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Background: Cerebral oxygenation monitored non-invasively by near-infrared

spectroscopy (NIRS) is of increasing interest in neonatal care. Cerebral oxygenation

is determined by cerebral oxygen delivery and cerebral oxygen consumption. Oxygen

delivery as well as oxygen consumption might be influenced by metabolic parameters

like blood glucose and lactate.

Objective: The aim of the present systematic qualitative review is therefore to identify

and summarize all studies, which describe cerebral oxygenation measured with NIRS

and blood glucose and/or blood lactate levels in neonates.

Data sources: A systematic search of Ovid Embase and PubMed was performed.

Search terms included near-infrared spectroscopy, fractional tissue oxygen extraction,

cerebral tissue oxygen saturation, regional cerebral tissue oxygen saturation,

oxygenation, term, and preterm neonates, cesarean delivery, transition, after-birth,

newborn, vaginal delivery, cesarean delivery, baby, neonatal transition, metabolism,

lactate, glucose, and blood glucose level.

Study selection/data synthesis: Studies analyzing cerebral oxygenation and blood

glucose and/or blood lactate levels in neonates were included. Animal studies,

duplicates, or studies in non-English language were excluded.

Results: Twenty-five studies were identified that describe blood glucose and/or blood

lactate levels as primary or secondary outcome parameters with additional measured

cerebral oxygenation by NIRS in neonates. Twelve studies were included with blood

glucose measurements: four described an association between blood glucose levels

and cerebral oxygenation, two show no association, and six do not report on

possible associations. Eighteen studies were included with lactate measurements:

one describe an association between lactate levels and cerebral oxygenation,

while three show no association and 14 do not report on possible associations.
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Discussion: The influence of blood glucose and blood lactate levels on the cerebral

oxygenation in neonates is still controversial. However, there seems to be an association

between cerebral oxygenation and the metabolic parameter blood glucose and lactate,

which need further investigation.

Keywords: neonates, blood glucose, lactate, near-infrared spectroscopy, cerebral oxygenation

INTRODUCTION

Irreversible cerebral injury due to impaired cerebral oxygenation
is a persisting problem in the neonatal period despite
improved monitoring and intervention options. Standard non-
invasive monitoring in neonatal care does not yet assess
cerebral oxygenation, oxygen delivery to the brain, or cerebral
oxygen consumption (1–3). However, cerebral near-infrared
spectroscopy (NIRS) monitoring has the potential to detect
impaired cerebral oxygenation in neonates while other vital
parameters such as arterial oxygen saturation or heart rate remain
within their normal range (4). NIRS is a continuous, non-invasive
monitoring technique to measure the cerebral oxygenation in
neonates and measures the cerebral regional oxygen saturation
and fractional tissue oxygen extraction. A recently published
multicenter trial using cerebral NIRS monitoring to reduce the
burden of cerebral hypoxia in preterm neonates described beside
cardiovascular and respiratory interventions also interventions
based on blood glucose levels (5). Another recently published
study describe an association between blood glucose level and
cerebral oxygenation in preterm and term neonates immediately
after birth (6). Further, lactate as a product of anaerobic
metabolism might be associated with hypoxic conditions in the
tissue. An association between the blood lactate level and the
cerebral oxygenation has been described in extremely preterm
neonates during the 1st days after birth (7).

The aim of the present systematic qualitative review is
therefore to identify and summarize all studies, which describe
cerebral oxygenation measured with NIRS and blood glucose
and/or blood lactate levels in neonates.

METHODS

Search Strategy and Selection Criteria
Studies were identified using the stepwise approach specified
in the Preferred Reporting Items for Systematic Reviews and
Meta-Analysis (PRISMA) Statement (8).

Eligibility Criteria
Studies had to address cerebral oxygenation measurements with
NIRS as well as the metabolic parameters blood glucose and/or
lactate in neonates.

Search Strategy
A systematic search of Ovid Embase and PubMed NCBI was
performed to identify studies in English language published
between 1974 and November 2019. Search terms included
near-infrared spectroscopy, fractional tissue oxygen extraction,
cerebral tissue oxygen saturation, regional cerebral tissue oxygen

saturation, oxygenation, term, and preterm neonates, cesarean
delivery, neonatal transition, after-birth, newborns, vaginal
delivery, baby, after cesarean delivery, metabolism, lactate,
glucose, and blood glucose level.

