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Background:Our previous work characterized altered cerebral activations during cognitive control in individuals
with alcohol dependence (AD). A hallmark of cognitive control is the ability to anticipate changes and adjust be-
havior accordingly. Here, we employed a Bayesian model to describe trial-by-trial anticipation of the stop signal
and modeled fMRI signals of conflict anticipation in a stop signal task. Our goal is to characterize the neural cor-
relates of conflict anticipation and its relationship to response inhibition and alcohol consumption in AD.
Methods: Twenty-four AD and 70 age and gender matched healthy control individuals (HC) participated in the
study. fMRI data were pre-processed andmodeled with SPM8.Wemodeled fMRI signals at trial onset with indi-
vidual events parametrically modulated by estimated probability of the stop signal, p(Stop), and compared re-
gional responses to conflict anticipation between AD and HC. To address the link to response inhibition, we
regressed whole-brain responses to conflict anticipation against the stop signal reaction time (SSRT).
Results: Compared to HC (54/70), fewer AD (11/24) showed a significant sequential effect — a correlation be-

tweenp(Stop) and RT during go trials— and themagnitude of sequential effect is diminished, suggesting a deficit
in proactive control. Parametric analyses showed decreased learning rate and over-estimated prior mean of the
stop signal in AD. In fMRI, both HC and AD responded to p(Stop) in bilateral inferior parietal cortex and anterior
pre-supplementary motor area, although the magnitude of response increased in AD. In contrast, HC but not AD
showeddeactivation of theperigenual anterior cingulate cortex (pgACC). Furthermore, deactivation of thepgACC
to increasing p(Stop) is positively correlated with the SSRT in HC but not AD. Recent alcohol consumption is cor-
related with increased activation of the thalamus and cerebellum in AD during conflict anticipation.
Conclusions: The current results highlight alteredproactive control thatmay serve as an additional behavioral and
neural marker of alcohol dependence.
© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Alcoholmisuse is associatedwith awide array of cognitive and affec-
tive deficits. Studies showed that amygdalar hyporesponsiveness along
with a failure to avoid risky decisions (Glahn et al., 2007), decreased
prefrontal, insula/putamen and amygdala activation to emotional stim-
uli (Heitzeg et al., 2008), and deficits in working memory (Caldwell
et al., 2005; Crego et al., 2010; Schweinsburg et al., 2010; Squeglia
et al., 2011; Vollstadt-Klein et al., 2010) characterized individual
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vulnerability to alcohol use disorders. Alcohol dependent patients dem-
onstrated deficits in reward-based probabilistic learning (Jokisch et al.,
2014), in procedural learning in conjunction with decreased gray mat-
ter volume (GMV) in the caudate nucleus and angular gyrus (Ritz
et al., 2014), and in set shifting alongwith decreased GMV in the inferior
frontal cortex (Trick et al., 2014).

In particular, an extensive body of work demonstrated poor impulse
control in link with alcohol misuse (Ernst and Paulus, 2005; Everitt and
Robbins, 2005; Goldstein and Volkow, 2002; Kalivas and Volkow, 2005;
Luijten et al., 2014; Smith et al., 2014). In rodent models, rats under
chronic intermittent alcohol exposure exhibited deficits in impulsive
control in a five-choice continuous performance task (Irimia et al.,
2014). Adolescent alcohol exposure reduces behavioral flexibility, pro-
motes disinhibition, and increases resistance to extinction of ethanol
seeking behavior in adulthood (Gass et al., 2014). Monkeys abstinent
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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from chronic alcohol consumption demonstrated impairment in re-
sponse time and accuracy under a distractor condition in a reaction
time task (Wright and Taffe, 2014). In humans, behavioral disinhibition
is associated with early onset of nicotine, alcohol and illicit drug use in
adolescents (Elkins et al., 2006; McGue et al., 2001). Impulsivity distin-
guished between early and late onset alcoholism (Dom et al., 2006) and
is associated with recent alcohol consumption (Mayhew and Powell,
2014). Compared to healthy controls, patients with alcohol use disor-
ders showed greater activations in the medial prefrontal cortex
(mPFC) including the supplementary motor area, insula, orbitofrontal
gyrus (OFC), and inferior frontal gyrus in a delay discounting task, sug-
gesting widely distributed functional anomalies of impulsive control
(Calus et al., 2011). Alcohol consumption confers both acute and chronic
effects, and may exacerbate deficits in impulse control and perpetuates
alcoholmisuse (Bailey et al., 2014; Gan et al., 2014; Houston et al., 2014;
Johnston et al., 2013; Townshend et al., 2014; Winward et al., 2014;
Worbe et al., 2014). Thus, impulsivity or altered cognitive control con-
tributes to alcohol misuse and constitutes an important focus for the
management of alcohol use behaviors (de Wit, 2006; de Wit and
Richards, 2004; Everitt and Robbins, 2005; Goldstein and Volkow,
2002; Jentsch and Taylor, 2001; Volkow and Li, 2005; Wilcox et al.,
2014).

