarkers, HbF and
MCV, increased with the onset of HU treatment until 6 months, stabilizing following
6 months of treatment. The number of data points for HbF was lower than the number
of data points for MCV, RBC, and ANC. As part of standard medical care, HbF was not
collected at each visit. It was observed that some participants experienced decreases in
MCV and HbF over time after 1 year of therapy, potentially due to non-adherence.

The ANC and WBC of individuals with SCD are elevated without therapy [32,33].
Hydroxyurea normalizes the average ANC and WBC. The average ANC decreased from
~7000 cells/µL at the beginning to the desired level of 2000–4000 cells/µL after 6 months
of HU treatment and remained stable afterward. The ANC and WBC (not shown in the
figure) fluctuated for some participants, potentially due to changes in the drug amount,
non-adherence, and several other reasons, such as common viral infections. With RBC,
two factors are in play when HU is administered: (i) the drug decreases RBC due to
myelosuppression, and (ii) the drug increases RBC due to reduced hemolysis, increasing
the lifespan of RBC [34]. As a result, the average RBC did not fluctuate and remained
stable at around 2.5 million cells/µL. The individual participant RBCs fluctuated within
a constant range for some participants, while the myelosuppression effect was dominant
for others.
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Figure 2. Trends in clinical variables averaged across participants at the start and following 6 months
and 12 months of hydroxyurea treatment. The bar plot represents the mean; the error bar represents
the standard deviation of the clinical variables; the number on the bar plot represents the number
of individuals. MCV, mean cell volume; HbF, fetal hemoglobin; RBC, red blood cell; ANC, absolute
neutrophil count.



Pharmaceutics 2022, 14, 1065 5 of 25

2.2. Modeling

The different model components include modeling drug kinetics (PK) that describes
how the drug gets absorbed, distributed, metabolized, and excreted from the body. For the
PK model, the input is the drug dose, D, and the output is the drug concentration in the
plasma, Cp. The second component includes modeling drug efficacy, which is captured
by HbF and MCV dynamics. The efficacy model describes how the HbF and MCV levels
change with respect to changes in Cp. The third component includes modeling drug
safety/toxicity, captured by how the blood cells such as ANC and RBC counts change
against Cp. Figure 3 shows the integrated PK-PD model components. Data analysis and
modeling were performed in MATLAB R2020b [35]. HU is found to activate HbF through
cellular signaling pathways [36–38]. For modeling the effect of HU on HbF on a cellular
level, the mean cell fetal hemoglobin, Fm, was calculated as shown in Appendix A. While
calculating Fm, the assumption was that HbF was uniformly distributed across all RBCs.
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2.2.1. Dose Calculation

The challenge with dose calculation was that the dosing information was not provided
when the participant laboratory samples were collected. The dosing information was
obtained from the pharmacy refill records, which listed the total dose provided, the age at
which the dosing was given, and the number of days for which the drug was given. The
number of days between clinic visits, Nbcv,j at jth visit, was computed by subtracting the
participant’s age between two consecutive visits, as shown in Figure 4. If Nbcv,j exceeded
the number of days for which the drug was provided, Ndays,j−1, the assumption was that
the participant was consuming any extra capsules remaining from j− 1th visit, Nextra,j−1.
Then, the number of days for which there was no capsule from the current, j or prior,
j− 1 visits was calculated to compute the number of missed days between clinic visits,
Nnonad,j. Therefore, the number of missed and extra doses was calculated by subtracting
Nbcv,j from Ndays,j−1 and Nextra,j−1 as shown in the flowchart. With dose calculation, the
primary assumption was that if the participant had the capsule available, they consumed
it; otherwise, the dose was missed only due to lack of availability of the capsule. Suppose
there were extra capsules accumulated from previous times. In that case, the assumption
was that the participant used it later.

The daily dose was assumed to be constant between visits and calculated in mg/kg by
dividing the total dose by participants’ changing weight. The weight of participants was
measured at every visit and was calculated by interpolation for in-between visits. Once
Nnonad,j was determined, the non-adherent days were selected randomly from Nbcv,j. The
everyday dose was plugged into the PK model to obtain the Cp versus time profile.
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Figure 4. Flowchart to calculate the number of non-adherent days for jth visit from the pharmacy
refill record. The pharmacy refill record contains the total dose given to the participant at every
visit and the number of days for which it is given. This process assumes that the participant takes
the capsule if they have it. Agej−1 and Agej —age in years at j− 1th and jth visit; Nbcv,j —number
of days between clinic visits; Ndays,j−1 —number of days HU was provided at j− 1th visit; Nextra,j

—number of extra days for which capsules are available at jth visit; Nextra,init —number of initial extra
capsules is assumed to be zero; Nnonad,j —number of non-adherence days at jth visit.