Inclusion and Exclusion
Criteria—Population
To be eligible, studies had to investigate human neonates.
Neonates were defined as infants with a postnatal age of <28
days. Studies that included neonates and infants or children were
also included in our analysis, when the results were not separately
analyzed for neonates. Animal studies were excluded.

Inclusion and Exclusion
Criteria—Measurements (Exposure)
We included studies with different NIRS devices, if any additional
measurements of either capillary, venous, or arterial blood
glucose levels and/or lactate levels were included.

Inclusion and Exclusion Criteria—Types of
Publication
We included clinical or observational studies published in
English language. Non-original articles, such as comments, book
chapters, editorials, reviews, and methods papers, were excluded.
Duplications and publications in non-English languages were
also excluded.

Study Selection
The articles identified in the literature review were evaluated
independently by two authors (CM and GP) for inclusion using
the titles and abstracts. Then, full texts were retrieved and were
included based on the eligibility criteria. Any disagreement was
resolved through discussion and consensus between two authors.
If there was uncertainty regarding eligibility for inclusion on the
basis of the abstract, the full text was assessed too. Data were
analyzed qualitatively. Data extraction included the study design,
characterization of type (preterm/term) and number of neonates
included in the study, applied device, NIRS and metabolic values,
age of neonates during NIRS and metabolic measurements, and
the presence or absence of any association.

Risk of Bias in Individual Studies
A longer period between cerebral measurements and blood
samples may originate a bias. Therefore, we included the exact
time between cerebral measurements and blood samples in our
qualitative analysis.
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RESULTS

After the initial search, 978 abstracts were identified, which were
assessed for eligibility. After full text search, 25 studies remained
to be included in the present review (Figure 1) (6, 7, 9–31).

Blood Glucose Level and Cerebral
Oxygenation
Twelve studies were identified, which describe blood glucose level
measurements in combination with cerebral NIRSmeasurements
(Table 1) (6, 9–19). Four studies describe an association (6, 12,
14, 16) between blood glucose levels and cerebral oxygenation.
All studies demonstrate a negative correlation. Two studies show
no association (9, 11) and six studies do not report on possible
associations (10, 13, 15, 17–19).

Blood Lactate Level and Cerebral
Oxygenation
Eighteen studies were identified, which describe blood lactate
level measurements in combination with cerebral NIRS
measurements (Table 2) (7, 11, 13, 15, 16, 18, 20–31). Only
one study demonstrated a negative correlation between blood
lactate levels and cerebral oxygenation (7). Three studies
demonstrate no association (11, 23, 29) and 14 do not report on
possible associations (13, 15, 16, 18, 20–22, 24–28, 30, 31). Five

studies include blood glucose level as well as blood lactate level
(11, 13, 15, 16, 18).

Tables 1 and 2A,B give an overview of the data of the
included studies.

None of the studies reported on possible simultaneous
associations between both metabolic parameters (glucose and
lactate) and cerebral oxygenation.

DISCUSSION

In the last few years, interest into research of cerebral oxygenation
and metabolic parameters during the neonatal period increased
significantly. There are several studies describing results of
possible or missing association between metabolic parameters
and cerebral oxygenation measured with NIRS. These results
are controversial.

Blood Glucose Level and Cerebral
Oxygenation
Hyperglycemia has been identified as a risk factor for adverse
outcome in critically ill patients (14, 16). The findings of the 12
identified studies (6, 9–19). with cerebral oxygenation measured
with NIRS and blood glucose measurements are conflicting.
Most studies described a negative association between cerebral
oxygenation and blood glucose level (6, 12, 14, 16) with a decrease

FIGURE 1 | Flow diagram.
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TABLE 1 | Glucose and cerebral oxygenation in neonates.

First author,

Years

Study design Neonates n Device NIRS measurement,

time point

Blood sample,

time point

NIRS measurement,

duration

TOI or crSO2 Blood-glucose-level,

mean value

Association,

correlation

Naulaers G.,

2002 (9)

Observational Preterm 15 NIRO 300 Day 1–3

after birth

Before and after

NIRS

measurements

30min 1 day 57%

2 day 66.1%

3 day 76.1%

n.r. No

Naulaers G.,

2003 (10)

Observational Preterm 15 NIRO 300 Day 1–3

after birth

Before and after

NIRS

measurements

30min 1 day 57%

2 day 66.1%

3 day 76.1%

n.r. n.r.