In the laboratory, the go/no-go task and stop signal task (SST) are
widely used to investigate cognitive control in alcohol and substance
abusers. In these behavioral tasks, the frequent “go” trials set up a pre-
potent response tendency that needs to overridden occasionally when
the nogo or stop signal appears. By comparing cerebral responses to
the nogo or stop trials, when inhibition is required, and responses to
go trials, investigators characterized how these processes are altered
in alcohol misuse or individuals with a family history of alcohol misuse.
For instance, children with a family history of alcoholism showed al-
tered activations in a number of cortical structures, including the ventral
caudate, OFC, middle frontal gyrus, posterior cingulate cortex/
precuneus, and mPFC in a go/no-go task as compared to the control
group. This finding suggested preexisting functional aberrations of im-
pulse control that may increase risk of cognitive impairment and vul-
nerability to developing alcohol use disorder (Acheson et al., 2014;
Anderson et al., 2005; Heitzeg et al., 2010; Schweinsburg et al., 2004).
In our previous work heavy drinkers demonstrated prefrontal deficits
during response inhibition and post-error adjustment (Li et al., 2009b)
and a distinct pattern of reduced cortico-striatal activities during risk
taking decisions in the SST (Bednarski et al., 2012; Yan and Li, 2009). To-
gether, although these studies reported a diverse pattern of altered ce-
rebral activation that appeared to depend on behavioral paradigms
and contrasts as well as clinical characteristics (Karch et al., 2008), the
findings support altered cognitive control as a process critical to the de-
velopment and maintenance of alcohol misuse.

While extant imaging studies focused on responses to nogo or stop
signal in the go/no-go task and SST, a distinct dimension of cognitive
control is the ability to anticipate environmental stimuli and adjust be-
havior accordingly. This ability of proactive control has been studied in
the SST by varying the stop signal probability. Previous studies have
shown that higher stop likelihood resulted in increased activation in
the mPFC and subcortical structures including the caudate and insula,
suggesting a neural circuit for proactive inhibitory control (Chikazoe
et al., 2009; Jahfari et al., 2010; Vink et al., 2005; Zandbelt et al., 2013).
In our recent work, we applied a Bayesian dynamic model to estimate
on a trial-by-trial basis the likelihood of the upcoming stop signal
based on the history of events (Ide et al., 2013). This estimate allowed
us to delineate the neural correlates of conflict anticipation, a critical
basis for proactive control (Ide et al., 2013; Yu et al., 2009). To our
knowledge, this important aspect of cognitive control has not been ex-
amined in association with alcohol misuse. Here, we explored the neu-
ral processes of conflict anticipation and examined its link to response
inhibition and alcohol use in alcohol dependent individuals. Because al-
cohol addiction is associated with deficits in top-down executive
processes (Brion et al., 2014; Lannoy et al., 2014), we hypothesized al-
tered conflict anticipation in association with impairment in inhibitory
control in dependent individuals.

2. Methods

2.1. Participants, assessments, and behavioral task

Twenty-four alcohol dependent (AD; 6 females; 38.7 ± 8 years of
age) and seventy healthy control (HC; 27 females; 35.1 ± 10 years of
age) individuals, group matched in age (p = 0.1102, two-sample
t test) and gender (p = 0.2815, chi square test), participated in
this study.

AD met criteria for current alcohol dependence, as diagnosed by the
Structured Clinical Interview for DSM-IV (First et al., 1995); they did not
meet current DSM-IV criteria for dependence on other psychoactive
substances, except nicotine. Recent use of other illicit substances was
ruled out by urine toxicology screens upon admission.Womenwere ex-
cluded from the study if they were using any form of birth control or
were either peri- or post-menopausal. In addition, individuals with cur-
rent depressive or anxiety symptoms requiring treatment or currently
being treated for these symptoms were excluded as well. They were
drug-free while staying in an inpatient treatment unit prior to the cur-
rent fMRI study. All participants were physically healthy with no
major medical illnesses or current use of prescription medications.
None of them reported having a history of head injury or neurological
illness. They all signed awritten consent after theywere given a detailed
explanation of the study in accordance with a protocol approved by the
Yale Human Investigation Committee.