2.2.2. Pharmacokinetic Model

The PK model consists of two compartments, a gastrointestinal (GI) tract and a plasma
compartment (Figure A1). Hydroxyurea is taken orally. It travels through the GI tract
and is absorbed in the plasma with the first-order rate constant, ktr. From plasma, HU
is eliminated either via renal or metabolic pathways with the first-order rate constant, ke.
To capture the different absorption profiles, as observed in individuals with SCD taking
HU, a transit compartment model for absorption is considered, consisting of a series of
compartments to introduce an exponential delay term [29,39]. It can adequately describe
rapid or delayed absorption by varying the number of transit compartments. The rate of
change in the amount of HU in the plasma compartment, Ap, is given by,

dAp

dt
= ktraNt − ke Ap (1)

where (Nt + 1) is the number of transit compartments, aNt is the drug amount in the final
transit compartment in the gut calculated using Equation (A4) in Appendix A [29,39].

The volume of plasma, Vp is obtained by using the following formula,

Vp = Vb

(
1− HCT

100

)
(2)

where Vb is the volume of blood obtained using an empirical formula. For subjects’
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weight ≥ 25 kg, the Vb is obtained using the Nadler equation given below [40]:

Male : Vb(L) = 0.3669 height (cm)3 + 0.03219 weight (kg) + 0.6041
Female : Vb(L) = 0.3561 height (cm)3 + 0.03308 weight (kg) + 0.1833

(3)

For subjects’ weight < 25 kg, the Vb is scaled by 70 mL/kg as shown below [41,42]:

Vb(L) =
70

1000

(
L

kg

)
weight (kg) (4)

The drug concentration in the plasma, Cp is obtained by the following equation:

Cp =
Ap

Vp
(5)

2.2.3. Parameter Estimation for PK Model

The parameter estimation for the PK model started with an initial guess for the PK
parameters. The PK data provided did not consist of the time course of measured Cp data
points. Instead, it consisted of clinical PK parameters obtained from NCA. The clinical
PK parameters in the data consisted of AUC, AUC∞, MRT∞, Tmax, Cmax, and λz. The area
under the first moment of the concentration–time curve extrapolating to ∞ is obtained by
the following formula:

AUMC∞ = MRT∞ × AUC∞ (6)

The clinical PK parameters were calculated from the Cp versus t plot obtained from
the model. Ware et al. [14] measured HU concentrations in plasma at the following time
points: t = 0, 15 min, 30 min, 1, 2, 4, 6, and 8 h after drug administration. The last time the
measurements were made was 8 h after HU administration. So, 8 h was used as the last
time point to obtain AUC, and 24 h was used as the time point to obtain AUC∞, AUMC∞.
The AUC, AUC∞, and AUMC∞, from the model were calculated by the following equation:

AUC =
∫ tlast

0
Cp(t)dt; AUC∞ =

∫ 24

0
Cp(t)dt; AUMC∞ =

∫ 24

0
tCp(t)dt (7)

The maximum concentration, Cmax, and the time at which the drug reaches the peak
value, Tmax, were calculated from the model. The rate constant of elimination, ke, was
considered to be the same as λz. The four model parameters, F, N, ktr, and ke, for every
subject were calculated by minimizing the weighted sum of square error given below:

min
θ

6

∑
j=1

(
ŷj(θ)− yj, clinical data

wj

)2

(8)

where yj,clinical data is the clinical data value for the jth clinical PK parameter consisting of
AUC, AUC∞, AUMC∞, Tmax, Cmax, and λz. ŷj(θ) is the model prediction for the jth clinical
PK parameter, θ is the set of PK model parameters, wj is the weight associated with jth
clinical data. Further, the two metrics were used as weights in the cost function shown in
Equation (8). The first was when the individual data points for every clinical PK parameter
were used as weights, and the second was when the means of every clinical PK parameter
across all participants were used as weights. The means of every clinical PK parameter
as weights produced better fits. The model was implemented in MATLAB R2020b [35]
using MultiStart optimization algorithm to estimate θ. Once the PK model parameters were
estimated, the Cp versus t plot was obtained, from which the daily average Cp, Cp were
calculated as shown in Appendix A). The PK model simulations were performed every
day with dose as input, and the Cp was computed for every day. The Cp was then taken as
the input for the PD models, which included modeling the effect of HU on erythropoiesis,
leukopoiesis process, and HbF activation by HU. The erythropoiesis and leukopoiesis
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processes were modeled because HU targets the actively dividing cells present in the bone
marrow in the initial stages of erythropoiesis and leukopoiesis, which eventually manifest
in the cells in circulation [43].

