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1  | INTRODUC TION

The phenomenon of transgenerational immune priming (TGIP) 
has received significant attention, especially in insect systems. 
Organisms exposed to stressful environmental selection pressures 

can increase the survival of their offspring by priming their progeny 
with beneficial nutrients, hormones, and epigenetic factors (Knorr, 
Schmidtberg, Arslan, Bingsohn, & Vilcinskas, 2015; Pigeault, Garnier, 
Rivero, & Gandon, 2016; Trauer-Kizilelma & Hilker, 2015a, 2015b). 
Insects can also respond to pathogenic pressures by priming their 
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Abstract
The traditional view of innate immunity in insects is that every exposure to a patho-
gen triggers an identical and appropriate immune response and that prior exposures 
to pathogens do not confer any protective (i.e., adaptive) effect against subsequent 
exposure to the same pathogen. This view has been challenged by experiments dem-
onstrating that encounters with sublethal doses of a pathogen can prime the insect's 
immune system and, thus, have protective effects against future lethal doses. Immune 
priming has been reported across several insect species, including the red flour bee-
tle, the honeycomb moth, the bumblebee, and the European honeybee, among oth-
ers. Immune priming can also be transgenerational where the parent's pathogenic 
history influences the immune response of its offspring. Phenotypic evidence of 
transgenerational immune priming (TGIP) exists in the tobacco moth Manduca sexta 
where first-instar progeny of mothers injected with the bacterium Serratia marces-
cens exhibited a significant increase of in vivo bacterial clearance. To identify the 
gene expression changes underlying TGIP in M. sexta, we performed transcriptome-
wide, transgenerational differential gene expression analysis on mothers and their 
offspring after mothers were exposed to S. marcescens. We are the first to perform 
transcriptome-wide analysis of the gene expression changes associated with TGIP in 
this ecologically relevant model organism. We show that maternal exposure to both 
heat-killed and live S. marcescens has strong and significant transgenerational impacts 
on gene expression patterns in their offspring, including upregulation of peptidogly-
can recognition protein, toll-like receptor 9, and the antimicrobial peptide cecropin.
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progeny's immune systems. TGIP has been demonstrated in a vari-
ety of invertebrate taxa (Barribeau, Schmid-Hempel, & Sadd, 2016; 
Hanif, Bakopoulos, & Dimitriadis, 2004; Knorr et al., 2015; Pigeault 
et  al.,  2016; Roth, Beemelmanns, Barribeau, & Sadd,  2018; Sadd, 
Kleinlogel, Schmid-Hempel, & Schmid-Hempel,  2005; Salmela, 
Amdam, & Freitak, 2015; Trauer-Kizilelma & Hilker, 2015a), but the 
mechanisms of inheritance following immune challenge are often 
not well characterized (Hernández López, Schuehly, Crailsheim, & 
Riessberger-Gallé, 2014; Mcnamara, Lieshout, & Simmons,  2014; 
Norouzitallab, Baruah, Biswas, Vanrompay, & Bossier, 2016; Roth 
et al., 2018; Trauer-Kizilelma & Hilker, 2015a).

One mechanism of transgenerational immunity which has been 
experimentally validated in insects involves the translocation of 
bacteria (Freitak et al., 2014) or bacterial cell wall components from 
mothers to their offspring (Salmela et al., 2015). In the honeycomb 
moth Galleria mellonella, Freitak et al.  (2014) used fluorescently la-
beled, heat-killed Escherichia coli to trace the transfer of bacteria 
from the guts of mothers through the hemocoel and ovarioles into 
their developing eggs. They reported upregulation of prophenolox-
idase, peptidoglycan recognition protein, glutathione-s-transferase, 
and lipopolysaccharide-binding protein in eggs of immune-chal-
lenged mothers. Salmela et al. (2015) identified vitellogenin protein 
as the carrier required for the transport of E. coli cell wall fragments 
into the developing eggs of the European honeybee Apis mellifera. In 
addition, several studies provide evidence of epigenetic transmis-
sion. Eggert, Kurtz, and Diddens-de Buhr (2014) reported that pa-
ternal transgenerational immunity in the beetle Tribolium castaneum 
exposed to Bacillus thuringiensis is passed via sperm, and to a lesser 
degree seminal fluid, suggesting that epigenetic modifications were 
involved.