All participants performed a stop signal task or SST (Hu et al., 2014;
Hu and Li, 2012; Li et al., 2005; Li et al., 2009a), inwhich go and stop tri-
als were randomly intermixed in presentation with an inter-trial-
interval of 2 s. A fixation dot appeared on screen to signal the beginning
of each trial. After a fore-period varying from 1 to 5 s (uniform distribu-
tion), the dot became a circle— the “go” signal— promptingparticipants
to quickly press a button. The circle disappeared at button press or after
1 s if the participant failed to respond. In approximately one quarter of
trials, the circle was followed by a ‘cross’ — the stop signal— prompting
participants to withhold button press. The trial terminated at button
press or after 1 s if the participant successfully inhibited the response.
The time between the go and stop signals, the stop signal delay (SSD),
started at 200 ms and varied from one stop trial to the next according
to a staircase procedure, increasing and decreasing by 67 ms each
after a successful and failed stop trial (Levitt, 1971). With the staircase
procedure we anticipated that participants would succeed in withhold-
ing the response half of the time. Participantswere trained briefly on the
task before imaging to ensure that they understood the task. They were
instructed to quickly press the button when they saw the go signal
while keeping in mind that a stop signal might come up in some trials.
In the scanner, they completed four 10-minute sessions of the task,
with approximately 100 trials in each session.

2.2. Behavioral data analysis

A critical SSD was computed for each participant that represented
the time delay required for the participant to successfully withhold
the response in half of the stop trials, following a maximum likelihood
procedure (Wetheril et al., 1966). Briefly, SSDs across trials were
grouped into runs, with each run being defined as a monotonically in-
creasing or decreasing series. We derived a mid-run estimate by taking
the middle SSD (or average of the two middle SSDs when there was an
evennumber of SSDs) of every second run. The critical SSDwas comput-
ed by taking the mean of all mid-run SSDs. It was reported that, except
for experiments with a small number of trials (b30), the mid-run mea-
surewas close to themaximum likelihood estimate of X50 (50% positive
response; i.e., 50% stop success in the SST, Wetheril et al., 1966). The
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stop signal reaction time (SSRT) was computed for each participant by
subtracting the critical SSD from the median go trial reaction time
(Logan et al., 1984).

2.3. Trial by trial Bayesian estimate of the likelihood of a stop signal

As in our previouswork (Ide et al., 2013), we used a dynamic Bayes-
ian model (Yu et al., 2009) to estimate the prior belief of an impending
stop signal on each trial, based on prior stimulus history. The model as-
sumes that subjects believe that stop signal frequency rk on trial k has
probability α of being the same as rk − 1, and probability (1 − α) of
being re-sampled from a prior distribution π(rk). Subjects are also as-
sumed to believe that trial k has probability rk of being a stop trial, and
probability 1− rk of being a go trial.With these generative assumptions,
subjects are assumed to use Bayesian inference to update their prior be-
lief of seeing a stop signal on trial k, p(rk|sk − 1) based on the prior on the
last trial p(rk− 1|sk − 1) and last trial3s true category (sk=1 for stop trial,
sk = 0 for go trial), where sk = {s1, …, sk} is short-hand for all trials 1
through k. Specifically, given that the posterior distribution was
p(rk − 1|sk − 1) on trial k − 1, the prior distribution of stop signal in
trial k is given by:

p rk sk‐1jð Þ ¼ α p rk−1 sk‐1jð Þ þ 1−αð Þπ rkð Þ;

where the prior distribution π(rk) is assumed to be a beta distribution
with priormean pm, and shape parameter scale, and the posterior distri-
bution is computed from the prior distribution and the outcome accord-
ing to the Bayes3 rule:

pðrkjskÞ∝PðskjrkÞ pðrkjsk−1Þ

The Bayesian estimate of the probability of trial k being stop trial,
which we colloquially call p(Stop) in this paper, given the predictive
distribution p(rk|sk − 1) is expressed by:

Pðsk ¼ 1js
k−1

Þ ¼ ∫Pðsk ¼ 1jrkÞPðrkjsk−1Þdrk ¼ ∫rkPðrkjsk−1Þdrk ¼ 〈 rkjsk−1 〉

In otherwords, the probability p(Stop) of a trial k being a stop trial is
simply the mean of the predictive distribution p(rk|sk − 1). The assump-
tion that the predictive distribution is a mixture of the previous posteri-
or distributions and a generic prior distribution is essentially equivalent
to using a causal, exponential, linear filter to estimate the current rate of
stop trials (Yu and Cohen, 2009). In summary, for each subject, given a
sequence of observed go/stop trials, and the three model parameters
{α, pm, scale}, we estimated p(Stop) for each trial.

2.4. Sequential effect: a parameter set analysis

Toobtain thebestfit parameters for sequential effect in each individ-
ual, we searched for the parameters that maximized the correlation co-
efficient r between Go RT and p(Stop). The search space of model
parameters were set to the following ranges: α = [0.01, 0.51, …, 1],
pm=[0.01, 0.03,…, 1], and sc=[1, 2,…, 20]. For each subject, we iden-
tified the best model parameter settings {αmax, pmmax, scmax} that pro-
duced rmax. We then compared AD and HC participants for α (the
weight given to the dynamic, posterior distribution p(rk|sk − 1), as
opposed to the fixed prior distribution π), pm (mean of the beta distri-
bution, which represents the individual3s fixed prior of stop trial occur-
rence), and sc (the scale parameter of the beta distribution, which
reflects how skewed the distribution is around the mean).

