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Abstract 

Background:  Laurasiatheria contains taxa with diverse diets, while the molecular basis and evolutionary history 
underlying their dietary diversification are less clear.

Results:  In this study, we used the recently developed molecular phyloecological approach to examine the adaptive 
evolution of digestive system-related genes across both carnivorous and herbivorous mammals within Laurasiatheria. 
Our results show an intensified selection of fat and/or protein utilization across all examined carnivorous lineages, 
which is consistent with their high-protein and high-fat diets. Intriguingly, for herbivorous lineages (ungulates), which 
have a high-carbohydrate diet, they show a similar selection pattern as that of carnivorous lineages. Our results 
suggest that for the ungulates, which have a specialized digestive system, the selection intensity of their digestive 
system-related genes does not necessarily reflect loads of the nutrient components in their diets but appears to be 
positively related to the loads of the nutrient components that are capable of being directly utilized by the herbivores 
themselves. Based on these findings, we reconstructed the dietary evolution within Laurasiatheria, and our results 
reveal the dominant carnivory during the early diversification of Laurasiatheria. In particular, our results suggest that 
the ancestral bats and the common ancestor of ruminants and cetaceans may be carnivorous as well. We also found 
evidence of the convergent evolution of one fat utilization-related gene, APOB, across carnivorous taxa.

Conclusions:  Our molecular phyloecological results suggest that digestive system-related genes can be used to 
determine the molecular basis of diet differentiations and to reconstruct ancestral diets.
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Background
Laurasiatheria includes typical carnivores (e.g., car-
nivorans and cetaceans) and herbivores (e.g., ungulates). 
These carnivorous and herbivorous lineages scatter the 
phylogeny of Laurasiatheria, suggesting the occurrence of 
dietary transitions among them, while the evolutionary 
history of their diets remains less clear. For instance, liv-
ing bats contain both carnivores (e.g., insect-eaters) and 
herbivores (e.g., fruit-eaters), and the diet of ancestral 
bats is still unknown, with both insectivory and frugivory 

having been proposed [1]. Likewise, for typical herbi-
vores, such as odd-toed ungulates and even-toed ungu-
lates, they are deeply nested within several carnivorous 
lineages, including carnivorans, pangolins, bats, and Euli-
potyphla; however, another carnivore, the cetacean, is 
deeply nested within even-toed ungulates. This may sug-
gest that their diets must have changed; however, the evo-
lutionary history of their diets remains largely unknown, 
and few relevant studies exist. One previous macroeco-
logical study infers the evolutionary history of the diets 
within mammals, including Laurasiatheria, and a high 
frequency of their dietary transitions from herbivory and 
carnivory to omnivory is reported [2], which is a pat-
tern found in birds as well [3]. More studies, especially 
at the molecular level, may be needed as reconstructing 
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ancestral diets is of importance to understanding the 
evolutionary origin of the dietarily specialized taxa.

The recent development of a molecular phyloecological 
(MPE) approach provides a new opportunity to investi-
gate ancestral traits using molecular data [4–7]. The MPE 
approach mainly uses the adaptive evolutionary analy-
ses of the molecular markers indicative of trait states to 
determine the molecular basis of phenotypic differentia-
tion and to infer ancestral traits given a phylogeny, and 
it has been used to infer the diel activity patterns and 
diets of ancestral taxa [4–8]. Regarding diet reconstruc-
tion, the MPE approach employs digestive system-related 
genes as the molecular markers indicative of diets to infer 
ancestral diets. Accordingly, carnivores are characterized 
by the selection intensification of protein and fat utiliza-
tion, while herbivores are normally characterized by the 
selection intensification of carbohydrates [7–10] because 
carnivore diets are high in proteins and fats and herbi-
vore diets are normally high in carbohydrates [7, 9–13]. 
The MPE method has been used to infer ancestral diets 
in birds [7, 8], and its fitness to mammals remains to be 
explored. In this study, we used Laurasiatheria as an ideal 
clade to examine the molecular basis underlying the diet 
differentiations and to reconstruct their ancestral diets 
as it contains the taxa with highly specialized diets. Our 
results provide new insights into understanding their 
evolutionary history of diets.