The Manduca immune response to pathogens begins when pat-
tern recognition receptors (PRRs) like hemolin, peptidoglycan recog-
nition proteins, β-1,3-glucan recognition proteins, toll-like receptors 
(TLRs), and C-type lectins bind to microbial surface molecules (Yu, 
Zhu, Ma, Fabrick, & Kanost, 2002), triggering phagocytosis, nodule 
formation, encapsulation, melanization, and synthesis of antimicro-
bial peptides/proteins (Horohov & Dunn, 1983). Antimicrobial pro-
teins identified in M. sexta hemolymph include lysozyme, cecropins, 
and attacin (Kanost, Jiang, & Yu,  2004). The fat body, analogous 
to vertebrate adipose tissues and liver, is the major source of in-
sect plasma proteins involved in the insect immune response (He 
et al., 2016). In response to gram-positive Micrococcus lysodeikticus, 
fat bodies of Manduca upregulate proteins such as prophenoloxi-
dase-activating proteinase, mannan-binding lectin serine proteinase, 
scolexin A, urokinase-type plasminogen activator, peptidoglycan 
recognition protein, immulectin, lipopolysaccharide-binding pro-
tein, lebocin, and gloverin (Zhu, Johnson, Myers, & Kanost, 2003). 
A similar upregulation of fat body proteins has been documented 
in response to gram-negative Photorhabdus spp. include hemolin, 
immulectin-2, and peptidoglycan recognition protein (Eleftherianos, 
Millichap, Ffrench-Constant, & Reynolds,  2006). Ao, Ling, and Yu 
(2008) also reported an upregulation of toll-like receptor in Manduca 
exposed to gram-negative E. coli.

Evidence for transgenerational immunity in Manduca sexta has 
also been recently documented in the offspring of mothers ex-
posed to heat-killed and live Serratia marcescens bacteria (Rosengaus 
et  al.,  2017). Rosengaus et  al.  (2017) demonstrated that maternal 
pathogen exposure significantly affected in vivo bacterial clearance 
by their offspring. Using an in vivo “clearance of infection” assay, 
they showed that first-instar larvae, offspring of Manduca females 
injected with either live or heat-killed S. marcescens had significantly 
lower microbial loads 24 and 48 hr after injection of live Serratia than 
offspring of females injected with a sterile saline control. Here, we 
used transcriptome-wide RNA sequencing to identify gene expres-
sion changes underlying the transgenerational phenotypic effects 
reported by Rosengaus et al. (2017). We compared gene expression 
patterns in fat body and ovariole tissues of mothers exposed to live 
and heat-killed S.  marcescens and then compared gene expression 
patterns in their embryos to identify any transgenerational impacts 
on gene expression due to maternal pathogen exposure.

The gram-negative bacterium,  S.  marcescens, was chosen to 
elicit a maternal immune response because it is an ecologically rel-
evant pathogen, commonly found on foliage and in soil (Sikorowski, 
Lawrence, & Inglis, 2001). Serratia marcescens is likely also encoun-
tered by developing larvae during herbivory and during the fifth 
and final larval stage when larvae wander and/or when they pu-
pate subterraneously. In addition, our prior experiments on patho-
gen-induced maternal effects, which resulted in in vivo evidence 
of enhanced immune responsiveness across generations, were also 
carried out with the same strain of Serratia as this work (Rosengaus 
et al., 2017). It was important for us to maintain consistency with re-
gard to the pathogenic strain so that we could transpose the current 
molecular data onto the in vivo clearing assay results of 2017.

