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Abstract: This study aimed to explore efficient ways to diagnose bone metastasis early using bone
scintigraphy images through negative mining, pre-training, the convolutional neural network, and
deep learning. We studied 205 prostate cancer patients and 371 breast cancer patients and used bone
scintigraphy data from breast cancer patients to pre-train a YOLO v4 with a false-positive reduction
strategy. With the pre-trained model, transferred learning was applied to prostate cancer patients
to build a model to detect and identify metastasis locations using bone scintigraphy. Ten-fold cross
validation was conducted. The mean sensitivity and precision rates for bone metastasis location
detection and classification (lesion-based) in the chests of prostate patients were 0.72 ± 0.04 and
0.90 ± 0.04, respectively. The mean sensitivity and specificity rates for bone metastasis classification
(patient-based) in the chests of prostate patients were 0.94 ± 0.09 and 0.92 ± 0.09, respectively.
The developed system has the potential to provide pre-diagnostic reports to aid in physicians’ final
decisions.

Keywords: bone metastasis detection; classification; YOLO; pre-train; negative mining; transfer
learning; deep learning

1. Introduction

According to a report published in 2018 by the National Health Insurance Research
Database of Taiwan, prostate cancer (PC) is the seventh highest ranking cause of cancer-
related deaths among Taiwanese men [1]. PC involves a high degree of osteotropism [2]
because the possibility of metastases is relatively high. However, PC has a slower rate of
progression than many other cancers. According to one report by the American Cancer
Society, if PC has only spread to the bones and not to other organs, radium-223 can be used
to help people live longer [3]. If the cancer has grown outside the prostate, preventing
or slowing the spread of the cancer to the bones is a major treatment goal. If the cancer
has already reached the bones, controlling or relieving pain and other complications is
an important part of treatment. As mentioned in [4], “the choice of treatment strategy is
influenced by the presence or absence of bone metastases”, so early diagnosis is clinically
important. The 5-year relative survival rate for individuals with PC that has spread to
distant lymph nodes, organs, or the bones is 29% [3]. Patients with only bone metastases can
be treated with hormone therapy, chemotherapy, or radiation therapy. Early identification
of PC metastases is important, because therapy can effectively slow metastasis progression
at this stage. One of the primary imaging techniques used in clinics for bone metastasis
diagnosis is the whole-body bone scan (WBBS) with vein injection using the Tc-99m MDP
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tracer [5,6]. WBBS is also known as bone scintigraphy (BS). Many imaging modalities
were surveyed by [4], including BS, X-radiography (XR), computed tomography (CT),
magnetic resonance imaging (MRI), positron emission tomography (PET), and single
photon emission computed tomography (SPECT). Among these modalities, BS provides
a trade-off between diagnostic efficiency and cost, and it is “the most commonly used
means of detecting bone metastasis” [4]. In 2021, the cost of BS examination in Taiwan
was about USD 108 [7], which is lower than the same examination at a hospital in US.
The estimated national average price of BS in the US is about USD 1217, according to the
MDsave’s website [8].

Based on BS, many researchers have developed CAD (computer-aided diagnosis)
methods to aid in bone metastasis detection or classification. In general, these can be
categorized into three types: (1) classification of the BS if it is bone metastasis (patient-
based); (2) detection and classification of hot spots (lesion-based); and (3) calculation of the
BSI (bone scan index). From a technical difficulty viewpoint, this gradually increases as the
type number increases. For the first type, it is only necessary to know whether one patient
has the bone metastasis or not [9–11]. For the second type, hot spots must be detected and
classified correctly. For the third type, it is necessary to detect the hot spots, classify them,
and detect the bone area related to the calculation of the bone scan index (BSI) [12,13].