Weiss M.,

2005 (11)

Prospective

observational

Preterm and

term

155 NIRO 300 Day 12 (0–365)

after birth

During NIRS

measurements

30min

in 1min intervals

60.5% 4.9 mmol/L No

von

Siebenthal K.,

2005 (12)

Observational Preterm 28 Critikon Cerebral

Oxygenation

Monitor 200

First 6 h

after birth

n.r. n.r. n.r. 4.9mM Yes

negativ

Bravo MDC.,

2011 (13)

Prospective

uncontrolled case

series

observational

Neonates and

infants

16 NIRO 300 Day 5–70

after birth

Beginning and the

end of the study

Continuously during 48 h

in 20 s intervals

1 −2.56% n.r. n.r.

Zhang G.,

2012 (14)

Prospective

observational

Neonates 17 INVOS 5100A Day 7 (±4)

after birth

2 to 4 h intervals Continuously in 1min

intervals after surgery

n.r. 2.8-24.6 mmol/L Yes

negativ

Pellicer A.,

2012 (15)

Pilot, phase 1

randomized,

blinded clinical trail

Neonates 20 NIRO 300 Day 6–34

after birth

Before surgery, 6 h

intervals during

24 h and 48 and

96 h

Immediately after surgery

and continuously during

the first day, for 4 h at 48

and 96 h postsurgery

n.r. n.r. n.r.

Li J., 2012

(16)

Observational Neonates 17 INVOS 5100A n.r. n.r. Continuously 72 h after

surgery

n.r. 2.8–24.6mmol/L Yes

negativ

Weeke LC.,

2017 (17)

Observational

retrospective

cohort

Preterm and

term

25 INVOS 4100-5100 Preterm

120 h (46.5–441.4)

term

20.7 h (7.2–131)

after birth

4 h intervals Continuously 10min

before, during and/or

after hypercapnia

Before 66.54%

during 68.36%

after 65.91%

Before 6.64 mmol/L

during 7.82 mmol/L

after 6.96 mmol/L

n.r.

Nissen M.,

2017 (18)

Retrospective

observational

Preterm and

term

12 INVOS 5100C Day 43 (20-74) after

birth

During NIRS,

before restoration,

before and after

surgery

Before restoration of

metabolic alkalosis, 3 h

before, 16 and 24 h after

surgery in 30min

intervals

Before restoration

72.74%

before surgery

77.89%

after surgery

80.79%

n.r. n.r.

Mattersberger

C., 2018 (6)

Observational Preterm and

term

75 INVOS 5100 Minute 15

after birth

Immediatly or up

to 5min after NIRS

measurements

1min Preterm 80.2%

term 83%

Preterm 2.7 mmol/L

term 2.9 mmol/L

Yes

negativ

Fister P.,

2018 (19)

Observational

case control

Term 65 INVOS 5100C Case

15 days (10–20)

controls 11 days (8–14)

after birth

n.r. 5min Left 67 vs. 76%

right 68 vs. 77%

Case 4.3 mmol/L

controls 4.4 mmol/L

n.r.

n.r., not reported; CHD, congenital heart disease; CPB, cardiopulmonary bypass; RCP, regional cerebral perfusion; NIRS, near-infrared spectroscopy.
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TABLE 2A | Lactate and cerebral oxygenation in neonates.

First author,

Years

Study design Neonates n Device NIRS

measurement,

time point

Blood sample,

time point

NIRS measurement,

duration

TOI or crSO2 Blood-lactate-level,

mean value

Association,

correlation

Giacomuzzi C.,

2005 (20)

Observational Neonates 5 INVOS

5100B

day 17 (±18.9)

after birth

Preoperatively, after

initiation, on the first

postoperative days of

assistance

During surgery, cooling,

circulatory arrest,

rewarming, 24 and 48 h of

assistance in 1min intervals

Preoperatively 62.2%

during cooling 80.2%

during circulatory arrest

66.2%

intermittent reperfusion

80.4%

during rewarming 78.8%

after bypass 42.8%

12h assistance 48.2%

24h assistance 57.2%

48h assistance 60.6%

Preoperatively 1.98

during cooling 1.88

during circulatory arrest

n.r.

intermittent reperfusion

3.18

during rewarming 4.5

after bypass 4.6

12 h assistance 6.5

24 h assistance 1.68

48 h assistance 1.42

n.r.