Although previous work on Manduca included transcriptomic 
analyses of specific genes (Lee & Horodyski, 2006) in the context 
of starvation and mating, transcriptome-wide analyses for sex chro-
mosome differences (Smith, Chen, Blissard, & Briscoe,  2014) and 
within-generation immune challenges (Van Munster et  al.,  2007), 
and phenotypic analyses of TGIP (Rosengaus et al., 2017) the pres-
ent work, based on genome-wide transcriptomic analyses, provide 
more nuanced information with respect to gene expression changes 
involved in TGIP.

2  | METHODS

Manduca sexta eggs were obtained from Carolina Biological Supply 
(Burlington, NC), then reared, and treated following the same proto-
col used by Rosengaus et al. (2017). Briefly summarizing, larvae were 
reared on a standard artificial diet (Bell & Joachim,  1976) at 25°C 
under a 16-hr:8-hr light/dark cycle. Two days prior to expected eclo-
sion, female pupae were swabbed with 70% ethanol and injected with 
sterile saline (10 μl, n = 8), heat-killed Serratia (10 μl at 1 × 108 cells/
ml, n = 8), or live Serratia (10 μl at 4 × 105 CFU/ml, n = 8) using a 10 μl 
Hamilton syringe and sterile needle. After eclosion, twelve of the 
treated females (4 each from saline, heat-killed, and live exposures) 
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were sacrificed and RNA was extracted from ovarioles and fat bod-
ies to profile their transcriptomic response to pathogen exposure. 
Total RNA was extracted from fat bodies and ovarioles of each adult 
female (n = 4 from the saline-treated mothers, n = 4 from the heat-
killed mothers, and n = 4 from the live S. marcescens-injected moth-
ers) using the Promega SV Total RNA Isolation Kit.

The twelve remaining females (4 each from saline, heat-killed, and 
live) were mated with untreated (naïve) males following the monoga-
mous mating protocol: A single treated female paired with an untreated 
male inside a cage (30 × 30 × 60 cm) (Rosengaus et  al.  (2017). The 
mated moths oviposited on 30 mm tobacco extract-infused foam plugs 
suspended from the cage ceiling. Twenty-four hours post-oviposition, 
embryos were collected and sacrificed for RNA extraction to profile 
the transgenerational transcriptomic response to maternal pathogen 
exposure. Total RNA was extracted from whole embryos (n = 12) using 
the Promega SV Total RNA Isolation Kit.

Three samples for each tissue/treatment group were selected for 
library preparation for a total of 27 RNA samples. mRNA was isolated 
using the NEBNext® Poly(A) mRNA Magnetic Isolation Module, Illumina 
libraries were produced using the NEBNext® Ultra™ Directional RNA 
Library Prep Kit for Illumina®, and the libraries were sequenced at the 
Bauer Core Facility of Harvard University. The ovariole and fat body 
libraries were sequenced on two lanes in rapid-run paired-100 mode 
on an Illumina HiSeq 2500. The sequencing run produced a total of 
45,260,841 read pairs for fat body and 130,646,641 read pairs for ova-
riole. The embryo libraries were sequenced on one lane in rapid-run 
paired-250 mode producing a total of 38,189,468 reads. The reads 
were adapter- and quality-trimmed using Trimmomatic version 0.36 
(Bolger, Lohse, & Usadel, 2014) using a 4-base sliding-window qual-
ity cutoff of 30 (Phred + 33) and the TruSeq3 adapter sequence file 
(TruSeq3-PE.fa). Transcript counts were quantified against M.  sexta 
predicted coding sequences published by Kanost et  al.  (2016) using 
Salmon (Patro, Duggal, Love, Irizarry, & Kingsford,  2017). Transcript 
counts were imported into DESeq2 (Love, Huber, & Anders,  2014) 
using tximport (Soneson, Love, & Robinson, 2015).