2.5. Imaging protocol and spatial preprocessing of brain images

Conventional T1-weighted spin-echo sagittal anatomical images
were acquired for slice localization using a 3 T scanner (Siemens Trio).
Anatomical images of the functional slice locations were obtained
with spin-echo imaging in the axial plan parallel to the Anterior
Commissure–Posterior Commissure (AC–PC) line with TR = 300 ms,
TE = 2.5 ms, bandwidth = 300 Hz/pixel, flip angle = 60°, field of
view = 220 × 220 mm, matrix = 256 × 256, 32 slices with slice
thickness = 4 mm and no gap. A single high-resolution T1-weighted
gradient-echo scan was obtained. One hundred and seventy-six slices
parallel to the AC–PC line covering the whole brain were acquired
with TR = 2530 ms, TE = 3.66 ms, bandwidth = 181 Hz/pixel, flip
angle = 7°, field of view = 256 × 256 mm, matrix = 256 × 256,
1 mm3 isotropic voxels. Functional blood oxygenation level dependent
(BOLD) signals were then acquired with a single-shot gradient-echo
echo-planar imaging (EPI) sequence. Thirty-two axial slices parallel to
the AC–PC line covering the whole brain were acquired with TR =
2000 ms, TE = 25 ms, bandwidth = 2004 Hz/pixel, flip angle = 85°,
field of view = 220 × 220 mm, matrix = 64 × 64, 32 slices with slice
thickness = 4 mm and no gap. There were three hundred images in
each session for a total of 4 sessions.

Data were analyzed with Statistical Parametric Mapping (SPM8,
Wellcome Department of Imaging Neuroscience, University College
London, U.K.). In the pre-processing of BOLDdata, images of each partic-
ipant were realigned (motion-corrected) and corrected for slice timing.
A mean functional image volume was constructed for each participant
for each run from the realigned image volumes. These mean images
were co-registered with the high resolution structural image and then
segmented for normalization to an MNI (Montreal Neurological Insti-
tute) EPI template with affine registration followed by nonlinear trans-
formation (Ashburner and Friston, 1999; Friston et al., 1995). Finally,
images were smoothed with a Gaussian kernel of 8 mm at Full Width
at Half Maximum. Images from the first five TRs at the beginning of
each trial were discarded to enable the signal to achieve steady-state
equilibrium between radio frequency pulsing and relaxation.

2.6. Generalized linear models and group analyses

Our goal is to identify the neural correlates of conflict anticipation
or the Bayesian belief of a stop signal. We distinguished four trial
outcomes: go success (GS), go error (GE), stop success (SS), and stop
error (SE), and modeled BOLD signals by convolving the onsets of the
fixation point— the beginning— of each trial with a canonical hemody-
namic response function (HRF) and the temporal derivative of the
canonical HRF (Friston et al., 1995). Realignment parameters in all 6 di-
mensions were entered in the model. We included the following vari-
ables as parametric modulators in the model: p(Stop) of GS trials, SSD
of SS trials, p(Stop) of SS trials, SSD of SE trials, p(Stop) of SE trials, in
that order. Inclusion of these variables as parametric modulators im-
proves model fit (Buchel et al., 1996, 1998; Cohen, 1997; Hu and Li,
2012) and, specifically, the parametric modulator of p(Stop) allowed
us to examine the neural correlates of conflict anticipation. Serial auto-
correlation of the time series was corrected by a first degree
autoregressive or AR(1) model (Della-Maggiore et al., 2002; Friston
et al., 2000). The data were high-pass filtered (1/128 Hz cutoff) to re-
move low-frequency signal drifts.

In the first level analysis, we obtained for each participant a contrast
“1” (activation) and "-1" (deactivation) each on the parametricmodula-
tor “p(Stop)” on GS trials to examine how deviations from the average
BOLD amplitude are modulated by trial-by-trial estimate of the likeli-
hood of a stop signal (St Jacques et al., 2011; Wilson et al., 2009). That
is, this contrast identified voxels with activation increasing/decreasing
with the likelihood— a Bayesian belief— that a stop signalwould appear
in a go trial. In the second level analysis, all images were evaluated at a
voxelwise threshold of p b .005, combined with a cluster size threshold
of 29 contiguous voxels (783 mm3). This combined threshold was esti-
mated with a Monte-Carlo simulation using AlphaSim (Douglas Wand,
http://afni.nimh.nih.gov/pub/dist/doc/program_help/AlphaSim.html)
to yield an overall threshold of p b .05, corrected for multiple compari-
son for the whole brain. One-sample and two-sample t tests were

http://afni.nimh.nih.gov/pub/dist/doc/program_help/alphasim.html


Table 2
Behavioral performance of AD and HC participants in the SST.