2.2.4. Erythropoiesis and MCV Model

The erythropoiesis and MCV models to study the effect of HU on RBC and MCV were
adapted from the work of Jayachandran et al., 2014 [44]. The erythropoiesis model divides
the cells into five compartments, as shown in Figure 5. The stem cell compartment denoted
as Nse, consists of stem cells and early proliferating progenitors, which proliferate at the rate
kpe. The proliferation is regulated by a cytokine, erythropoietin (EPO), whose production is
regulated by RBCs in the periphery [45]. In SCD, RBCs undergo hemoglobin polymerization
and hemolysis, resulting in decreased oxygen delivery to the cells and tissues. The hypoxia
induces EPO production in the kidney, which upregulates erythroid progenitors [46]. The
indirect effect of circulating cells on progenitors’ proliferation is modeled here without
incorporating the EPO expression. It is assumed that HU targets only proliferating cells in
the Nse compartment. The cells from the Nse compartment transition and go through three
precursor compartments where cells do not undergo proliferation but only maturation. The
precursor compartments are denoted as Ne1, Ne2, Ne3. Finally, the precursor cells become
fully functional erythrocytes, denoted as Ne. The erythrocytes or RBCs circulate in the body
for ~120 days [47] and die at a rate dependent on the drug. The death rate is modeled as a
function of HU because the erythrocyte half-life is dependent on HU exposure. This is due
to HU increasing the lifespan of RBCs in addition to being myelosuppressive to stem cells
and progenitors [34]. The model equations are given in Equation (9).

dNse
dt = kpe(Ne)− kteNse − kdse

(
Cp
)

Nse
dNe1

dt = kteNse − kteNe1
dNe2

dt = kteNe1 − kteNe2
dNe3

dt = kteNe2 − kteNe3
dNe
dt = kteNe3 − kde

(
Cp
)

Ne

(9)
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To avoid complexity, the RBC-controlled EPO production and EPO-controlled progen-
itors’ proliferation are bypassed, and the effect of RBCs on proliferation rate kpe is directly
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modeled through a negative feedback mechanism; kpe is negatively correlated to RBCs and
is modeled using Hill kinetics.

kpe(Ne) = kpe,max
Ψe

γe

(Ψeγe + Neγe)
(10)

where kpe,max is the maximum proliferation rate, γe is the steepness parameter for feedback,
Ψe is the feedback parameter. To model myelosuppression in the Nse compartment by HU,
the model has a death rate constant, kdse, which is dependent on Cp and is modeled using
Hill-type kinetics as shown below:

kdse
(
Cp
)
= kdse,max

Cp

Kdse,50 + Cp
(11)

where kdse,max is the maximum death rate constant due to HU, Kdse,50 is the saturation
constant for the effect of HU on RBC. The cells are transferred from the stem cell to
precursor to erythrocyte compartments at a rate constant, kte. Further, the death rate of
RBC is assumed to be dependent on Cp to model the increased lifespan of RBC due to HU.
The death rate constant kde for RBC is modeled as shown below:

kde = kde,max

(
1−

Cp

Kde,50 + Cp

)
(12)

where kde,max is the maximum death rate constant for RBC, Kde,50 is the saturation constant
for the drug.

MCV Model

MCV is used as a biomarker to indicate treatment efficacy. The MCV model was
adapted from the work of Jayachandran et al. [44]. MCV is obtained by dividing the total
volume of RBCs by the total count of RBCs, assuming every RBC has the same volume. The
total volume of cells in the circulation increases due to the influx of cells from the precursor
compartments in the bone marrow and the HU-induced increase in MCV. These cells have
baseline MCV, Vm0, and there is an increase in MCV due to HU. The increase in MCV due
to HU is assumed to be a linear function of drug concentration, αCp. The total volume of
cells decreases due to the death of RBCs with the current MCV, Vm. The rate of change in
total volume of all the RBCs, VTOT , is given by,

dVTOT
dt

=
(
αCp + Vm0

)
kteNe3 −VmkdeNe (13)

The MCV is derived in Appendix A and given by the following formula:

dVm

dt
=

(
αCp + Vm0 −Vm

)
kteNe3

Ne
(14)