2.1 | Gene expression analysis

MDS and PERMANOVA analyses were used to identify transcrip-
tome-wide differences in gene expression due to immune treat-
ment (saline, heat-killed Serratia, live Serratia) and tissue type (adult 
fat body, adult ovariole, whole embryo). Hellinger-transformed, 

DESeq2-normalized (Love et al., 2014) counts for each tissue type 
were analyzed using PERMANOVA to identify transcriptome-wide 
differences in expression patterns using the adonis function within 
the R package Vegan (Oksanen, Blanchet, & Friendly, 2019) with 
10,000 permutations.

A two-factor negative binomial GLM implemented in DESeq2 
(Love et al., 2014) was used to compare saline versus heat-killed and 
live S. marcescens exposures in the two maternal tissues (ovarioles 
and fat bodies) and their embryos to identify TGIP. This approach 
allows us to identify differentially expressed (DE) genes and then 
characterize the function of those genes using protein annotations 
and KEGG pathway analyses.

2.2 | Annotation

To facilitate KEGG pathway analysis, differentially expressed tran-
scripts were mapped to KEGG ortholog IDs. The transcripts were 
aligned to Swiss-Prot (The Uniprot Consortium, 2017) using blastx 
(Camacho et al., 2009). Swiss-Prot hits were filtered using an e-value 
cutoff of 1e−5 and matched to KEGG orthologs using the KEGG API. 
For each Manduca transcript, the KEGG ortholog corresponding to 
the lowest BLAST e-value was selected.

3  | RESULTS

RNA-Seq data were generated from 27 samples, three ereplicates 
for each tissue type (adult fat body, adult ovariole, and embryos) and 
treatment group (saline, heat-killed, and live S. marcescens) combina-
tion. The number of mapped RNA-seq reads per sample averaged 
5,407,438 (±1,528,155 SE). The Friedman rank tests showed no sig-
nificant mapping differences due to tissue type (X2 = 0.667, df = 2, 
p-value = .717 or treatment (X2 = 0.667, df = 2, p-value = .717). The 
means of mapped reads by tissue type were 3,371,322 (± 456,357 
SE) for fat body, 10,563,659 (± 4,180,785 SE) for ovariole, and 
2,287,335 (± 152,030 SE) for embryo.

3.1 | Transcriptome-wide analyses

Two-way PERMANOVA (Table 1) identified strong and significant dif-
ferences in transcriptome-wide gene expression patterns between 

Factor df
Sums of 
sqs

Mean 
sqs F. Model R2 Pr(>F)

Tissue 2 0.865 0.432 39.778 0.772 0.0001

Treatment 2 0.019 0.009 0.863 0.016 0.472

Tissue:Treatment 4 0.041 0.010 0.938 0.036 0.498

Residuals 18 0.196 0.011 0.175

Total 26 1.120 1.000

TA B L E  1   PERMANOVA of 
transcriptome-wide expression for all 
tissue types
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the three tissue types explaining 77% of the variation (F  =  39.78, 
r2  =  0.77, df  =  2, p  =  .0001), but nonsignificant effects of patho-
genic treatment (saline, heat-killed, or live S. marcescens) (F = 0.86, 
r2  =  0.02, df  =  2, p  =  .47) or any of their interactions (F  =  0.94, 
r2 = 0.04, df = 4, p = .50). Because of these strong differences be-
tween tissue types, we ran three independent PERMANOVAs for 
each tissue type—maternal fat bodies and ovarioles as well as em-
bryos—focused on identifying differences in gene expression due to 
pathogenic treatment.

Although the independent PERMANOVAs did not identify signif-
icant differences in transcriptome-wide gene expression due to ma-
ternal immune treatment in maternal fat bodies (F = 0.96, r2 = 0.24, 
df = 2, p =  .49) and ovarioles (F = 0.48, r2 = 0.14, df = 2, p =  .97), 
transcriptome-wide patterns of gene expression in the embryos of 
the exposed mothers differed significantly (F = 2.2, r2 = 0.44, df = 2, 
p = .03). In embryos, maternal immune treatment explained 44% of 
the variation in transcriptome-wide gene expression. An MDS plot 
of all tissue types and treatments (Figure 1) also shows tissue type 
differences obscuring treatment differences. Separate MDS plots 
for each tissue type (Figure  2) show treatment differences within 
tissue types, with heat-killed and live treatment groups clustering 
separately from the saline control for fat body and embryo but not 
ovariole.