AD (n = 24) HC (n = 70) p-Value

Median GORT (ms) 687 ± 114 603 ± 114 0.0019
SSRT (ms) 190 ± 30 202 ± 40 0.2098
GS % 96.2 ± 1.6 98.3 ± 2.4 0.0007
SS % 53.3 ± 3.6 51.1 ± 3.2 0.3431
αmax 0.81 ± 0.29 0.90 ± 0.16 0.0360
pmmax 0.57 ± 0.44 0.23 ± 0.34 0.0000
scalemax 18.04 ± 4.61 18.06 ± 4.97 0.9893
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performed each to obtain individual group results and contrasts be-
tween AD and HC.

To examine how conflict anticipation is related to stop signal inhibi-
tion, we performed a regression of p(Stop) contrast map against SSRT
each for AD and HC. Finally, to explore the effects of alcohol use on con-
flict anticipation in AD, we performed regression analyses of p(Stop)
contrast map against themeasures of alcohol assumption in AD, includ-
ing the number of days and amount of alcohol use in themonth prior to
admission and the years of alcohol use (Table 1).

3. Results

3.1. Behavioral performance

Tables 1 and 2 show demographic information and behavioral per-
formance of the participants. In the SST, the two groups differed signif-
icantly in go success rate and go trial reaction time (GORT). We
examined the parameters of individual Bayesian models that produced
the maximum correlation between RT and p(Stop), indexed by coeffi-
cient rmax. The parameter αmax was significantly lower in AD than in
HC, and the parameter pmmax was significantly higher in AD than in
HC. scmax as not significantly different between the two groups.

To examine the sequential effect, we used the group mean (AD and
HC respectively) of each model parameter as a fixed parameter to esti-
mate p(Stop) and compute the correlation between p(Stop) and RT
(Camerer and Ho, 1999; Daw et al., 2006; O3Doherty et al., 2004). The
correlation between p(Stop) and RT was significantly greater in HC
(r = 0.2111 ± 0.1358) as compared to AD (r = 0.1189 ± 0.1125) (re-
gression slope analysis, t(92) = −3.3268, p = 0.0013) (Fig. 1a). Fifty-
four of the 70 HC while only 11 of the 24 AD exhibited a significant se-
quential effect (χ2 = 8.21, p = 0.0042, chi-square test).

We computed the p(Stop) for each trial for each individual and
grouped the RT for p(Stop) binned from 0.1 to 0.8 (equally spaced) for
each individual, and averaged RT for each bin (Fig. 1b). We then per-
formed a linear regression each for HC (r = 0.3511, p = 0.0000) and
AD (r=0.1177, p=0.0086). The two linear regressions differed signif-
icantly in slope (p= 0.0048; Zar, 1999), again suggesting a diminished
sequential effect in AD as compared to HC.

To examine the relationship between sequential effect and general
performance in the SST, we performed an analysis of variance (ANOVA)
on participant groups (HC vs. AD) and sequential effect groups (i.e., SEQ
or individuals who showed a sequential effect vs. nSEQ or those who
did not demonstrate a significant sequential effect) each for GORT and
SSRT. For GORT, the results showed significant main effects of participant
(F(1, 90) = 7.432, p= .008) and sequential effect group (F(1, 90) = 5.405,
p = .022) but not the interaction (F(1, 90) = 3.130, p = .080). For SSRT,
the main effect of participant (F(1, 90) = 5.315, p = .023) but not the
sequential effect group (F(1, 90) = .803, p = .373) was significant and
the interaction was significant (F(1, 90) = 9.431, p = .003); while
Table 1
Demographics of alcohol dependent (AD) and health control (HC) participants.

Men/women
Age (years)
Ethnicity

African American
Asian/Pacific Islander
Caucasian
Missing information

Education (years)
Average number of days of alcohol use/month prior to admission
Average number of drinks/month prior to admission
Years of alcohol use

Note: Values are mean ± SD.
aChi square test.
b2-Sample t-test.
SSRT was shorter in the SEQ group in HC, the reverse was true in
AD (Fig. 2).

3.2. Regional activations modulated by p(Stop)

We evaluated all imaging results at a voxel threshold of p b 0.005,
combinedwith a cluster size threshold of 29 contiguous voxels estimat-
ed with a Monte-Carlo simulation using AlphaSim to correct for multi-
ple comparison across the entire brain (see Methods section). In HC,
activations to conflict anticipation were found in bilateral inferior pari-
etal lobules (IPLs), right lateral orbital frontal cortex (OFC), mid-
cingulate cortex (MCC), cerebellum, and right pre-SMA in association
with increasing p(Stop). Anticipation of the stop signal was also associ-
ated with deactivation of multiple brain regions including bilateral su-
perior frontal gyri (SFG), hippocampi, and temporal/occipital cortices
(Table 3a; Fig. 3a). In AD, anticipation of the stop signal was associated
with activations in the right pre-supplementary motor area (pre-SMA),
bilateral lateral OFC, right middle temporal gyrus (MTG), bilateral IPLs,
right dorsal lateral prefrontal cortex (DLPFC), and thalamus, and with
significant deactivations in bilateral hippocampus gyri, caudate, and
precuneus (Table 3b; Fig. 3b). A two-sample t-test showed greater
p(Stop) related activation in the right IPL and pre-SMA in AD as com-
pared to HC (Table 3c; Fig. 3c) and less deactivation inmultiple brain re-
gions including themPFC, caudate, right superior temporal gyrus (STG),
left hippocampus, and left superior frontal gyrus (SFG) (Table 3d;
Fig. 3d).