Results
Following the MPE approach to examine the molecu-
lar evolution of diets [7, 8], we examined the adaptive 
evolution of 119 digestive system-related genes (Addi-
tional file  2: Table  S1) in the given Laurasiatheria phy-
logeny (Fig. 1). These genes are involved in three KEGG 
pathways, and play important roles in the digestion 
and absorption of carbohydrates, proteins, and fats [7] 
(Fig. 2). The positive selection of these genes along par-
ticular branches (A–L in Fig.  1) was analyzed using 
branch and branch-site models implemented in PAML 
software [14]. Positively selected genes (PSGs) were 
mainly detected based on the branch-site model (Addi-
tional file 3: Table S2). We initially analyzed the positive 
selection along the lineages with highly specialized diets, 
including three primarily carnivorous lineages (Eulipoty-
phla, Pholidota, and Cetacea) and one typically herbivo-
rous lineage (Ruminantia). Intriguingly, our results reveal 
a highly similar selection pattern across the four lineages 
and show the predominant selection of fat and protein 

utilization with relatively the weakest selection of carbo-
hydrate utilization in terms of both the p values and the 
number of PSGs found. These results remain unchanged 
even after the Bonferroni multiple testing correction of 
the p values of PSGs (Additional file  3: Table  S2,  Addi-
tional file 4: Table S3, Additional file 5: Table S4).

Eulipotyphla primarily eats invertebrate prey, and we 
found 10 PSGs along the branch leading to Eulipotyphla 
(branch L, Fig.  1), including four fat utilization-related 
genes (APOB, APOA1, LIPF, and NPC1L1), four pro-
tein utilization-related genes (MEP1B, CTRL, SLC3A2, 
and CPA1), and two carbohydrate utilization-related 
genes (HK1 and MGAM) (Additional files 3, 4, 5: Tables 
S2-4). Among these PSGs, APOB and APOA1 encode key 
apolipoproteins responsive to carrying fats and fat-like 
substances in the blood [15, 16]. LIPF encodes a gastric 
lipase, which plays an important role in the digestion 
of dietary triglycerides in the gastrointestinal tract [17]. 
NPC1L1 is responsible for the intestinal absorption of 
cholesterol and/or plant sterols [18]. MEP1B encodes 
metalloendopeptidases [19]. CTRL is considered to play a 
role in the digestion of proteins [20]. SLC3A2 encodes an 
amino acid transporter [21]. CPA1 encodes a pancreatic 
exopeptidase [22]. HK1 encodes hexokinase 1, which cat-
alyzes the first step in glucose metabolism [23]. MGAM 
encodes maltase-glucoamylase, which is involved in the 
small intestinal digestion of starch to glucose [24].

Pholidota eats almost exclusively ants and termites. Our 
positive selection analyses along the Pholidota branch 
(branch J, Fig.  1) revealed 16 PSGs (Additional file  3: 
Table S2), including six fat utilization-related genes (APOB, 
PLPP2, APOA1, SLC27A4, PLA2G1B, and CLPS), six pro-
tein utilization-related genes (SLC8A2, SLC7A9, SLC3A1, 
DPP4, KCNN4, and SLC3A2), and four carbohydrate uti-
lization-related genes (MGAM2, HK3, G6PC, and LCT). 
PLPP2 functions in phospholipid metabolism by convert-
ing phosphatidic acid to diacylglycerol [25]. SLC27A4 is 
known as an important fatty acid transporter in small 
intestinal enterocytes [26]. PLA2G1B encodes phospholi-
pase A2 and catalyzes the release of fatty acids from glyc-
ero-3-phosphocholines [27]. CLPS encodes a pancreatic 
colipase [28]. SLC8A2 encodes a Na+-Ca2+ exchanger, 
which is widely expressed in different tissues [29]. SLC7A9 
is involved in amino acid transport [30]. SLC3A1 encodes 
an amino acid transporter [31]. DPP4 codes a cell-surface 
protease [32]. KCNN4 codes for the calcium-activated 
potassium channels [33]. MGAM2 is involved in the deg-
radation of starch or glycogen and is highly expressed in 

Fig. 1  Laurasiatheria phylogeny and reconstructed ancestral dietary categories based on molecular data. The phylogenetic relationships among 
species follow published studies [94–96]. The branches under positive selection analyses are shown with letters (A–L). The dietary categories of each 
extant species and each mammalian order shown in the pet charts are based on one previous study [93]. Carnivores are shown in red, herbivores in 
green, and omnivores in violet. Black shows the species with no dietary categories available

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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the small and large intestines [34]. HK3 is involved in glu-
cose metabolism [35]. G6PC plays an important role in the 
homeostasis regulation of blood glucose concentrations, 
catalyzing the terminal step in gluconeogenesis and gly-
cogenolysis [36]. LCT encodes a molecule with both lactase 
activity and phlorizin hydrolase activity [37].