2.2.5. Leukopoiesis Model

The leukopoiesis process produces leukocytes that play an essential role in defending
the body against foreign invasions and inflammation [48]. The process was modeled to
study the effect of HU on the progenitors and precursor cells, and eventually the leukocytes.
A leukopoiesis model similar to the erythropoiesis model was adapted from the work of
Jayachandran et al. [44], and the schematic is shown in Figure 6. The stem cells and prolifer-
ating cells are represented as Nsl . The neutrophil precursors are represented as cells in three
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precursor compartments denoted as Nl1, Nl2, Nl3. The ANC in the circulation is represented
by the cells in the final compartment, Nl . The model equations are shown below:

dNsl
dt = kpl(Nl)− ktl Nsl − kdsl

(
Cp
)

Nsl
dNl1

dt = ktl Nsl − ktl Nl1
dNl2

dt = ktl Nl1 − ktl Nl2
dNl3

dt = ktl Nl2 − ktl Nl3
dNl
dt = ktl Nl3 − kdl Nl

(15)
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The proliferation of leukocytes is regulated by a cytokine, granulocyte-macrophage
colony-stimulating factor (GM-CSF) [49]. The proliferation rate, kpl , is inversely propor-
tional to neutrophil count and is given by the following equation:

kpl(Nl) = kpl,max
Ψl

γl

(Ψl
γl + Nl

γl )
(16)

where kpl,max is the maximum proliferation rate constant, γl is the steepness parameter for
feedback, Ψl is the feedback parameter. HU targets the cells in the stem cell compartment,
and the death rate constant, kdsl , is modeled by Hill-type kinetics, as shown below:

kdsl
(
Cp
)
= kdsl,max

Cp

Kdsl,50 + Cp
(17)

where kdsl,max is the maximum death rate constant, Kdsl,50 is the saturation constant for the
effect of HU on ANC.

2.2.6. Fetal Hemoglobin Model

For HbF, the formulated model captures its production in an average RBC due to
HU. The assumption here is that every RBC makes the same amount of HbF. The HbF% is
highest at birth and decreases rapidly until 4–6 months after birth, after which it diminishes
gradually and reaches a minimum level after a year [50]. Some individuals have unusually
high HbF levels even after 1 year of age due to hereditary persistence of fetal hemoglobin
(HPFH), which protects against SCD symptoms [51,52]. The individuals with HPFH
condition express elevated HbF levels in the range of 10–40% [53]. The high expression
of HbF level in some individuals was correlated to their haplotype [54]. The baseline
HbF varied between 0–28% in the HUSTLE data. Therefore, the model includes a basal
rate of production of HbF, which is independent of HU to account for subjects’ inherent
machinery for the production of HbF that might vary with subjects’ age. Studies showed
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that HU metabolizes into nitric oxide (NO) and its derivatives, such as hydroxylamine,
urea, nitrite, and nitrate [55,56]. The NO binds to soluble guanylate cyclase (sGC) inside the
cell and activates it [36,37]. The activated sGC is known to convert guanosine triphosphate
(GTP) to cyclic guanosine monophosphate (cGMP). Studies suggested the role of cGMP in
HU-induced activation of HbF [36,37], as shown in Figure 7.
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Without going into the complexities of signaling pathways, only two components are
modeled here. One is intermediate produced from HU, and the other is HbF. The exact
intermediates of HU are not known, and all the possible intermediates are clubbed into one.
With this hypothesis, the rates of change in intermediates and HbF with time are modeled.
In the model, HU is metabolized to an intermediate represented as Ci. This intermediate
could be NO or its derivatives. The Ci production from HU happens through Michaelis–
Menten kinetics owing to the involvement of enzymes in the degradation of HU into
NO [57,58], and Ci is degraded (Equation (18)). The first term in the HbF equation denotes
the inherent or basal rate of production of HbF, kb f , in the absence of HU (Equation (19)).
The second term represents the activated rate of production of HbF in the presence of HU
through the intermediate Ci and is modeled using Hill kinetics. The third term denotes the
degradation of HbF. The model equation is shown below:

dCi
dt

= kmet
Cp

Kmet + Cp
− kdiCi (18)

dFm

dt
= kb f + ka f

Ci
n(

ka f
n + Ci

n
) − kd f Fm (19)
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where Ci is the intermediate concentration, kmet is the maximum rate constant for the
intermediate production from HU, Kmet is the Michaelis constant, kdi is the degradation
rate constant for Ci, kb f is the basal rate of production of HbF, ka f is the maximum rate of
Ci-induced HbF activation, n is the Hill coefficient, Ka f is the half-saturation constant, kd f
is the degradation constant for HbF.

2.2.7. Parameter Estimation

For the parameter estimation, multiple methods, including non-linear least-squares
solver and derivative-free search, were run in series. A combination of functions lsqnonlin,
fmincon, patternsearch was used from MATLAB R2020b [35], and the model was solved
25 times starting from 25 initial guesses generated randomly from a uniform distribution.
The final parameter set that gave the lowest cost function and with a visually good-looking
fit was selected.