One biomarker used to measure the level bone metastasis invasion is the bone scan
index (BSI). The BSI was proposed in 1998 [14]. A US patent related to the BSI was issued
in 2012 [15]. The publication related to this patent is [16]; however, no description of
the measurement technique is provided in the publication. We only know that in [16],
the authors extracted 20–30 hotspot features and used a fully connected NN (Neural
Network) as a classifier. They used 795 patients as the training group, and >40,000 hotspots
were collected for various metastatic cancers (e.g., prostate, breast, and kidney cancers).
The system used in [16] detected hotspots suitably in certain areas; however, it could
not detect hotspots in a large area of bone metastasis (Figure 3 in [16]). The reason for
this result might be that there were limited training data available on hotspots. In [12],
the authors used ResNet50 as a backbone and incorporated the ladder network to form
an LFPN (ladder feature pyramid network), which can use unlabeled data to pre-train the
NN for bone metastasis detection in the chest area. The mean sensitivity and precision
of lesion detection were 0.856 and 0.852, respectively. For metastasis classification in the
chest, the sensitivity and specificity were 0.657 and 0.857, respectively. The aforementioned
study provided useful technical details on metastasis detection and classification using
deep learning.

Some strategies are able to increase performance by using CNN and deep learning, as
follows:

(1) By using a pre-trained model, also known as transfer learning [17].
(2) By using data augmentation.
(3) By using an ablation study to find a near-optimal hyper-parameter set.
(4) By using hard negative mining to reduce the false positive rate.
(5) By using different CNN backbones and finding the best one.
(6) By using image enhancement as a pre-process before inputting images into CNN.

Deep learning can perform well when the training dataset is large. However, in some
medical studies, small datasets have been used, like in this study. Under this situation,
traditional image enhancement might play a crucial role in increasing the NN’s performance
and robustness.

In general, there are four types of object detection and semantic segmentation methods
used in computer vision. From coarse to fine, these are (1) classification, (2) classification
and localization, (3) object detection, and (4) instance segmentation. The classification
only needs to determine the class of an image. Many CNNs can fulfill the requirement.
Localization needs to be used to locate the exact position of the object in an image using a
bounding box in the tightest possible manner. Object detection can detect multiple objects
of different classes in an image using some bounding boxes to denote their locations, such
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as the YOLO [18,19] series and faster R-CNN [20]. Instance segmentation methods, such as
mask R-CNN, do the same thing but use the finest option, a mask, to identify the boundary
of each object instead of using a bounding box [21]. Moreover, the difference between
instance segmentation and semantic segmentation is that the former is able to differentiate
between different objects of the same class. In computer vision, this is done by machine
learning with some hand-crafted features, as shown in previous studies [22,23]. In this
paper, we use the object detection method YOLO v4 to identify the locations of lesions and
classify them into two classes: metastasis or not.

The YOLO (You Only Look Once) method is a state-of-the-art, real-time object detec-
tion system [24]. As the authors claim, “It (YOLO v3) also makes predictions with a single
network evaluation unlike systems like R-CNN which require thousands for a single image.
This makes it extremely fast, more than 1000× faster than R-CNN and 100× faster than Fast
R-CNN”. Basically, YOLO v3 contains a backbone (here, Darknet-53) for feature extraction
and a region proposal network (RPN). The input is an image, and the outputs are bounding
boxes (with centroid coordinates, widths, and heights). Each box has a classification label
and a probability (or named as confidence). YOLO v4, its updated version [19], runs faster
and has a better performance than earlier versions.

2. Materials and Methods
2.1. Materials

In this retrospective study, 576 WBBS images were collected from China Medical
University Hospital between August 2013 and May 2019, of which 205 came from PC
patients and 371 came from breast cancer patients. This study was approved by the
Institutional Review Board (IRB) of China Medical University and Hospital Research Ethics
Committee (CMUH106-REC2-130). The first IRB has been approved in 27 September 2017.
The collected WBBS images were in DICOM format, and all private connections were
removed. The spatial resolution of the raw images was 1024 × 512 pixels (a combination
of the anterior–posterior (AP) view and the posterior–anterior (PA) view). The intensity
information from each pixel was saved as files of 2 bytes in size (int16).