Cetaceans are primarily carnivores, feeding on inverte-
brates and vertebrate prey. Our positive selection analyses 
detected six PSGs along the ancestral branch of Cetacea 
(branch F, Fig.  1), including four fat utilization-related 
genes (APOB, PNLIPRP2, PLA2G5, and SCARB1), one 
protein utilization-related gene (CPA3), and one carbohy-
drate utilization-related gene (SI) (Fig. 2; Additional file 3: 
Table S2). PNLIPRP2 is a pancreatic lipase-related protein 
[38]. PLA2G5 is a member of the phospholipase A2 gene 
family and plays a role in the hydrolysis of phospholipids 
[39]. SCARB1 mediates the uptake of cholesterol and a 
variety of lipids [40]. CPA3 is involved in the degradation of 
proteins [41]. SI encodes sucrase-isomerase and is essential 
for the digestion of dietary carbohydrates including starch, 
sucrose, and isomaltose [42].

Ruminantia is typically herbivorous. Our positive selec-
tion analyses revealed 12 PSGs along the ancestral branch 
leading to Ruminantia (branch G, Fig. 1), including four fat 
utilization-related genes (APOB, MOGAT2, MTTP, and 
FABP1), five protein utilization-related genes (SLC36A1, 
SLC6A19, SLC1A5, SLC7A8, and SLC15A1), one carbo-
hydrate utilization-related gene (PRKCB), and two ionic 
homeostasis-related genes (ATP1B1 and ATP1B3) [43] 
involved in both protein and carbohydrate utilization 
(Fig. 2; Additional file 3: Table S2). MOGAT2 plays a role in 
dietary fat absorption from the small intestine [44]. MTTP 
catalyzes the transport of triglycerides, cholesteryl esters, 
and phospholipids [45]. FABP1 encodes a fatty acid-bind-
ing protein that regulates lipid transport and metabolism 
[46]. SLC36A1, SLC6A19, SLC1A5, and SLC7A8 mediate 
the transport of amino acids [47–50]. SLC15A1 encodes 
an intestinal transporter of peptides [51]. PRKCB encodes 
a protein kinase involved in many different cellular func-
tions, including intestinal sugar absorption [52].

We also analyzed the positive selection of the digestive 
system-related genes in Chiroptera and Carnivora, both of 
which harbor dietary diverse species. Chiroptera contains 
both carnivores (e.g., insect-eaters) and herbivores (e.g., 
fruit-eaters), and our positive selection analyses along the 
ancestral Chiroptera branch (branch K, Fig.  1) revealed 
eight PSGs (Additional file  3: Table  S2, Additional file  4: 
Table  S3, Additional file  5: Table  S4). These eight PSGs 

include only protein utilization-related genes (SLC3A2, 
SLC1A5, CELA3B, and DPP4) and fat utilization-related 
genes (APOB, CD36, ABCG8, and PLPP2). CELA3B is a 
pancreatic serine proteinase that digests dietary protein 
substrates [53]. CD36 is mainly involved in the uptake 
and processing of fatty acids [54]. ABCG8 functions in the 
excretion of neutral sterols in the liver and intestines [55]. 
Like Chiroptera, for the ancestral branch of Carnivora 
(branch H, Fig. 1), only fat utilization-related genes (APOB 
and PIK3CD) and protein utilization-related genes (CPB2 
and KCNK5) were found to be under positive selection 
(Additional file  3: Table  S2). PIK3CD encodes phosphati-
dylinositol 3-kinase with a broad phosphoinositide lipid 
substrate specificity [56]. CPB2 encodes carboxypepti-
dase B2, cleaving C-terminal residues from peptides [57]. 
KCNK5 is considered to play an important role in potas-
sium transport [58].