The cost function, which was minimized, is the weighted sum of square errors, as
shown below:

min
θ

Nvar

∑
j=1

Nexp

∑
i=1

(
ŷj( ti|θ)− yj(ti)

wj

)2

(20)

where subscript i represents the time index, j represents the clinical variable index. yj(ti) is
the jth clinical data at ith time point, ŷj( ti|θ) is the model predicted jth clinical data at ith
time point given model parameters, θ. Due to the optimization of more than one clinical
variable, the cost function is normalized using weights, wj. Nexp is the total number of clin-
ical time points, and Nvar is the total number of clinical variables. The bifurcation analysis
was performed to determine the parameter bounds for the ANC model in XPPAUT [59].

3. Results
3.1. PK Model

In the PK model, the AUC, AUC∞, AUMC∞, Cmax, λz, Tmax data from every partic-
ipant were used to fit the individual PK model and estimate the PK parameters: F, ktr,
Nt, ke. The goodness-of-fit plots are shown in Figure 8. It shows the measured versus
model-estimated values for the clinical PK parameters of AUC, AUC∞, AUMC∞, Cmax, λz,
Tmax, and the goodness-of-fit was measured by R2. Each of the dots represents individ-
ual participant data that were modeled. For most of the clinical variables such as AUC,
AUC∞, AUMC∞, Cmax, and Tmax, the model estimates matched well with the measured
values of these variables, as seen from R2 ≥ 0.75. The model could not predict well for
λz with R2 = 0.56, as for some participants, the estimated λz was less than the measured
value. Further, Table 2 lists the statistics of estimated PK parameters. The average value of
bioavailability, F, was 0.12, which was lower than the F value of 0.7, or higher as reported
earlier in the HU studies conducted in cancer [25,27].

Table 2. Pharmacokinetic model parameter values for HUSTLE participants.

Parameter Mean (SD)

F 0.12 (0.04)
ktr (h−1) 5.02 (2.61)

Nt 1.14 (1.08)
ke (h−1) 0.54 (0.26)
Vp (L) 1.77 (0.88)

Using the estimated PK model parameters, the Cp versus time plot was obtained for
87 participants, as shown in Figure 9. The Cp increased and reached its peak value in
1–2 h. The drug was cleared from the body within 24 h. The generated participant PK
data resembled the true PK data from the HUSTLE study [14]. As shown in Ware et al. [14],
participants with fast and slow absorption profiles were also seen from the PK plots
generated here.
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Figure 9. Pharmacokinetic plots for 87 participants with every color marking an individual participant.

Once the PK model parameters were estimated, the PK model was simulated daily
with the dose calculated from the pharmacy data. Since the PK model gives Ap, it is divided
by Vp to obtain Cp. The Vp was calculated daily by computing the participant’s weight,
height, and HCT. The four PK model parameters remained constant with time, but the
change in dose changed the Cmax and other clinical PK parameters. Figure 10 demonstrates
PK model simulations performed every day for a representative participant with the daily
dose as input. The top plot shows the everyday dose, and the middle plot shows the Cp
versus time plot where the peak concentration, Cmax changes with change in the drug input.
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The Cp was computed every day, and Cp was assumed to be constant at Cp for the entire
day, which was then plugged into the PD model to study the effect of change in drug input
on the biomarker dynamics.
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Figure 10. Pharmacokinetic model simulations performed every day for a representative participant.

3.2. MCV and RBC Models

The MCV and RBC models were fit to the clinical data of 85 individuals. Initial
conditions were chosen from the baseline values of the individual data. Figure 11A shows
Cp plot in the middle, and the drug dose in mg/kg for every day in the bottom plot. The
Cp plot shows an increase, followed by a decrease and then an increase again in the Cp

value. This change in Cp is essentially a manifestation of change in drug input. The change
in Cp is also reflected in the MCV behavior, because the MCV rises when Cp increases
and then drops as Cp decreases, and so on. The model captures the dynamical changes
in MCV with HU treatment initiation and with changes in Cp and fits well for this fully
adherent participant. Figure 11B depicts a non-adherent participant as seen from the Cp

profile for this participant. The regions of blue block in Cp, for example, from 700 to
1000 days, indicates the presence of multiple non-adherent days. There is also a drop in
the MCV data between 700 to 1000 days, indicating potential non-adherence. The model
fits this drop in MCV due to non-adherence when the dosing profile contains the non-
adherence information. On the other hand, the MCV data between 350 and 400 days
suggest non-adherence, but the dosing profile, as seen from Cp, does not contain non-
adherence information. As a result, the model does not fit the drop in MCV in this region.
Therefore, the model mimics adherent and non-adherent participant behavior subject to
the condition that the dosing profile contains the non-adherence information. Figure 12
shows the observation versus individual prediction for all participants at all time points.
The participants are color-coded, where each color represents an individual. This figure
shows that the model fits well to data for most participants, and the data points fall within
the 10% error of y = x line for ~95% of total MCV data.
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Figure 12. Goodness-of-fit plot for all MCV data points, where each color marks an individual
participant. The solid line represents y = x; the dashed lines represent 10% error.