Weiss M.,

2005 (11)

Prospective

observational

Preterm

and term

155 NIRO 300 Day 12 (0–365)

after birth

During NIRS

measurements

30min

in 1min intervals

60.5 % 2.6 mmol/L No

Redlin M.,

2008 (21)

Prospective

observational

Neonates

and infants

20 NIRO 200 Month 5.3 (±3.1)

after birth

Simultaneously during

NIRS measurements

in 30min intervals

Continuously before, during

and after surgery and CPB

n.r. n.r. n.r.

Miyaji K.,

2010 (22)

Prospective

observational

Neonates

and infants

18 INVOS

5100

Day 28 (±47)

after birth

During the NIRS

measurement at the

beginning and

end of the surgery,

CPB, and RCP

Continuously in 1min

intervals at the beginning

and end of the surgery,

CPB, and RCP

Pre CPB 57.9%

CPB cooling 68.6%

RCP 78.8%

CPB warming 66.8%

post CPB 54.7%

Before 3.8 mmol/L

after 5.5 mmol/L

n.r.

Bravo MDC.,

2011 (13)

Prospective

uncontrolled case

series observational

Neonates

and infants

16 NIRO 300 Day 5–42

after birth

Beginning and end of

the study

Continuously during 48 h in

20 s intervals

1 −2.56% Initial 2.8 mmol/L

final 1.7 mmol/L

n.r.

Amigoni A.,

2011 (23)

Prospective

observational

n.r. 16 INVOS 5100C Month 3.5

(0–66)

after birth

Before and after

surgical procedure

and at start, middle,

and end of CPB

Continuously during

surgical procedure

Basal 55%

before CPB 42%

CPB start 42.5%

CPB middle 40.5%

CPB before stop 41%

CPB re-warming 46%

after CPB 42.5%

before discharge 50%

Basal 1.53

CPB start 1.85

CPB middle 1.98

CPB before stop 2.53

after CPB 3.25

No

Redlin M.,

2011 (24)

Retrospective Neonates 23 NIRO 200 Day 2–17

after birth

Pre- and

postoperatively

beginning, during and

end of CPB

Continuously before and

after surgery and CPB

Before surgery 90.7% and

89.9%

start CPB 99.8% and

99.6% during CPB 99.7%

and 99.5%

end of CPB 99.7% and

99.0%

after CPB 94.3% and

97.4%

after surgery 62.7% and

59.5%

Before surgery 1.4

mmol/L and 1.3 mmol/L

start CPB 2.0 mmol/L

and 1.5 mmol/L

during CPB 3.6 mmol/L

and 2.4 mmol/L

end of CPB 4.2 mmol/L

and 2.4 mmol/L

after CPB 4.0 mmol/L

and 2.4 mmol/L

n.r.

Miyaji K.,

2011 (25)

Retrospective Neonates 17 INVOS 5100 Day 11.6 (±8.9) and

day 12.5 (±15.6)

after birth

During NIRS

measurements

Surgical incision, initiation

of CPB and RCP, at

warming, end of CPB and

surgery at 1 minutes

intervals

83 and 66% 0.8 and 2.8 mmol/L n.r.

n.r., not reported; CHD, congenital heart disease; CPB, cardiopulmonary bypass; RCP, regional cerebral perfusion; NIRS, near-infrared spectroscopy.
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TABLE 2B | Lactate and Cerebral Oxygenation in Neonates.

First author,

Years

Study design Neonates n Device NIRS

measurement,

time point

Blood sample, time

point

NIRS measurement,

duration

TOI or crSO2 Blood-lactate-level,

mean value

Association,

correlation

Pellicer A.,

2012 (15)

Pilot, phase 1

randomized,

blinded clinical trail

Neonates 20 NIRO 300 Day 6–34

after birth

Before surgery, 6 h

intervals during first

24 h, and once at 48

and 96 h

Immediately after surgery

and continuously

throughout the 1st day, for

4 h at 48 and 96 h

postsurgery

n.r. n.r. n.r.