To determine the selection characterization of ances-
tral taxa, we subsequently examined the positive selec-
tion of the digestive system-related genes along other 
early branches of Laurasiatheria (branches A, B, C, D, E 
and I, Fig. 1) (Additional file 3: Table S2, Additional file 4: 
Table  S3, Additional file  5: Table  S4). For the ancestral 
Laurasiatheria branch (branch A, Fig.  1), we found two 
fat utilization-related genes (APOB and NPC1L1), one 
protein utilization-related gene (MEP1B), and one glu-
cose metabolism-related gene (HKDC1) [59] to be under 
positive selection. For branch B, only one fat utilization-
related gene, AGPAT2, was found to be under positive 
selection. It plays a role in converting lysophosphatidic 
acid into phosphatidic acid [60]. For branch C, three 
PSGs (SLC7A8, MGAM2, and ATP1B3) were found. For 
branch I, one positively selected fat utilization-related 
gene, APOB, was detected. For branch D, two fat utiliza-
tion-related genes (APOB and PLA2G2D) were found to 
be under positive selection, and notably, PLA2G2D is a 
member of lipolytic enzyme [61]. For branch E, two fat 
utilization-related genes (LIPF and PNLIP) and two pro-
tein utilization-related genes (SLC3A2 and MEP1B) were 
found to be under positive selection, of which PNLIP 
encodes a pancreatic lipase, also known as pancreatic 
triacylglycerol lipase. This pancreatic lipase hydrolyzes 
dietary triglycerides to free fatty acids and monoacylglyc-
erols and is critical for the efficient digestion of dietary 
triglycerides in the intestines [62, 63].

Among the PSGs found, one gene APOB showed a 
particularly strong positive selection with hundreds of 
positively selected amino acid sites found in most taxa 

(See figure on next page.)
Fig. 2  Digestive system pathways and positively selected genes found in ruminants (green) and cetaceans (red). Three digestive system pathways 
(A, B, and C) were modified from that of KEGG, including carbohydrate digestion and absorption (map04973), protein digestion and absorption 
(map04974), and fat digestion and absorption (map04975). Positively selected genes are shown in parentheses, and their corresponding proteins 
are highlighted in red (cetaceans) and green (ruminants)
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examined, including those carnivorous taxa (Additional 
file 3: Table S2). To test whether the APOB gene was sub-
ject to convergent evolution among the carnivorous taxa, 
we subsequently examined the convergent and/or paral-
lel amino acid substitutions along the branches related to 
those carnivores by reconstructing ancestral sequences 
using PAML [14], and many parallel amino acid substi-
tutions were detected among them with high statisti-
cal significance (Additional file  1: Fig. S1; Additional 
file 6: Table S5). For instance, nine parallel substitutions 
each were found between the branches of Eulipotyphla 
and Pholidota, and between the branches of Chiroptera 
and Pholidota. Eight parallel substitutions were found 
between the branch of Carnivora and two other branches 
of Eulipotyphla and Chiroptera. These parallel amino 
acid substitutions may have led to their sequence con-
vergence and thus to their phylogenetic affinity. To test 
this, we then constructed the maximum likelihood 
phylogeny based on the protein sequence of the gene 
APOB. Intriguingly, our results showed that the APOB 
tree (Fig. 3) was largely different from their species tree 
(Fig. 1). In particular, we found that four carnivory-dom-
inant taxa (Carnivora, Pholidota, Chiroptera, and Eulipo-
typhla) were grouped into the same clade with bootstrap 
values ranging from 39 to 43 upon three independent 
runs, indicating their sequence convergence.

Discussion
We in this study examined the adaptive evolution of 
digestive system-related genes to determine the diet evo-
lution within Laurasiatheria. Consistent with previous 
studies that demonstrate the evolutionary enhancement 
of protein and fat utilization in carnivores [7, 9, 10], all 
three primarily carnivorous mammal taxa (Eulipotyphla, 
Pholidota, and Cetacea) examined in this study showed 
a particularly intensified selection of fat and protein uti-
lization with relatively the weakest positive selection 
of carbohydrate utilization (Additional file  3: Table  S2, 
Additional file  4: Table  S3, Additional file  5: Table  S4). 
This is consistent with their high-protein and high-fat 
diets. Unexpectedly, for the typical herbivores, the rumi-
nants, which have a high-carbohydrate diet, we detected 
an intensified selection of fat and protein utilization 
rather than carbohydrate utilization (Additional file  3: 
Table  S2), resembling that of carnivores. This may sug-
gest that convergent evolution may occur between the 
carnivores and the herbivores studied. The convergent 
evolution of diet-related genes is often considered to be 
resulted from the utilization of similar food [12, 64–66], 
while its occurrence in the ruminants, as evidenced pre-
viously [67–69], may largely attribute to their specialized 
digestive system rather than similar food. As we know, 
ruminants primarily consume plant materials rich in 

carbohydrates, but they have no enzymes to digest the 
refractory materials (e.g., cellulose) in their diets. These 
refractory materials are transferred through micro-
bial fermentation in their guts to volatile fatty acids 
and microbe proteins, constituting the major sources 
of energy and amino acids for subsequent utilization by 
ruminants [70–73]. This suggests that though their diets 
are rich in carbohydrates, the main nutritional substrates 
that ruminants are capable of directly utilizing are actu-
ally fats and proteins that are generated through micro-
bial fermentation. Therefore, the intensified selection of 
fat and protein utilization found in the ruminants may be 
mainly due to their specialized digestive system.