The WBBS process can be described as follows. Patients underwent whole-body
planar bone scans (WBBS) with a gamma camera (Millennium MG, Infinia Hawkeye
4, or Discovery NM/CT 670 system; GE Healthcare, Waukesha, WI, USA). Bone scans
were acquired 2–6 h after the intravenous administration of 20 mCi of technetium-99m
methylene diphosphonate (Tc-99m MDP) by using a low-energy, high-resolution or general-
purpose collimator with a matrix size of 1024 × 256, an acquisition time of 15–20 cm/min,
and photon energy centered on the 140-keV photo-peak with a symmetrical 20% energy
window. During the wait time, immediately before scanning, the patients were encouraged
to hydrate and void frequently. The patients were scanned in the supine position within
15 min and whole-body anterior–posterior images were acquired for interpretation. All
images were interpreted using a dedicated GE Xeleris workstation (GE Medical Systems,
Haifa, Israel; version 2.0551).

All images were studied by two experienced physicians. Hotspots were categorized
into two types: (1) confirmed metastatic (or positive) hotspots or (2) equivocal or normal
lesions (including degenerative changes and inflammation) and injuries (post-trauma).
Positive hotspot classification was confirmed and agreed upon by two experienced nuclear
medicine physicians according to pathological examination results, relevant medical history,
characteristic findings on other advanced medical imaging modalities (e.g., computed
tomography or magnetic resonance image), and/or serial changes on follow-up bone
scans. Equivocal hotspots were those lacking definite evidence or for which agreement
from the two experienced physicians did not occur. Of the 205 PC patients, 11 were
excluded because of superscans. The remaining number of PC patients used in this study
was 194. The PC patients were aged between 51 and 92 years, and the average age was
73.9 ± 8.3 years. The 371 breast cancer patients were only used in the pre-training period.
The number of metastases identified in PC images was 524, the number of equivocal and
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injury hotspots was 103, and the number of normal hotspots was 198 (Table 1). For the
two-level classification, class 0 denoted metastasis and class 1 denoted equivocal, injury,
and normal hotspots.

Table 1. The number of (a) metastatic lesions, (b) equivocal, injury, and (c) degenerative changes, and
normal hotspots such as urine in the bladder, hotspots in the kidneys, etc. in 194 PC BS images.

Metastasis Equivocal and Injury Normal Hotspots

524 103 198

2.2. Network Selection: YOLO v4

The difficulty with automatic bone metastasis detection comes from the differentiation
between normal and metastatic hotspots because injury and osteoarthritis may also cause
hotspots. However, well-trained physicians have the ability to differentiate between them.
For example, injury hotspots may occur in not only one spot but along a straight line (on
the ribs). Osteoarthritic hotspots might be symmetric on both sides (left and right) near
a joint. Human experts use certain knowledge to recognize and differentiate between
hotspots. Such knowledge is non-trivial for mathematical modeling and is embedded into
algorithms used in traditional image processing techniques.

The CNN has been used for more than 10 years to extract features [25]. The NN
provides an alternative method to extract non-handcrafted features automatically via a
training process. There are two state-of-the-art networks that are able to detect and classify
multiple objects in an image using bounding boxes: (1) Faster R-CNN [20]; (2) YOLO
v3 [18,24], and YOLO v4 [19]. The major differences between these two models are that
the Faster R-CNN is a two-stage model, while YOLO v3 (and v4) is a one-stage model.
As stated in [24], the speed of YOLO v3 is 100 times faster than that of the faster R-CNN.
Further, YOLO v4 [19] performs better than YOLO v3 [18]. Thus, we chose to use YOLO v4
in this study. “It is very hard to have a fair comparison among different object detectors”.
As the author Jonathan Hui said in his personal medium in 2018 [26], “There is no straight
answer on which model is the best”. What we selected is only a trade-off between accuracy
and speed, since there are too many parameters impacting the performance. As shown by
the figures in [26] selected from some papers, YOLO v4 is not a bad choice. In fact, YOLO
v4 is the most updated and state-of-the-art technique found in similar works.