There are two broad categories of profiles observed for RBC data. In one category, the
participant’s RBC decreases when HU treatment is started and stabilizes after some time.
These individuals show a clear myelosuppression trend. Another category is where the
RBC data fluctuate and lack a clear trend. These individuals do not show myelosuppression.
So, when the RBC data indicate myelosuppression, the model mimics that trend, as seen in
Figure 13A. When the RBC is fluctuating, the model is not able to capture all the points.
The model fits fluctuating RBC data with a straight line or a curve, as seen in Figure 13B,
where the model fit tries to pass through as many data points as possible.
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Figure 13. RBC model fit to data for two representative participants. (A): with myelosuppression,
(B): without myelosuppression.

Further, the observation versus individual prediction plot for all the RBC data is
displayed in Figure 14. For most of the participants, the model fit lies within 10% error of
the y = x line. For ~18% of the data points, the model fits lie outside the 10% error region.
Here, for participants with clear myelosuppression trends, the model fits well to the data.
For fluctuating RBC, the model does not capture the trends in data well. Table 3 gives the
RBC and MCV model estimated parameter statistics.
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Figure 14. Observation versus individual prediction of RBC for all data points across the population.
Each color marks an individual participant. The solid line represents y = x; the dashed lines represent
10% error.
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Table 3. RBC and MCV model parameter estimates for HUSTLE participants.

Parameter Median 1st Quartile 3rd Quartile

kpemax (cells/L/day) 2.10 × 1012 1.30 × 1011 1.90 × 1014

Ψe (cells/L) 2.20 × 1011 7.10 × 1010 1.10 × 1012

γe 1.6 0.52 3.3
kdse,max (1/day) 0.17 0.02 0.71

Kdse,50 (µM) 0.43 0.01 4.4
kte (1/day) 0.2 0.05 0.37

kde,max (1/day) 0.03 0.01 0.06
Kde,50 (µM) 310 62 860
α (fL/µM) 0.37 0.23 0.51

3.3. ANC Model

The ANC model was fit to the clinical data of 83 individuals, omitting two par-
ticipants due to insufficient data points. The ANC of individuals with SCD is usually
elevated, as leukocytes are recruited to adhere to the vessel wall and play a role in vaso-
occlusion [60]. In Figure 15A, the myelosuppression effect is evident, where ANC decreases
from 8000 cells/µL and reaches a steady state between 2000–4000 cells/µL, which is the
ideal target range for ANC. The above is an example of an adherent participant, as apparent
from the Cp profile here, and the model fits the data well in this case. Figure 15B displays a
non-adherent participant, where there are multiple non-adherent days. When the data only
exhibits fluctuations without any myelosuppression trend, the model mimics the trend
with a periodic solution, as shown here, or a stable steady-state solution (not shown here).
The model does not perform well when the neutrophil count fluctuates but does not show
any periodic behavior.
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Figure 15. ANC model fit to data for two representative participants. (A): Adherent, (B): Non-adherent.

Figure 16 shows an observation versus individual prediction for all data points of the
subjects. Many data points, ~80%, fall outside the 10% error for individual predictions
because the neutrophil data are highly fluctuating. The model fits well to the data where
clear myelosuppression trends in ANC are observed. However, the model performs poorly
when there are high ANC fluctuations. Table 4 lists the statistics for the leukopoiesis model
parameter estimates.
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Figure 16. Observation versus individual prediction for absolute neutrophil count (ANC) of all
data points across the population, with each color marking an individual participant. The solid line
represents y = x; the dashed lines represent 10% error.

Table 4. Leukopoiesis model parameter estimates for HUSTLE participants.