Our results show that the carnivorous mammals stud-
ied are consistently characterized by an intensified 
selection of fat and protein utilization, which is in line 
with their high-protein and high-fat diets. For herbivo-
rous mammals, because fermentation through their gut 
microbes can transfer dietary carbohydrates to other 
nutritional substrates, such as volatile fatty acids and 
microbial proteins, for their subsequent use [70–73], 
the selection characterization of their digestive system-
related genes do not necessarily reflect the amounts of 
nutritional substrates in their diets. Previous studies sug-
gest that microbial fermentation widely occurs in ani-
mals, while the contribution of microbial fermentation to 
energy production is largely different among animals. Its 
importance seems to be limited to particular taxa (e.g., 
ungulates), possibly due to high amounts of refractory 
materials (e.g., cellulose) in their diets, but is relatively 
trivial to other animals [74]. Consequently, the adaptive 
evolution of digestive system–related genes of animals is 
considered to be generally positively related to loads of 
their dietary substrates [10, 12, 13, 74–76]. Accordingly, 
carnivores are characterized by the selection intensifica-
tion of protein and fat utilization, while herbivores are 
normally characterized by the selection intensification of 
carbohydrates [7, 9, 10]. Thus, we could reconstruct the 
diets of ancestral taxa based on the selection characteri-
zation of digestive system-related genes [7, 8].

To determine ancestral diets, we analyzed the positive 
selection of the digestive system-related genes along the 
ancestral branches of the living animals studied (Fig. 1). 
For the ancestral branches of bats (branch K) and of 
carnivorans (branch H), we detected their evolution-
ary enhancements mainly in fat and protein utilization, 
as found in the ancestral branches leading to other pri-
marily carnivorous mammals (Eulipotyphla, Pholidota, 
and Cetacea) (Additional file  3: Table  S2, Additional 
file  4: Table  S3, Additional file  5: Table  S4). This may 
suggest that all the ancestral taxa including ancestral 
bats and ancestral carnivorans were largely carnivorous 
(Fig.  1). Similarly, an evolutionary enhancement of fat 
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and/or protein utilization was also found in other ances-
tral branches (branches A, B, and I) (Additional file  3: 
Table  S2). This may suggest that the early evolutionary 
diversification of Laurasiatheria was mainly character-
ized by carnivory (Fig. 1), which is largely consistent with 

one previous study [2]. Nonetheless, for the ungulates 
examined in this study, we unexpectedly found an inten-
sified selection of fat utilization along branch D, leading 
to ancestral ungulates, and an evolutionary enhancement 
of fat and protein utilization along branch G, leading to 

Fig. 3  Maximum-likelihood phylogeny of the gene APOB. The phylogeny is based on 4550 amino-acid sites with the best-fit substitution model of 
the HIVb+F+R4 used. Red shows the clustering of four carnivory-dominant taxa
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ruminants (Additional file 3: Table S2). This may reflect 
their high fat and/or protein nutrition generated by 
nutritional transformation through microbial fermenta-
tion, and hence it may suggest that the ancestral ungulate 
and the ancestral ruminant may be herbivorous (Fig. 1). 
For branch C, we detected the positive selection of three 
PSGs involved in carbohydrate and protein utilization 
(Additional file  3: Table  S2, Additional file  4: Table  S3, 
Additional file  5: Table  S4), suggesting a high-carbohy-
drate and high-protein diet. A high-carbohydrate and 
high-protein diet may suggest a combination of herbivory 
and carnivory, hence implying that the common ances-
tor of carnivorans and ungulates was possibly omnivo-
rous (Fig. 1), which may be derived from its carnivorous 
progenitor (branch B). If this is the case, it may suggest 
that the herbivory of ungulates and the carnivory of car-
nivorans were secondarily evolved. This is consistent 
with fossil evidence showing that the earliest stem car-
nivorans, such as Ravenictis and Pristinictis, exhibit rela-
tively unspecialized molars, indicating an omnivorous 
diet with only limited specialization to true carnivory 
[77]. Fossil evidence indicates the resemblance of some 
primitive ungulates to carnivores. For instance, Phenaco-
dus, which is considered a stem Perissodactyla [78], lived 
during late Palaeocene and early Eocene, and was a plant-
eater yet shows some characteristics (e.g., large canine 
teeth) resembling a primitive carnivore [79]. These lines 
of evidence may suggest the herbivory of the ungulates, 
and the pure carnivory found in modern carnivorans may 
be secondarily evolved from an omnivorous ancestor.