3.2 | Gene-level analyses

Negative binomial GLMs were run separately for the two maternal 
tissues (fat body and ovarioles) as well as the embryos in order to 
identify genes that were differentially expressed due to heat-killed 
or live Serratia exposure compared to the saline control (Table  2). 
Relative to the maternal saline treatment, fat bodies of heat-killed 
Serratia-treated mothers had 17 genes that were differentially ex-
pressed (DE). The fat bodies of live Serratia-treated mothers had 

99 genes that were DE. For the ovariole tissue, only one gene was 
differentially expressed (DE) for heat-killed Serratia-treated moth-
ers. For the live Serratia-injected mothers, their ovarioles also had 
one DE gene. In sharp contrast, embryos from heat-killed Serratia-
treated mothers had 469 DE genes while embryos from live Serratia-
treated mothers had 150 DE genes.

When KEGG gene annotations were identified for the DE genes, 
fat body had seven DE genes with annotations for heat-killed ex-
posures and 57 DE annotated genes for live exposures. Ovariole 
had zero DE annotated genes for heat-killed exposure and one DE 
annotated gene for live exposures. Embryo had 334 DE annotated 
genes for heat-killed and 106 live DE annotated genes. To focus on 
annotated genes showing the strongest effect, we focused on highly 
differentially expressed genes with absolute log2 fold change val-
ues greater than 2 (i.e., a five-fold difference in gene expression). 
Among the highly differentially expressed genes, fat body had five 
heat-killed and 51 live genes, ovariole had zero heat-killed and one 
live gene, and embryo had 31 heat-killed and 15 live genes (Table 2 
and Figure 3).

A heat map plotting highly DE genes for maternal fat body 
(Figure  4) shows that mothers treated with live S.  marcescens 
strongly upregulated DE genes (41/49) relative to the more interme-
diate expression in the heat-killed treatment and lower expression in 
the saline control. The remaining eight highly DE genes in maternal 
fat body were downregulated in the live treatment relative to the 
heat-killed or saline treatments. Three of the highly DE genes were 
immune genes; interferon gamma-inducible protein 30 was upreg-
ulated in live-treated fat bodies, whereas cathepsin B and gelsolin 
were both downregulated. Eight of the highly DE genes were xeno-
biotic genes; six of which were upregulated in live-treated fat bodies 
(carbonyl reductase 3, cytochrome P450 family 6 [Msex2.13294, 
Msex2.13295, Msex2.10215], glucuronosyltransferase, cytochrome 
P450 family 12); and two of which were downregulated (carboxyles-
terase 2, glutathione S-transferase).

F I G U R E  1   MDS of all tissue types 
showing clustering across tissue type 
(Embryo, Adult Fat Body, and Adult 
Ovariole) according to whether the 
mothers were exposed to heat-killed 
Serratia (Heat-Killed), live Serratia (Live), or 
saline (Saline) as a control
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A heat map of highly DE genes for the embryos (Figure 5) showed 
clear clustering of the three treatment groups (saline, heat-killed and 
live) with the heat-killed and live treatments clustering together. 
Among the 25 highly DE genes that were upregulated in the heat-
killed and live exposure treatments, heat-killed treatment generally 
showed higher expression than the live treatment. These 25 highly 
DE genes include five immune genes (cecropin, peptidoglycan rec-
ognition protein, toll-like receptor 9, plasminogen activator inhibitor 
1, gelsolin)—and three xenobiotic genes (xanthine dehydrogenase/
oxidase, glutathione S-transferase, carbonyl reductase 3) showing 
transgenerational effects. Sixteen highly DE genes were downregu-
lated in the heat-killed and live exposure treatments; nine DE genes 
were more downregulated in the heat-killed treatment; and seven 

DE genes were more downregulated in the live treatment. Only one 
of the 16 downregulated genes (KRAB domain-containing zinc finger 
protein) was an immune gene.