2.3. Image Pre-Processing

Image size and intensity normalization is an important step that must be done prior to
image processing. The acquired WBBS images had large variations in intensity distribution.
These variations were caused by many factors, such as the blood supply to the bones, the
drug metabolism rate, and leakage of the radiotracer. Most our WBBS images were of a
consistent quality, but some were not. To alleviate this problem, we propose the use of an
automated image normalization strategy, as detailed in the following two paragraphs:

A standard WBBS image has two views: anterior and posterior. The body range was
detected using projection profiles, and both views were cut and centered into an image
with a size of 512 × 950 pixels without scaling or any other geometric transformation. Until
this point, the image was still in int16 format.

The intensity of the WBBS images revealed the absorption of Tc-99m MDP on the
gamma camera. Some special cases, such as leakage of the radiotracer and from the urine
bag (usually near the femur), also caused high intensity in the image. Our strategy to solve
this problem was to design an algorithm that controlled the average intensity within a
range (T1, T2), as follows (Figure 1):
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were pruned via the uint8 function. Notably, image I was converted to double precision before
computation in every process block.

We developed a network to detect the chest and pelvis areas of the bone scan images
in our previous study [27]. This network extracted the chest images for further processing
in this study.

2.4. Data Augmentation

When we train a neural network, what we are really doing is tuning the parameters
(weights between neurons) such that the network can fit a particular input (an image)
to its output (a label). Typical state-of-the-art networks have parameters in the order of
millions. If there are not enough training images, most parameters are under-trained, so
the performance of the network might be poor. One intuitive solution is to increase the
number of training images; this is why data augmentation is done. A good review of data
augmentation can be found in [28].

We performed data augmentation offline on extracted chest images, as follows: (1) we
generated 6 different intensity images; (2) we flipped every image. Thus, the number of
items in the dataset was increased by a factor of 12. More specifically, we found that the
average intensity of the chest images needed to be controlled between (25, 48). For images
under the lower mean of 25, some parts of ribs might disappear. For images over the
upper mean of 48, some images might be similar to superscans, causing ambiguity in
hotspot detection. The average intensity of the first image was counted, and then the extra
6-intensity images were examined. Their average intensities were found to be uniformly
distributed within the range (25, 48).

2.5. Input Image

The raw images had AP and PA views. If we separated them or fed them in a plane as
previous studies did, then we lost their corresponding position connections. To alleviate
this problem, we combined them to form a 3D image to be the input of the YOLO v4
network. The PA view was flipped (left-right) to be the ‘green’ channel, whereas the AP
view was inserted to be the ‘red’ channel. A third image was produced by multiplying
the AP and PA views pixel-by-pixel, and then the average intensity of the third image was
controlled to be the mean of these two views. In this way, we produced a color image, as
shown in Figure 2.
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2.6. Pre-Trained Model and Transfer Learning

Transfer learning is a strategy that is commonly used to increase the performance of a
NN; however, it is only helpful if the learned images are similar to the test data. The COCO
dataset contains nature pictures that are different to bone scan images; therefore, transfer
learning from the pre-trained model is useless.

In this study we collected 371 WBBS images from breast cancer patients and used them
to train a model. All 371 WBBS images were pre-processed, as described in Sections 2.3–2.5.
Among these 371 images, 167 images showed bone metastases and 204 images were normal
without metastasis or injury. The metastatic hotspots in these 167 images were manually
extracted by an expert using bounding boxes. We trained a YOLO v4 model with only one
class, metastasis, using these 167 images with their corresponding labels (bounding box:
x, y, width, height). We describe how this pre-model was further trained using negative
mining in the next paragraph.