For the branch leading to the common ancestor of 
ruminants and cetaceans (CARC), we detected the 
enhanced selection of fat and protein utilization (Addi-
tional file 3: Table S2), which is similar to that found in 
both of its two derived taxa, the ruminants and the ceta-
ceans. This seems to make the reconstruction of the diet 
of the CARC unresolved; however, our finding of the 
positive selection of the two fat digestion-related genes 
(PNLIP and LIPF) along the branch leading to the CARC 
(Additional file 3: Table S2) may suggest that the CARC 
was more likely carnivorous (Fig.  1). This is because: i) 
PNLIP and LIPF are both critical lipases mainly involved 
in digesting dietary triglycerides in the digestive system 
[17, 62, 63, 80], and the selection enhancement of the 
digestion of dietary triglycerides may suggest a lipid-rich 
diet of the CARC. A lipid-rich diet most often character-
izes carnivores rather than herbivores because carnivore 
diets are relatively rich in lipids, while herbivore diets 
are normally rich in carbohydrates [9–13]. ii) The evo-
lutionary enhancement of digesting dietary triglycerides 
found in the CARC may suggest that the CARC itself 
may have the capability to digest dietary fats (e.g., tri-
glycerides). This is consistent with carnivorous mammals 

(e.g., cetaceans), which normally use their own lipases to 
digest fats [81], but is substantially different from rumi-
nants, from which their dietary lipids (e.g., triglycerides) 
are predominantly hydrolyzed by the lipases of rumen 
bacteria in their guts [82–85]. iii) The detected positive 
selection of PNLIP and LIPF in the CARC has been found 
in carnivores (e.g., cetaceans) [68, 76] but not in rumi-
nants, which is evidenced in this study and one previous 
study [68], suggesting the resemblance of the digestion 
ability of the CARC with that of carnivores (cetaceans). 
In addition to the molecular evidence, fossil evidence 
shows that early ruminant ancestors were omnivores 
and did not ruminate until about 40  Ma based on den-
tal morphology [86]. This indicates that the herbivory 
and rumination observed in modern ruminants may be 
secondarily evolved, which is consistent with the possi-
ble carnivory of the CARC. These four lines of evidence 
may suggest that the CARC was more likely a carnivore, 
though its existence in fossils remains to be explored. 
Considering that the CARC is phylogenetically deeply 
nested within the ungulates, it is thus more likely a car-
nivorous ungulate closely related to cetaceans and/or 
ruminants. Among carnivorous mammals known, previ-
ous studies have long considered one extinct carnivorous 
ungulate, mesonychians, as early members of cetaceans 
or Cetartiodactyla [87–91], though there is uncertainty 
regarding the phylogenetic position of mesonychians [77, 
92]. Mesonychians are considered secondary carnivores 
derived from archaic ungulates (Condylarthra) [88]. If 
this is the case, mesonychians might be the candidate of 
the CARC from which cetaceans and ruminants derived, 
though this requires further investigation.