Parameter Median 1st Quartile 3rd Quartile

kplmax (cells/L/day) 1.10 × 1012 3.30 × 1010 1.80 × 1014

Ψl (cells/L) 4.70 × 108 1.50 × 108 1.20 × 109

γl 3.5 2 4.3
kdsl,max (1/day) 0.16 0.04 1.2

Kdsl,50 (µM) 0.3 0.01 30
ktl (1/day) 0.09 0.03 0.32
kdl (1/day) 0.13 0.03 0.45

3.4. HbF Model

The HbF model was fit to 81 individual participants’ data, leaving 4 individuals
out due to insufficient data points. The HbF model performance for the HbF participant
data is demonstrated in Figure 17. The participant in Figure 17A is adherent, as seen
from the Cp profile where the participant is not missing a dose. The Cp increases and
decreases and then rises again. The initial increase in HbF is due to HU treatment initiation,
and further changes in HbF follow a trend similar to that of the Cp. The model fits this
individual very well. The participant in Figure 17B is non-adherent at times, also shown
in Figure 11B. Similarly to the MCV profile, the drop in the HbF was captured when the
dose input contained the missing dose information. So, the HbF model can fit adherent and
non-adherent participants conditionally, given that the dosing profile accurately describes
non-adherence.
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Figure 17. HbF model fit of two representative participants. (A): Adherent, (B): Non-adherent.

In Figure 18, it is seen that many data points fall outside the 10% error for individual
predictions, with ~54% of data points outside this region. For some participants with
data points outside the 10% error region, the individual predictions were higher than
the observed values, indicating overprediction. This might happen when the participant
starts missing the dose after HbF reaches its maximum saturation value. The lower clinical
value of HbF indicates that the participant might have missed the dose. Still, if the dosing
information does not contain those missing doses, the model will predict a higher level of
HbF. Moreover, for many participants, the number of data points for HbF was scarce and
lower than the number of data points for MCV and other variables. The scarcity of HbF
data can lead to the model not representing the non-adherence in the dosing profile well.
Table 5 summarizes the parameter estimates for the HbF model.
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Figure 18. Goodness-of-fit plot showing mean cell fetal hemoglobin for all data points with each
color marking an individual. The solid line represents y = x; the dashed lines represent 10% error.
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Table 5. Fetal hemoglobin model parameter estimates for HUSTLE participant data.

Parameter Median 1st Quartile 3rd Quartile

kmet (µM/day) 1.2 0.05 3.5
Kmet (µM) 27 4 110
kdi (1/day) 0.03 0.01 0.06

kb f (pg/day) 0.16 0.04 0.64
ka f (pg/day) 1.5 0.3 4.3

Ka f (µM) 13 2.2 45
n 3.2 1.6 4.5

kd f (1/day) 0.07 0.02 0.3

4. Discussion

During HU treatment, while HU is cleared from the body within 24 h, it takes weeks
to see its effect on the biomarker levels. Existing models have focused mainly on predicting
the HU PK and optimizing the dose based on the PK parameters; only a few studies have
explored the relationship between PK and PD models. In this work, the focus was to build
an integrated model to explain the substantial variability in the PK-PD of individuals with
SCD receiving HU treatment. Our integrated PK-PD model can be used to quantitatively
describe the treatment mechanism and be applied for planning dosing regimens.

The PK model gives reasonable accuracy by calculating and fitting the clinical PK
parameter values obtained from NCA. Since the data that are matched are AUC, AUC∞,
which are integrated values of Cp over time, it is possible that even when the model is able
to match AUC and other integrated clinical PK parameters, the model might not exactly
replicate the actual time course of Cp. This can cause model identifiability issues, as multiple
parameter sets can estimate clinical PK parameters close to the data. In this case, matching
Cmax and Tmax helps in making sure that in the model, the peak concentration occurs at the
exact timepoint and value as the data provided. Therefore, having Cp vs. time data would
help us in improving PK model accuracy. Another challenge was that the everyday dosing
information was not available. The daily dose was computed from the pharmacy records
available for individual participants. While calculating everyday dose, it was assumed
that the total dose remained constant in between visits. The Cp was determined daily by
simulating the PK model with the computed daily dose. This approach has limitations in
that the PK model assumes the parameter to remain constant with the participant’s age or
with changes in other variables. However, the fact that these participants were pediatric
made it more complicated, as they underwent several physical changes such as changes in
height, weight, or physiological or anatomical changes, thus leading to the possibility that
the absorption, distribution, metabolism, and excretion (ADME) of the drug might change.
The change in ADME will dictate the change in PK model parameters.

Among the various PD clinical variables that were modeled, the MCV model per-
formed well for most participants because of low variability. The MCV model was adapted
from the work of Jayachandran et al., where the drug 6-mercaptopurine, similar to HU,
increased MCV levels after initiation [44]. The HbF model performed well for those partici-
pants whose dosing information was likely accurate. The model fit well for participants
who fell into the two categories: adherent participants and non-adherent participants,
where non-adherence was seen in both the drug input and the data. However, when the
drug input does not contain non-adherence information, but the data for HbF or MCV
indicate non-adherence, a discrepancy occurs between the model and the data. Overall,
these models help in describing the mechanism of HU in SCD. Further, some participants
received blood transfusions. Separating such cases from non-adherence and incorporating
and modeling blood transfusion will help improve the fit for the individuals when they
receive a transfusion.