Li J., 2012 (16) Observational Neonates 17 INVOS 5100A n.r. n.r. Continuously 72 h after

surgery

n.r. n.r. n.r.

Haydin S.,

2013 (26)

Retrospective Neonates

and

pediatrics

50 Somanetics

5100B

Month 7

(0.2–168)

after birth

10min intervals during

NIRS measurements

Beginning of CBP, during

cooling and end of cooling,

rewarming, before weaning

Beginning of CBP 55.7%

during cooling 60.6%

end of cooling therapy

59.6%

rewarming 58.1%

before weaning 59.8%

Beginning of CBP 2.8

during cooling 3.0

end of cooling therapy

3.1

rewarming 3.2

before weaning 3.5

n.r.

Gupta P., 2014

(27)

Retrospective

observational

Neonates 15 n.r. Day 19 (12–22)

after birth

Before extubation 6 h before and 6 h after

extubation

Extubation failure

56.0% and 57.0%

extubation success

61.0% and 63.0%

Extubation failure

1.6 and 1.3

extubation success

1.2 and 1.5

n.r.

Mintzer JP.,

2015 (28)

Prospective

observational

Preterm 12 INVOS 5100C Day 3 (2–5)

after birth

During NIRS

measurements

Continuously 1 h prior and

2 h immediately following

procedure

74% Before 0.9 mmol/L after

0.9 mmol/L

n.r.

Mebius MJ.,

2016 (29)

Retrospective Preterm

and term

56 INVOS 4100C

and 5100C

Day 0–3

after birth

Daily Continuously within the first

72 h after birth

1 day 58.5%

2 day 62.5%

3 day 61.5%

3.9 No

Aly SA., 2017

(30)

Prospective

observational

n.r. 75 NIRO 200 Day 5 (4–8)

after birth

During NIRS

measurements on

CPB, 60min off CPB

and 24 h after surgery

30min before, continuously

during and for 24 h after

surgery

Preoperativ 55%

60min off CPB 55 and

43%

24h after surgery

57 and 42%

During CPB 5.3 mmol/L

60min off CPB 6.0

mmol/L

24 h after surgery 6.6

mmol/L

n.r.

Nissen M.,

2017 (18)

Retrospective

observational

Preterm

and term

12 INVOS 5100C Day 43 (20–74)

after birth

During NIRS

measurements, once

before restoration,

before and after

surgery

Before restoration of

metabolic alkalosis, 3 h

before, 16 and 24 h after

surgery in 30min intervals

Before restoration 72.74%

before surgery 77.89%

after surgery 80.79%

n.r. n.r.

Neunhoeffer F.,

2017 (31)

Prospective

observational

Neonates

and infants

15 O2C device Day 5 (1–150) and

day 37 (1–68)

after birth

Before operation,

half-hourly during

operation, and after

surgery

Continuously during

surgery

Before 61.85 vs. 65.02%

during 66.75 vs. 67.62%

after 66.75 vs. 69.87%

Before 0.8 vs. 1.1

mmol/L

during 0.9 vs. 1.65

mmol/L

after 1.0 vs. 1.42 mmol/L

n.r.

Janaillac M.,

2018 (7)

Prospective

observational

Preterm 20 INVOS 5100 Day 0–3

after birth

During NIRS

measurements every

6–8 h

Continuously for 72 h in

30min intervals

6 h 69%

24h 76%

48h 71%

72h 68%

6h 2.44 (µMol/L)

24 h 2.33 (µMol/L)

48 h 2.29 (µMol/L)

72 h 2.92 (µMol/L)

Yes

negative

n.r., not reported; CHD, congenital heart disease; CPB, cardiopulmonary bypass; RCP, regional cerebral perfusion; NIRS, near-infrared spectroscopy.