Conclusions
Our molecular phyloecological results show that the car-
nivorous mammals consistently exhibit the evolution-
ary enhancement of fat and protein utilization, which is 
in line with their high-protein and high-fat diets. This is 
previously found in birds and crabs as well. For herbi-
vores, previous studies on birds and crabs suggest that 
they tend to show an evolutionary enhancement of car-
bohydrates; however, the ungulates with a high-carbohy-
drate diet examined in this study present an evolutionary 
enhancement of fat and protein utilization, resembling 
that of carnivores. Apparently, this is largely due to their 
specialized digestive system that transfers abundant car-
bohydrates to volatile fatty acids and microbial proteins 
for their use. Our results suggest that the adaptive evolu-
tion of digestive system-related genes do not necessarily 
reflect the nutritional loads in the diets of the herbivo-
rous animals (e.g., ungulates) that mainly rely on nutri-
tional transformation before utilization but appear to be 
positively related to the loads of the nutrient substrates 
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that can be directly utilized by the herbivores themselves. 
Based on these findings, we reconstructed ancestral diets, 
and our results revealed predominant carnivory during 
the early diversification of Laurasiatheria. More impor-
tantly, our reconstructed results suggest that the ungu-
lates and carnivorans may have been derived from an 
omnivorous ancestor, and ancestral bats and the common 
ancestor of ruminants and cetaceans may be carnivorous. 
We also found evidence of the convergent evolution of 
one fat utilization-related gene, APOB, across carnivo-
rous lineages, suggesting the resemblance of nutritional 
utilization in carnivorous mammals. Further studies 
incorporating information about the gene duplications 
and losses besides positive selection may be helpful to 
understand the molecular bases underlying the diet evo-
lution of the herbivorous and carnivorous mammals.

Materials and methods
Taxa used
Ninety species within Laurasiatheria were included 
(Fig. 1). These 90 species covered all known main clades 
of Laurasiatheria, including four species of Eulipotyphla, 
two pangolin species of Pholidota, three species of odd-
toed ungulates (Perissodactyla), and 14 species of even-
toed ungulates (Artiodactyla), of which nine species 
belong to Ruminantia. We also included 25 bat species 
from both two suborders (Yangochiroptera and Yinptero-
chiroptera) of Chiroptera. For Carnivora, 28 species 
from its two suborders (Feliformia and Caniformia) were 
included. For Cetacea, 14 species from its two suborders 
(Mysticeti and Odontoceti) were included. In addition to 
these 90 Laurasiatheria species, we included two species 
from the sister taxa (Euarchontoglires) of Laurasiatheria 
as outgroups. For the two outgroup species, Homo sapi-
ens and Mus musculus were primarily used, while the two 
relatives (Rattus rattus and Rattus norvegicus) of Mus 
musculus were also considered if some gene sequences of 
Mus musculus were unavailable.

Diet data
The dietary categories of each species used in this study 
were based on one previously published dataset, Elton-
Traits 1.0 [93], in which the dietary information of a 
total of 5400 extant mammal species from diverse pub-
lished literature is compiled and the dietary composition 
of each species is recorded in 10% dietary categories. To 
determine the dietary categories of the species used in 
our study, we converted EltonTraits’ 10% dietary catego-
ries into our three dietary categories (carnivore, herbi-
vore, and omnivore). Carnivore = Diet-Inv + Diet-Vend 
+ Diet-Vect + Diet-Vfish + Diet-Vunk + Diet-Scav, her-
bivore = Diet-Fruit + Diet-Nect + Diet-Seed + Diet-
PlantO, and omnivores were referred to as the animals 

that contain a percentage of dietary categories of both 
the carnivore and the herbivore.

Genes and sequence alignment
We included the digestive system-related genes that 
have been recently used to determine the diet evolu-
tion in birds [7]. These genes were from three KEGG 
pathways, including carbohydrate digestion and 
absorption (map04973), protein digestion and absorp-
tion (map04974), and fat digestion and absorption 
(map04975). For these genes, we downloaded their cod-
ing sequences of our focal species from GenBank (Addi-
tional file 2: Table S1). We excluded genes with sequences 
unavailable or available for only a few species from our 
analyses, and ultimately, 119 genes were retained for 
subsequent analyses. We aligned gene sequences using 
webPRANK with default parameters (http://​www.​ebi.​
ac.​uk/​goldm​an-​srv/​webpr​ank/), and individual spe-
cies sequences with lengths that were too short were 
removed. The sequence alignments were checked by 
eye and the sequence gaps that lead to incorrect protein 
translation were cut. After this pruning, we blasted the 
translated protein sequences of these genes against the 
non-redundant protein sequence database to confirm the 
correctness of the sequence cutting.

Positive selection analyses
For the positive selection analyses, we initially con-
structed a Laurasiatheria phylogeny of the 90 species 
used in this study, as shown in Fig.  1. Our Laurasiathe-
ria phylogeny was based on published studies [94–96]. 
In particular, the phylogenetic relationships used among 
taxonomical orders within Laurasiatheria, which have 
received increasing support for the past 20 years [95–98], 
are the same as those used in one previous diet study of 
mammals [2]. Based on the Laurasiatheria phylogeny, 
we analyzed the positive selection of our target genes 
using branch and branch-site models implemented in 
the Codeml program of PAML [14]. The ratio of non-
synonymous to synonymous substitutions per site (dN/
dS or ω) was evaluated, and likelihood ratio tests (LRT) 
were employed to determine the statistical significance. 
Positive selection is determined by the value of ω > 1 with 
statistical significance. The Bonferroni multiple testing 
correction was used to adjust the p values.