4  | DISCUSSION

Our results showed a strong upregulation of genes in the fat bod-
ies, but not ovarioles of adult female moths in response to injections 
of heat-killed and live Serratia. Moreover, we observed a stronger 
upregulation of immune-related genes in embryos from heat-killed 
Serratia-injected mothers than that from embryos exposed to live 
bacteria. This may be a result of mothers dealing with an active (i.e., 

F I G U R E  2   MDS of maternal fat body, maternal ovariole, and embryos showing clustering by maternal treatment to saline (Control), heat-
killed Serratia (Heat-Killed), and live Serratia (Live). F, r2, and p-values are from PERMANOVA results of each tissue type
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TA B L E  2   DE gene summary—all DE, 
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absolute LFC greater than 2 each tissue 
type (embryo, adult fat body, and adult 
ovariole) according to whether samples 
were treated with live or heat-killed 
Serratia compared to the saline control
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live) Serratia infection engaging in trade-offs and prioritizing their 
own survival over the transgenerational immune priming (TGIP) of 
their offspring, or possibly, due to the known immunosuppressive 
effect of Serratia (Ishii, Adachi, Hamamoto, & Sekimizu, 2014) which 
could have precluded TGIP if the mother's immune system was com-
promised by the immunosuppressive compounds synthesized by 
Serratia. Higher numbers of DE immune genes in the offspring of 
mothers treated with heat-killed Serratia, on the other hand, provide 
strong evidence for TGIP. Interestingly, the DE genes observed in 
the immune responses of adult moths versus via transgenerational 
priming do not mirror each other. The DE immune-related genes dif-
fered between mothers and their offspring, with xenobiotics pre-
dominating in the mother's response, and PRRs and antimicrobial 
peptides predominating in the TGIP response.

Patterns of differential expression of genes can be characterized 
as sets of DE immune and xenobiotic genes that were (a) similarly 
upregulated for both adults and embryos, (b) DE of immune and xe-
nobiotic genes only in mothers (but not embryos), or (c) DE of im-
mune and xenobiotic genes only in embryos of treated mothers. We 
discuss these groups of genes below. A complete list of differentially 
expressed genes, annotations, annotation identities, and e-values is 
available in Appendix S1.

4.1 | Shared upregulated adult and offspring 
xenobiotic genes

There was very little overlap of shared DE xenobiotic genes de-
tected in the adults and transgenerationally primed embryos. Only 
carbonyl reductase 3 (CBR3/Msex2.09445) was upregulated in 

adults treated with live Serratia and embryos whose mothers were 
exposed to heat-killed Serratia. Upregulation of carbonyl reductases 
has been reported in gypsy moth (Lymantria dispar) on protein-defi-
cient diets (Lindroth, Barman, & Weisbrod, 1991). Upregulation of 
carbonyl reductase 3 has also been reported in human cancer cells in 
response to oxidative stress (Ebert, Kisiela, Malátková, El-Hawari, & 
Maser, 2010). To the best of our knowledge, this is the first report of 
upregulation in response to immune challenge in Lepidoptera.