In considering the issue of unbalanced sample size between the two
groups, we selected 24 HC who were individually best matched in age
and gender to the 24 AD and performed the identical analyses. The re-
sults similarly showed increased activation of the pre-SMA as well as
less deactivation of the mPFC and left SFG in AD as compared to HC
(Supplementary Fig. 1).

We examined possible behavioral mechanisms of increased pre-
SMA and right IPL activation and decreased deactivation of afore-
mentioned regions in relation to the sequential effect. We posited that
if the altered activations reflect a compensatory mechanism for proac-
tive control, these differences should show an interaction effect
between the participant groups (HC vs. AD) and sequential effect
AD (n = 24) HC (n = 70) p-Value

18/6 46/27 0.2815a

38.7 ± 8.3 35.1 ± 9.9 0.1102b

0.0807a

7 (29.2%) 12 (17.2%)
0 (0%) 4 (5.7%)
17 (70.8%) 53 (75.7%)
0 (0%) 1 (1.4%)
12.5 ± 1.7 15.2 ± 2.5 0.0000b

23.2 ± 9.5 5.9 ± 5.3 0.0000b

383.6 ± 348.2 14.1 ± 13.0 0.0000b

24.0 ± 9.1 20 ± 12.4 0.2287b



Fig. 1. (a) Sequential effect asmeasured by the correlation between p(Stop) and RT of all go success trials for individual participants (gray lines). Black solid and dashed lines are themean
and 95% confidence intervals of the regressions. (b) Sequential effect as computed by group parameters (see Methods section). The HC group (black) presents a significantly steeper se-
quential effect, as measured by the correlation between RT (ms, y-axis, left) and p(Stop), when compared to the AD (gray) group (p= 0.0048). Error bars indicate standard error of the
mean. The standard errors are higher for bins of extreme p(Stop) because there were fewer trials. Histograms at the bottoms show the frequencies (number of go trials per bin of p(Stop),
y-axis, right) for HC (black) and AD (gray) groups.

Fig. 2.Median GORT and SSRT (mean ± standard error) in AD and HC broken down for sequential effect: SEQ—with significant sequential effect; nSEQ—without significant sequential
effect.
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Table 3
Regional activations to stop signal anticipation in alcohol dependents (AD) and healthy controls (HC).

Contrast Region Cluster Peak level Peak voxel MNI coordinate (mm)

Size p-Value Z value X Y Z

(a) HC Pos. R IPL 433 0.000 4.52 60 −46 43
R lOFC 190 0.000 4.27 36 59 −2
L IPL 369 0.000 4.13 −57 −46 40
MCC 92 0.000 4.09 3 −22 28
L CBL 61 0.000 3.83 −12 −82 −26
R pre-SMA 65 0.000 3.43 6 23 61

Neg. L PHG 5544 0.000 5.89 −30 −37 −11
L HPC 5.71 −21 −13 −17
R MTG 5.53 48 −70 1
L SFG 335 0.000 4.46 −21 14 49
R Insula/STG 1383 0.000 4.25 54 −1 −8
R SFG 84 0.000 3.69 24 23 46

(b) AD Pos. R pre-SMA 251 0.000 3.85 6 26 61
R lOFC 31 0.000 3.84 48 29 −14
R IPL/SMG 188 0.000 3.79 57 −46 25
R MTG 76 0.000 3.65 63 −22 −11
R DLPFC 94 0.000 3.54 42 17 31
L IPL/SMG 85 0.000 3.48 −51 −46 28
L lOFC 29 0.000 3.41 −42 26 −8
Thalamus 64 0.000 3.36 −6 −16 1

Neg. HPC/PHG 165 0.000 4.08 −18 −43 1
Caudate 43 0.000 3.43 −3 14 −8
Precuneus 35 0.000 3.40 −18 −46 25
PHG 24 0.000 3.19 30 −37 −11

(c) AD N HC Activation R IPL 54 0.000 3.68 57 −55 22
R pre-SMA 97 0.000 3.63 18 38 37