Branch model Branch model allows for the variation of 
the ω ratio among branches in a given phylogeny, and it 
is used to detect the positive selection of genes on a par-
ticular branch. For the branch model analyses, we used 
a two-rate branch model by labeling our focal branches 
as foreground branches and the others as background 
branches. During the analyses, the goodness of fit of the 
two-rate branch model relative to the null model—that 

http://www.ebi.ac.uk/goldman-srv/webprank/
http://www.ebi.ac.uk/goldman-srv/webprank/
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is one-rate branch model— was analyzed using the LRT. 
When a statistically significant value of ω > 1 was found in 
our foreground branches, to determine whether the value 
of ω > 1 of the foreground branch was further supported 
with statistical significance, we then compared the two-
ratio branch model with the two-ratio branch model with 
ω = 1 fixed in our foreground branches.

Branch-site model The branch-site model allows for the 
variation of ω among sites in the protein and across phy-
logenetic branches, and it is used to detect positive selec-
tion affecting some sites along a particular branch. For 
the branch-site model analyses, we employed a branch-
site test of positive selection (Test 2), which compares 
a modified model A with its corresponding null model 
with ω = 1 fixed. The modified model A assumes four 
classes of sites, and site class 0 and site class 1, respec-
tively, represent evolutionarily conserved (0 < ω0 < 1) and 
neutral codons (ω1 = 1) for both background and fore-
ground branches. Site classes 2a and 2b, respectively, rep-
resent evolutionarily conserved (0 < ω0 < 1) and neutral 
(ω1 = 1) codons for background branches, but allowed 
to be under positive selection (ω2 > 1) for the foreground 
branches. The goodness of fit of the modified model A 
was evaluated using the LRT by comparing it with a null 
model with ω = 1 fixed. Positively selected sites were 
identified by employing an empirical Bayes method.

Ancestral sequence reconstruction and convergent 
evolution analyses
Amino acid-based marginal reconstruction implemented 
in the empirical Bayes approach in PAML [14] was used 
to reconstruct the ancestral sequence. For the marginal 
reconstruction, we employed two different substitution 
models (JTT and Poisson) of amino acids to examine the 
consistency of our results. For the model JTT, different 
substitution rates of different amino acids were assumed, 
and for the Poisson model, the same substitution rate 
of all amino acids was assumed. The analyses based on 
the two substitution models generated similar results, 
and for convenience, we only showed the results based 
on the JTT model. Based on the reconstructed ancestral 
sequences of internal nodes, convergent and/or parallel 
amino acid substitutions along branches could then be 
identified. To further estimate the probabilities that the 
observed convergent and/or parallel substitutions are 
attributable to random chance, the program converg2 
implemented in the software Convergent and Parallel 
Evolution at the Amino Acid Sequence Level (CAPE) [99] 
was used.

Phylogenetic analyses
Phylogenetic analyses were conducted using the IQ-
TREE, a fast and effective stochastic algorithm for 

inferring maximum-likelihood (ML) phylogeny [100, 
101]. The IQ-TREE is considered to have high perfor-
mance for ML inference compared to other popular soft-
ware, such as RAxML [102] and PhyML [103]. This is 
considered to result from its efficient integration of fast 
model selection, an effective tree search algorithm, and 
a novel ultrafast bootstrap approximation [100]. Espe-
cially, the effective tree search algorithm was believed to 
overcome the problem of local optima and thus to help 
to achieve ML phylogeny with higher likelihoods than 
RAxML or PhyML. For our phylogenetic analyses, 4550 
amino-acid sites of the gene APOB were used. Among 
546 protein models examined by ModelFinder imple-
mented in the IQ-TREE, two models, HIVb+F+R4 and 
HIVb+F+R5, were recommended as the best-fit substi-
tution models according to Bayesian and Akaike informa-
tion criteria, respectively. For result robustness, the two 
substitution models were both used and almost iden-
tical results were obtained. For convenience, only the 
ML phylogeny based on the substitution model of the 
HIVb+F+R4 was presented with the bootstrap value of 
10,000 used.
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