4.2 | Upregulated adult-only immune and 
xenobiotic genes

The adult-only response was characterized by strong upregulation of 
xenobiotic genes in mothers injected with live bacteria. Cytochrome 
P450 family 12 (CYP12/Msex2.10889) and cytochrome P450 
family 6 (CYP6/Msex2.13294, CYP6/Msex2.10215, and CYP6/
Msex2.13295) were upregulated in adults exposed to live Serratia. 
CYP12 and CYP6 are members of the cytochrome P450 family in-
volved in oxidation/reduction of organic chemicals including drugs, 
environmental toxins, and carcinogens in humans (Guengerich, 
Waterman, & Egli,  2016). Upregulation of cytochrome P450 has 
been reported in several invertebrates including silkworms (Bombyx 
mori) challenged with B.  thuringiensis (Wu & Yi, 2018), flour bee-
tles (T. castaneum) challenged with LPS (Altincicek et al., 2013), and 
abalone (Haliotis diversicolor) challenged with gram-negative and 
gram-positive bacteria (Wang, Ren, Xu, Cai, & Yang,  2008). The 
role upregulation of cytochrome P450 plays in the insect immune 
response is unclear, but Wu and Yi (2018) proposed that this may 
be a detoxification response to protect the host from intermediate 

F I G U R E  3   Differentially expressed 
genes by tissue (fat body, ovariole, 
nd embryo), treatment group (saline, 
heat-killed, and live), and direction 
(upregulated or downregulated). Fat body 
had the greatest number of differentially 
expressed genes, the largest number 
being upregulated in response to live 
Serratia exposure. Second to fat body 
in terms of number of differentially 
expressed genes was embryo, the largest 
number being upregulated in response 
to maternal treatment with heat-killed 
Serratia. Few genes were differentially 
expressed for ovariole
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metabolites involved in the energetic cost of mounting an immune 
response. Glucuronosyltransferase (UGT/Msex2.12524) was also 
upregulated when mothers were injected with live Serratia. UGT cat-
alyzes the attachment of sugars to toxins to facilitate their excretion 
(Meech, Miners, Lewis, & Mackenzie,  2012). Upregulation of UGT 
in response to immune challenge has been reported in Drosophila 
exposed to E. coli (Johansson, Metzendorf, & Söderhäll, 2005), and 
perhaps its upregulation helps Manduca mothers detoxify the toxins 
produced by Serratia.

Only one immune gene was strongly upregulated in mothers 
injected with live bacteria—interferon gamma-inducible protein 
30 (GILT). GILT is involved in MHC antigen processing in mammals 
(Jensen,  1993), and upregulation of GILT in response to immune 
challenge has been identified in several invertebrates including disk 
abalone exposed to gram-negative Vibrio alginolysticus (Zoysa & Lee, 
2007), mosquito exposed to the malarial parasite Plasmodium falci-
parum (Schleicher et al., 2018), and fruit fly exposed to gram-nega-
tive E. coli (Kongton et al., 2014).

F I G U R E  4   Heatmap normalized gene expression of differentially expressed (DE) genes in the adult fat body with a log2-fold change 
(LFC) greater than 2 or less than −2. Exposure treatments (saline, live Serratia, and heat-killed Serratia) color coded across top of heatmap. 
Hierarchical clustering of genes shown along vertical axis with immune genes and xenobiotic genes coded in green and blue, respectively
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4.3 | Downregulated adult-only immune and 
xenobiotic genes

Carboxylesterase 2 (CES2/Msex2.07504) and cathepsin B (CTSB/
Msex2.01721) were downregulated within fat body in mothers ex-
posed to live Serratia. It is unclear why these two genes were down-
regulated as we find no comparative studies showing a similar pattern. 
CES2 catalyzes the metabolism of ester and pyrethroid toxins (Wang 
et al., 2018). Cathepsins are proteases expressed in lysosomes. CTSB 
is highly expressed in the fat body of B. mori during the larval–pupal 

transformation, and it is involved in the programmed cell death of 
the fat body during metamorphosis (Lee et al., 2009). In addition to 
its role in metamorphosis, cathepsin B has been associated with the 
response to immune challenge. Wu et al. (2011) reported upregula-
tion of cathepsins B and D in B. mori challenged with B. mori nuclear 
polyhedrosis virus (BmNPV). Our results showed a counter-intuitive 
pattern in M. sexta (downregulation) relative to results reported by 
Wu et al. (2011) in the closely related species B. mori, but this down-
regulation could be a host response to the known immunosuppres-
sive effects of S. marcescens (Ishii et al., 2014).