(d) HC N AD Deactivation Caudate 401 0.000 3.87 −6 −1 −2
mPFC 333 0.000 3.77 3 50 22
L SOG 83 0.000 3.40 −42 −76 22
R STG 111 0.000 3.35 54 5 −17
L HPC 156 0.000 3.20 −18 −13 −17
PCL 49 0.000 3.18 −12 −22 61
L SFG 275 0.000 3.10 −21 38 43

Note: L: left; R: right. IPL: inferior parietal lobule; lOFC: lateral orbitofrontal cortex; MCC: mid-cingulate cortex; CBL: cerebellum; pre-SMA: pre-supplementary motor area; PHG:
parahippocampal gyrus; HPC: hippocampus;MTG:middle temporal gyrus; SFG: superior frontal gyrus; STG: superior temporal gyrus; SMG: supramarginal gyrus; DLPFC: dorsolateral pre-
frontal cortex; mPFC: medial prefrontal cortex; SOG: superior occipital gyrus; PCL: paracentral lobule.
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groups (i.e., SEQ vs. nSEQ). Specifically, the differences would primarily
be reflected in a difference between HC and AD in the SEQ group. Thus,
we derived the contrast values of these regions of interest (ROI) for AD
and HC participants and examined the interaction effects in an ANOVA
(HC vs. AD by SEQ vs. nSEQ). The results showed that none of the ROIs
showed a significant interaction in the contrast values (Fig. 4a and b).

3.3. Relationship between stop signal anticipation and SSRT

To explore the association of conflict anticipation and stop signal re-
action time (SSRT), we performed a linear regression of whole brain ac-
tivation to p(Stop) against SSRT, each for HCandAD. The results showed
that deactivation in the perigenual anterior cingulate cortex (pgACC) to
increasing p(Stop) is positively correlatedwith SSRT in HCbut not in AD
(Fig. 5a). That is, in HC but not AD, greater deactivation of the pgACC to
p(Stop) is associated with prolonged response inhibition. We extracted
the contrast value of p(Stop) activity in pgACC for each individual par-
ticipant and confirmed a positive correlation with SSRT in HC (r =
0.3679, p = 0.0017) but not AD (r = 0.1812, p = 0.3969) (Fig. 5b).
However, the slopes of the two regressionswere not significantly differ-
ent (p = 0.2038).

3.4. Stop signal anticipation and recent alcohol consumption in AD

Among the three regression analyses with the drinking variables,
only one showed results associated with proactive control in AD. In
the whole-brain regression against the total number of drinks con-
sumed in the prior month, the left thalamus (x = −15, y = −13,
z = −8, cluster size = 161, Z = 4.06) and right cerebellum (x = 3,
y=−64, z=−14, cluster size= 32, Z=3.75) showed greater activa-
tion to a higher amount of drinking (Fig. 6a). We extracted the contrast
value of p(Stop) activity in these two regions for each individual partic-
ipant and confirmed the correlations (thalamus: r = 0.7654, p =
0.0000; cerebellum: r = 0.6272, p = 0.0010).

3.5. The effects of years of education

AD and HC differed in the number of years of education. Thus, we
conducted post-hoc analyses to examine whether the sequential effect
and regional activities during conflict anticipation are related to years
of education. The results showed that the sequential effect is not corre-
lated with years of education in AD (p = 0.9932) or HC (p = 0.8757).
The contrast value of pre-SMA/right ILP activation to p(Stop) was not
correlated with years of education in AD (p = 0.3191/0.9281) or HC
(p = 0.6435/0.7539). The contrast value of pgACC deactivation to
p(Stop) was not correlated with years of education in AD (p =
0.3897) or HC (p=0.3929). None of these correlationswere significant
for the combined sample of AD and HC, either (all p N 0.05).

4. Discussion

4.1. Neural correlates of proactive control in alcohol dependence

AD individuals did not exhibit differences in stop signal reaction
time (SSRT) as compared to HC (Li et al., 2009b). However, Bayesian
modeling of the stop signal task performance showed a slower learning
rate and higher prior expectation of the stop signal occurrence aswell as
diminished sequential effects in AD. Furthermore, Bayesian modeling



Fig. 3. Regional activations to p(Stop) in (a) HC; and (b) AD (red: positive correlation to p(Stop) and blue: negative correlation to p(Stop)); (c) regions showing greater activation to
p(Stop) in AD as compared to HC (purple); and (d) regions showing greater deactivation in HC as compared to AD (green).
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distinguished individuals who demonstrate a significant sequential ef-
fect and those who do not. While individuals who demonstrated a se-
quential effect also showed speedier response inhibition in HC, the
reverse was true in AD. These findings suggest that alcohol dependence
is associated with impairment in proactive control and utilizing contex-
tual experience to guide behavior, in accordwithmanyprevious reports
(Bailey et al., 2014; Bartholowet al., 2012; Bednarski et al., 2012; Li et al.,
2009b; Ridderinkhof et al., 2002; Sjoerds et al., 2013).