2.7. Negative Mining

The current YOLO v4 pre-model was able to detect hotspots, both normal and abnor-
mal. We then applied this pre-model to test those 204 normal images (without metastasis)
to produce false positives, intentionally. This is similar to the hard negative mining process;
however, it is not hard. Since we knew that all 204 images were normal, all resulting
bounding boxes were false positives (namely, negatives). Then, all of these false positives
and previous true positives were fed into the trained YOLO v4 model and trained again to
get a pre-trained model with two classes. By using this strategy, we did not need to prepare
any negatives for training purposes manually. Thus, the process was efficient and saved a
tremendous amount of time. At this point, there were two classes in the pre-trained model:
(1) metastasis; (2) non-metastasis.

Hard negative mining is a way to explore hard negatives using a current model and
then training the model again with the explored hard-negatives and old training samples.
The model with hard negatives would be expected to perform better [26]. In this study, we
used this idea to produce many training samples of a new class fully automatically. The
goal was to reduce the false positive rate of the pre-trained model, as hard negative mining
does.

2.8. Transfer Learning

The pre-trained model was further trained by the data of PC patients’ bone scan
images. All 194 PC bone scan images were processed through the methods described
in paragraphs 2.3 to 2.5. Three PC data classes were used: (1) Metastasis; (2) Equivocal;
(3) Injury and other normal hotspots. There were less images in class 2 than in classes 1
and 3.

We used 10-fold cross validation. The metastasis images were randomly shuffled 10
times, and each time, one-tenth of these were used for testing and nine-tenths were used
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for training. The same thing was done with the normal (with injury) images. The number
of equivocal cases was very limited, and these images were put in the normal group.

3. Results

Figure 3a demonstrates the result of the pre-processing (Section 2.3, (T1, T2) = (7,14))
and chest region detection (method described in our previous study [24]). The chest regions
were combined to form a three-channel color image, as described in Section 2.5, and the
results are shown in Figure 2. To provide a comprehensive overview, we show an extreme
case in Figure 3b. In Figure 3b, we can see that the chest region has a very low density
compared with Figure 3a. This is because image pre-processing was done before chest
detection and was applied to the whole body including the pelvis. Once the pelvis has
metastases, the average intensity will be affected by this part, and the intensity in the rest
of the image will be suppressed. This is also why we controlled the average intensity of
the chest region in the range of (25, 48). A similar effect occurs in cases such as injection
leakage and urine, as shown in Figure 3c.
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(a) result (case number 9) representing most cases; (b) pelvic metastasis with strong Tc-99m MDP
absorption (case number 13); (c) urine remaining in the bladder (case number 71) and injection
leakage (case number 60).

Figure 4 shows the average intensity of the chest images before data augmentation.
The abscissa is the case number of PC patients, whereas the ordinate is the average intensity
of an image. Most cases were within the intensity range (25, 48). After data augmentation,
each chest image had six different intensity levels that were uniformly distributed within
the given range.
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as shown in Figure 2c. The abscissa shows the case numbers; the ordinate shows the average image intensities. (b) The 7
different intensities were augmented as an illustration. (Case number 07).

A YOLO v4 model was trained with 167 bone metastasis images of breast cancer
patients. In this stage, there was only one class, metastasis, and we stopped after 150,000
iterations to build a pre-model. The batch size was 64, and the learning rate was 0.00261.
The pre-model was used to detect hotspots in the 204 normal cases. Since the model was
trained with only one class, it could only detect one class. We set the confidence threshold
at 0.1, and all results greater than that threshold were collected to form negatives. These
negatives were used as training samples of the second class: non-metastasis. The pre-model
was further trained with these negatives and together with former positives to build a
pre-trained model.

Cross-validation is a technique that is used to evaluate a model by partitioning the
original sample into a training set to train the model and a test set to evaluate it. The PC
images were randomly partitioned into 10 subsamples of equal size by using the ‘shuffle’
command. Of the 10 subsamples (or named as 10 folds), one single subsample (1 fold)
was retained as the validation data for testing the model. The remaining 9 subsamples (9
fold) were used as training data. The cross-validation process was then repeated 10 times.
Figure 5a shows a qualitative detection and classification result. In the following similar
figures, the three classes (metastasis, equivocal, non-metastasis) are denoted by three colors
(red, yellow, green). In Figure 5a, there is a green box with red dots. This means that there
are two classes (meta and non-meta) detected with overlapping. In the overlapping cases,
if the confidence level is larger, it is represented as a line; otherwise, it is shown with dots.
Figure 5b shows the ground truth, and Figure 5c shows the corresponding PA view without
flipping. In this case, some “under-diagnosis” can be observed.
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Figure 5. The qualitative result (case number 63) of our model. (a) Detection and classification results;
(b) ground truth; (c) the raw PA view (without flipping). The red box denotes metastasis, the yellow
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box has. The same meanings are in the following figures.