F
ro
n
tie
rs

in
P
e
d
ia
tric

s
|
w
w
w
.fro

n
tie
rsin

.o
rg

6
Ju

ly
2
0
2
0
|V

o
lu
m
e
8
|
A
rtic

le
3
6
1

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Mattersberger et al. Glucose, Lactate and Cerebral Oxygenation

of cerebral oxygenation with increasing blood glucose levels.
However, two studies described no association (9, 11). Naulears
et al. (9) described an increase of cerebral oxygenation from
day 1 to 3 after birth in neonates with postmenstrual age of 28
weeks. In this cohort, the multiple regression analysis showed
no correlation between tissue oxygenation index and glycemia.
In the largest cohort of neonates described by Weiss et al. (11)
no association between blood glucose and cerebral oxygenation
was observed. Interestingly, there was a negative association
of blood glucose level with cerebral oxygenation observed in
neonates after a Norwood procedure (14). Jia et al. (16) described
a negative association between hyperglycemia and oxygen
delivery. Further, she described a positive association between
hyperglycemia and oxygen extraction ratio in neonates 72 h
after Norwood procedure. Mattersberger et al. (6) demonstrated
that blood glucose levels have a negative correlation to
the cerebral oxygen saturation and a positive correlation to
the cerebral fractional tissue oxygen extraction in preterm
and term neonates 15min after birth. Cerebral hemoglobin
concentration that influences cerebral oxygenation, measured
with NIRS, was investigated by Von Siebental K in neonates
in the first 6 h of life. (12) He described different parameters
influencing the cerebral hemoglobin concentration of neonates,
whereby blood glucose had a negative correlation with cerebral
hemoglobin concentration. The changes in cerebral hemoglobin
concentration are in accordance with the above-described
negative association between cerebral oxygenation and blood
glucose levels when taking into account an auto-regulatory
mechanism to maintain glucose supply to the brain. With
decreasing blood glucose levels, there might be an increase
in cerebral hemoglobin volume/concentration by increase of
cerebral blood flow due to vasodilatation. This causes an increase
in oxygen delivery with increase in cerebral oxygenation in case
of a consistent cerebral oxygen consumption.

Lactate Level and Cerebral Oxygenation
High lactate levels might be associated with an adverse neurologic
outcome and can be a predictor for short-term neonatal
adverse outcomes with similar predictive value as the pH value
(32). Since lactate is a product of anaerobic metabolism, an
increased level of lactate might represent hypoxic conditions
in the tissue. Therefore, the interest in lactate in relation
to the cerebral oxygenation in the neonatal period increased
in the last years. Eighteen studies were identified, which
investigated cerebral oxygenation and blood lactate level in
neonates (7, 11, 13, 15, 16, 18, 20–31). However, only one of
these publications demonstrated a negative association between
cerebral oxygenation and lactate (7), and three studies found no
association (11, 23, 29) between these factors.

Weiss et al. (11) described, in the largest cohort of
critically ill neonates, no significant correlation between cerebral

oxygenation and lactate. Amigoni et al. (23) also did not find
an association between serum lactate and cerebral oxygenation.
However, they described a correlation between pH value and
cerebral oxygenation. Mebius et al. assessed the course of cerebral
regional oxygen saturation and clinical factors in neonates born
with duct-dependent congenital heart disease and found no
correlation during the first 72 h after birth (29). In extremely
preterm infants, it has been demonstrated that the crSO2 and
preductal perfusion index were weakly correlated with lactate and
blood gas (7).

LIMITATION

The identified publications show many differences in methods:
(e.g., study population, number of included neonates, NIRS
devices, time point, and frequency of NIRS measurements).
Important limitations are also the differences in frequencies
of blood samples and differences in time periods between
taking blood samples and NIRS measurements, ranging from
5min (6) to 24 h (29). Several studies even provide no
or inaccurate information on frequencies and time points
of taking blood samples (11, 12, 16, 19, 27). This review
identified only observational studies, where associations between
cerebral oxygenation and blood glucose and/or lactate levels are
described. No interventional study was identified elucidating
any causality. Furthermore, there were several studies just
describing cerebral oxygenation and blood glucose or lactate in
neonates without analyzing any possible associations between
these parameters.

CONCLUSION

The influence of blood glucose level and blood lactate level
on the cerebral oxygenation in neonates is still controversial.
However, there is some evidence that there is an association
between cerebral oxygenation and the metabolic parameters,
blood glucose, and blood lactate, whereby causal relationship
needs further investigation.
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