F I G U R E  5   Heatmap normalized gene expression of differentially expressed (DE) genes in the embryos with a log2-fold change (LFC) 
greater than 2 or less than −2. Exposure treatments (saline, live Serratia, and heat-killed Serratia) color coded across top of heatmap. 
Hierarchical clustering of genes shown along vertical axis with immune genes and xenobiotic genes coded in green and blue, respectively
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4.4 | Signatures of TGIP in Embryos

Compared to the maternal response, the transgenerational immune 
responses in embryos of mothers who experienced heat-killed 
Serratia injections (Figure 5) involved strong upregulation of immune 
genes—cecropin (CEC), peptidoglycan recognition protein (PGRP), 
toll-like receptor 9 (TLR9), and plasminogen activator inhibitor 1 
(PAI1).

Cecropins are antimicrobial peptides active against many 
gram-negative bacteria and fungi (Lee et  al.,  2013). Contreras-
Garduño et  al.  (2015) reported within-generation immune priming 
and upregulation of cecropin in marsh mosquitoes (Anopheles albi-
manus) exposed to the protozoan parasite Plasmodium berghei, but 
to our knowledge, we are the first to document transgenerational 
upregulation of cecropin in an insect.

PGRP is involved in the response to gram-positive bacte-
ria via the toll pathway and gram-negative bacteria like Serratia 
via the IMD pathway (Gottar et al., 2002). Freitak et al.  (2014) re-
ported transgenerational upregulation of PGRP in the eggs of im-
mune-challenged M. sexta mothers, and Eggert et al. (2014) reported 
upregulation PGRP in the offspring of T. castaneum fathers exposed 
to B. thuringiensis.

Msex2.01919, whose best BLAST hit was for mammalian TLR9, 
was upregulated in embryos of mothers exposed to heat-killed 
Serratia. In mammals, toll-like receptors are primarily involved in 
immune responses, while in insects, toll-like receptors contribute 
to both development and immune response roles (Imler & Zheng, 
2004). In mammals, TLR9 binds CpG motifs in bacterial DNA 
(Cornelie et  al.,  2004). Upregulation of other toll-like homologues 
(TLR4 homolog MsToll) has been reported in M.  sexta challenged 
with gram-negative bacteria (E. coli), gram-positive bacteria (M. lyso-
deikticus), and yeast (Saccharomyces cerevisiae) (Ao et al., 2008).

Plasminogen activator inhibitor 1 (PAI-1) was upregulated in em-
bryos of mothers exposed to heat-killed Serratia. PAI-1 is a serine 
protease inhibitor involved in hemostasis in mammals (Lijnen, 2005). 
PAI-I is upregulated in humans during gram-negative sepsis caused 
by Burkholderia pseudomallei and protects the host by limiting bac-
terial growth, inflammation, and coagulation (Kager et al., 2011). We 
believe we are the first to report transgenerational PAI-1 upregu-
lation in invertebrates, and it is possible that PAI-1 plays a similar 
protective anticoagulation role in Manduca.

5  | CONCLUSION

Maternal exposure of M. sexta to both heat-killed and live S. marces-
cens had strong and significant transgenerational impacts on gene 
expression patterns of their offspring, and these patterns include 
upregulation of genes that could play a role in the transgenerational 
phenotypic effects reported by Rosengaus et al. (2017). This combi-
nation of phenotypic and transcriptomic transgenerational effects 
adds to the growing body of evidence for transgenerational immune 
priming in insects. Our results indicate that immune priming includes 

upregulation of genes associated with pathogen recognition, patho-
gen elimination, and modulation of downstream effects like coagula-
tion. Further exploration is warranted to determine the mechanisms 
that drive these TGIP gene expression changes.
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