Without losing generality we show some examples in Figures 6 and 7. In the case of
Figure 6, e the model shows some instances of “over-diagnosis” different to those shown in
Figure 5. The physicians were not sure about a region (shown in Figure 6b, yellow box) and
gave an equivocal decision, whereas the model classified it as a “meta”. Another region
was marked by the model with a red line and yellow dots, but this region was ignored by
physicians. Figure 7 demonstrates cases with multiple metastases. There were three false
negatives in case number 105.
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Figure 7. Qualitative results (case number 85, upper row; case number 105, lower row) of our model.
(a) Detection and classification results; (b) ground truth; (c) the raw PA view (without flipping).

The readers might wonder how this model works in normal cases with a high image
intensity. Figure 8a,b shows two examples of this case. Our model works very well without
error. However, Figure 8c shows an injury case. In this case, the model miss-classified two
injury hotspots as metastases, although one of them had the possibility of being equivocal.
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Figure 8. Qualitative detection and classification results (case numbers 73, 132, and 137). (a) Normal
case #73; (b) normal case #132; (c) case #137 with injuries.

We further show the quantitative results of YOLO v4 in Table 2. The metastasis and
normal cases were controlled so that they averaged in 10-fold. Among them, the images of
nine folds were used to train the pre-trained YOLO v4 and the images of one fold were used
for testing. In the lesion-based experiment, each detected bounding box was compared
with the ground-truth determined by two physicians using the 0.3 IoU (intersection of
union). We considered two classes: metastasis and non-metastasis. The equivocal cases
were ignored. We were able to calculate the sensitivity and precision for the lesion-based
case. This was because the term true-negative (TN) has no definition. Therefore, only
‘precision’ can be calculated, which is defined by (TP)/(TP + FP). In the patient-based
experiment, we only considered whether the chest images showed metastasis or not. Thus,
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the term true negative could be defined. Therefore, we could calculate the sensitivity and
specificity.

Table 2. The quantitative results of the YOLO v4. All 194 prostate cancer (PC) bone scintigraphy (BS)
images were shuffled 10 times. One shuffle means one cross-validation.

Shuffle Number Lesion-Based
Sensitivity Precision

Patient-Based
Sensitivity Specificity

1 0.69 0.83 1.00 0.83
2 0.70 0.86 0.75 0.91
3 0.68 0.87 0.88 0.73
4 0.68 0.97 0.88 1.00
5 0.71 0.94 1.00 1.00
6 0.70 0.92 1.00 1.00
7 0.77 0.87 1.00 0.79
8 0.71 0.92 1.00 1.00
9 0.73 0.91 1.00 0.91
10 0.78 0.94 0.88 1.00

Average 0.72 ± 0.04 0.90 ± 0.04 0.94 ± 0.09 0.92 ± 0.09

To compare our model with another similar state-of-the-art network, we used the
faster R-CNN [20], and the results are shown in Table 3. The comparison was based on the
same training and test samples, and these samples were pre-trained by the same breast
dataset. Tables 2 and 3 show that the YOLO v4 is more advanced than the Faster R-CNN.

Table 3. The quantitative results of the Faster R-CNN. All 194 PC BS images were shuffled 10 times.
One shuffle means one cross-validation.