In the HbF model, one of the assumptions is that the basal rate of HbF production
remains constant with age, but this need not be the case, especially if the participant is
starting on HU before 1 year of age. Considering the dependency of basal HbF production
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rate on age might help improve the fits for participants under 1 year of age when they are
initiated on HU treatment. Certain participants with a higher basal rate of production of
HbF might indicate the presence of HPFH. Another assumption of HbF is that every RBC
makes the same amount of HbF, but it is seen that certain RBCs produce a higher amount
of HbF than others. Few studies have captured the distribution of F cell percentage [61]. A
similar assumption was made for the MCV model, where every RBC was assumed to have
the same cell volume.

The RBC and ANC data showed either a clear myelosuppression trend or a lack of any
trend. When there was a clear myelosuppression trend, the model performed reasonably
well. In contrast, when there was a lack of a clear trend, the model fit the data with a
periodic solution if the data exhibited some periodicity. The model matched the data with a
straight line or curve if the data did not show any periodicity. The ANC data of participants
fluctuated. There are various reasons for neutrophils to demonstrate this behavior. The
fluctuations in ANC can be due to disease-related complications and treatment-related
issues as well as regular physiological changes. Additionally, the increase in ANC can
be due to non-adherence and common infections such as cold, cough, fever, and flu. The
model presented in this work did not consider such fluctuations, so it could not capture the
participants who showed these fluctuations.

The models developed here could pave the path for individualized treatment of
individuals affected with SCD quantitatively, which could help save time and effort for
clinicians as well as participants. The models formulated in this work could be used to
determine the individual trajectory of key biomarkers as well as keep the blood cell counts
within the target range and determine the optimal dose in a short time span compared to
the time spent in the clinic to determine the MTD. The multiple responses of individuals
with SCD demand a thorough analysis and monitoring of participants’ biomarkers, blood
cell counts, and metabolites. When a patient is unresponsive, the interesting thing to
explore will be whether the treatment is not very effective due to PK-related effects such
as the lower activity of the transporting proteins or PD-related effects such as lower HbF
synthesis. There appears to be a need to track non-adherence more rigorously so that model
predictions can more closely correlate with clinical measurements.
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Appendix A

Mean Cell Fetal Hemoglobin Calculation

There are two options to compute Fm:

1. Fm (pg) is calculated by multiplying HbF (%) by mean cell hemoglobin, MCH (pg), as
shown below:

Fm (pg) =
HbF (%)

100
×MCH(pg) (A1)

2. Fm (pg) is also calculated by multiplying HbF (%) by hemoglobin, Hb (g/dL), dividing
by hematocrit, HCT (%), and multiplying by MCV (fL).

Fm (pg) =
HbF (%)

100
×

Hb
( g

dL

)
HCT (%)

× MCV(fL)
100

(A2)

Both methods give approximately the same Fm, so for all the calculations, Fm deter-
mined with Equation (A1) was used.

PK Compartment Modeling
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In this transit compartment model, a simple mass balance equation describing the rate
of change in drug in different compartments is set up using mass-action kinetics. The drug
amount in different compartments is given by [29,39],

da0

dt
= −ktra0; a0(t = 0) = FD

dai
dt

= ktr(ai − ai−1); ai(t = 0) = 0; f or i = {1, 2, .., Nt} (A3)

where (Nt + 1) is the number of transit compartments, a0 and ai are the drug amounts
in the 0 and ith compartments, respectively, ktr is the transit rate constant, F is the drug
bioavailability, D is the drug input.

Solving Equation (A3) analytically, the drug amount in the final compartment in the
gut, aNt , is given by,

aNt = FD
(ktrt)Nt e−ktrt

Nt!
(A4)

Average Drug Concentration Calculation
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The Cp is calculated using the formula below:

Cp =

∫ t1
t0

Cpdt

(t1 − t0)
(A5)

MCV Calculation

The MCV is given by,

Vm =
VTOT

Ne
(A6)

The rate of change in MCV is obtained from the above equation as follows:

dVm

dt
=

d
dt

(
VTOT

Ne

)
=

1
Ne

dVTOT
dt

− Vm

Ne

dNe

dt
(A7)

After substituting Equations (9) and (13) in (A7), the rate of change in MCV is given by,

dVm

dt
=

(
αCp + Vm0 −Vm

)
kteNe3

Ne
(A8)
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