Shuffle Number Lesion-Based
Sensitivity Precision

Patient-Based
Sensitivity Specificity

1 0.77 0.66 1.00 0.90
2 0.67 0.59 1.00 0.70
3 0.75 0.68 1.00 0.60
4 0.65 0.50 0.86 0.36
5 0.68 0.59 0.88 0.64
6 0.74 0.67 0.88 1.00
7 0.56 0.78 1.00 0.73
8 0.70 0.54 0.88 0.82
9 0.72 0.74 0.89 0.70
10 0.48 0.77 0.75 0.82

Average 0.67 ± 0.09 0.65 ± 0.10 0.91 ± 0.08 0.73 ± 0.18

We report some details of the negative mining. In total 371 breast patients bone scan
images are involved in the pre-train and negative mining processes. In which 167 cases
have chest metastases and the rest 204 cases are normal in chest. By using the 1-class
(metastasis) training, we obtain an NN model that can only recognize positives. Use this
model to detect in the 204 normal cases we have mined 746 negatives in total, which are
turned to be the third class (normal) to get a pre-train model together with previous positive
samples. Figure 9 show four qualitative results of the negative mining. In the figures,
‘confirmed’ means the ‘confirmed metastasis’, and the number aside it is the detected
confidence (the probability). Via this strategy, we only need to label positives and let the
negatives be mined. This process will save time and get efficient training samples.
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4. Discussion

In the field of computer vision, comparison between different methods using the same
benchmark is important. However, there are no open datasets for bone scan images, unlike
the lung nodule detection, for which CT images are available. The well-known LUNA2016
dataset [27] is a selected subset of the LIDC-IDRI [28], which contains CT image sequences
from 888 patients. These open datasets are benchmarks for the comparison of different
methods. In bone scan metastasis detection and classification research, all previous studies
have used in-house datasets of a gold standard. This makes the comparison of different
algorithms difficult, especially for works that did not provide the source codes. We were
not able to try other datasets using our algorithm. Therefore, the performances reported by
other researchers can only be used as references, rather than for objective comparison.

Similar research was reported in [12] in 2020. The authors used a ladder network
to pre-train an NN backbone with an unlabeled dataset. The pre-trained model worked
better than the one without pre-training. For lesion detection, the mean sensitivity and
precision values were 0.856 and 0.852. However, this was the only detection method
without classification. Our results showed sensitivity and precision values of 0.72 and 0.90,
and this indicated not only correct detection but also correct classification. In the previous
study, for metastasis classification in the chest, the sensitivity and specificity values were
0.657 and 0.857, respectively. In our study, the sensitivity and specificity values for chest
image metastasis classification were 0.94 and 0.92, respectively.

To the best of our knowledge, this is the first study to propose the use of negative
mining to prepare training patterns of another class in order to reduce the false positive
rate. Our idea is that since we do not know what false positives the model will produce,
we should let the model tell us. We just select some negative cases for the model to test
and collect all of the results as false positives in the next training phase. Thus, we save a
tremendous amount of time in preparing training patterns. Via this strategy, the rate of
false positives obviously reduces. We provide this idea for other researchers and hope it is
helpful for future study.

Some parameters used in data augmentation, such as zoom in, zoom out, and rotation
can increase the robustness of a neural network. We did not implement them in this study
due to the computational cost involved—the training (150,000 iterations) of one fold takes
more than 8 h in our DGX-2 station.

In this study, we did not conduct an ablation study to find a near-optimal hyper-
parameter set. For example, we did not determine the optimal learning rate at the beginning
or the optimal decay rate of the learning rate. We think that this depends on training data
and it is not necessary to explore it because of the associated computation cost. We just
leveraged the hyper-parameters, as suggested by the original authors.

5. Conclusions

We provide an efficient way to reduce the false positive rate by using negative mining.
According to our experiments using 10 shuffles with 10-fold cross validation, the detection
and classification of metastasis hotspots has mean sensitivity and precision values of 0.72
and 0.90, respectively. Chest image classification has mean sensitivity and specificity values
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of 0.94 and 0.92, respectively. The higher precision and specificity values indicate a reduced
false positive rate.
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