Along with this deficit, AD showed greater activations in the anterior
pre-supplementary motor area (pre-SMA) and right inferior parietal lob-
ule (IPL) as compared to HC. The dorsomedial prefrontal cortex including
the pre-SMA is known to play a critical role in executive control (Brass
and Haggard, 2007; Miller and Cohen, 2001; Rushworth et al., 2004;
Tabibnia et al., 2014). Transcranial magnetic stimulation (TMS) of the an-
terior pre-SMAdisrupts cognitive control and results in prolonged SSRT in
the stop signal task (Chen et al., 2009). Likewise, the IPL is involved in cog-
nitive control (Green andMcDonald, 2008; Rushworth and Taylor, 2006)
and conflict monitoring (Egner et al., 2007; Luks et al., 2007). TMS of the
right IPL disrupts interference control (Soutschek et al., 2013). In a Stroop
task, the right IPL demonstrated sustained activity in the high expectancy
condition, suggesting its involvement in proactive control (Krug and
Carter, 2012).

Along with compromised performance, greater activation of the
anterior pre-SMA and right IPL may suggest a compensatory mechanism
for cognitive control in AD. However, the data showed that the SEQ (indi-
vidualswho showed a significant sequential effect) andnSEQ (individuals
who did not) groups showed a similar level of anterior pre-SMA and right
IPL activation (Fig. 4a), suggesting that compensatorymechanism is not a
tenable account. Thus, AD individuals increased activation of these frontal
and parietal structures in anticipation of conflict without being able to
translate this anticipatory process into action in a sequential effect. This
is in contrast to many studies of children with positive history of alcohol-
ism, who increased prefrontal cortical activation to compensate for be-
havioral performance (Acheson et al., 2014; Dagher, 2014; Hardee et al.,
2014; Silveri et al., 2011). On the other hand, one is to note that the cur-
rent finding may be specific to our paradigm and analysis, as greater cor-
tical activations have been observed for performance compensation in
other behavioral tasks in chronic alcohol drinkers (Hatchard et al., 2015;
Padilla et al., 2011; Schellekens et al., 2010).

A second set of analysis showed that deactivation of theperigenual an-
terior cingulate cortex (pgACC) to increasing p(Stop) is positively corre-
lated with SSRT in HC but not AD. As a critical structure of the default
mode network (DMN), which deactivates to behavioral engagement,
the deactivation of the pgACC to increasing p(Stop) may indicate readi-
ness towithhold response and contribute to speedier SSRT. Thus, thefind-
ing of a positive correlation in HC appeared to be counter-intuitive. One
possibility is that the mechanism of pgACC activity fluctuating to chang-
ing p(Stop), while efficient, hampers one's ability to stop when the esti-
mated p(Stop) is low. In contrast, the pgACC deactivated to a lesser
extent in AD as compared to HC and did not show activity to p(Stop) in
correlation to SSRT. We speculate that the process with the pgACC as a
neural surrogate linking task-entrained preparation for stop signal



Fig. 4. Contrast values (mean± standard error) of all regions showing a difference between AD andHC in activation to p(Stop), broken down for sequential effect: SEQ—with significant sequential effect; nSEQ—without significant sequential effect.
(a) Regions showing greater activation to p(Stop) in AD as compared to HC; and (b) regions showing greater deactivation to p(Stop) in HC as compared to AD (Table 3).
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Fig. 5. (a) Regional activity to p(Stop) in association with SSRT: greater deactivation of the perigenual anterior cingulate cortex (pgACC) to increasing p(Stop) is correlated with longer
SSRT. (b) p(Stop) activity of the pgACC is correlated to SSRT in HC but not AD.
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inhibition is compromised and that this deficit may actually allow more
resources to be devoted to response inhibition in alcohol dependence.
Considered along with previous imaging studies demonstrating altered
activity and functional connectivity of the DMN including the ventrome-
dial prefrontal cortex in individuals with addictive disorders (Ma et al.,
2011; Sutherland et al., 2012; Zhang et al., 2014), this issue needs to be in-
vestigated further.

The current findings need to be reconciled with several recent
reports. Noel et al. (2013) showed that AD individuals are impaired
in the ability to suppress prepotent responses, such as those in the
Stroop task, but not the control of proactive interference as
Fig. 6. Regional activation to conflict anticipation and alcohol consumption in AD. Themedial th
alcohol consumption.
measured by the correct rate of recall after distractors. In a flanker
task, Bailey et al. (2014) reported no event-related potential activi-
ties in themedial prefrontal cortex for conflict monitoring and online
adjustment following error trials, yet activities were resumed two
trials after the immediate error in the group with alcohol consump-
tion. The authors suggested that alcohol does not impair conflict
monitoring and behavioral adjustment per se but the recovery
from the failure of these control mechanisms. More studies are clear-
ly required to address these discrepancies and to consider differ-
ences in behavioral paradigms and clinical characteristics of the
participants.
alamus and cerebellum showed increased activation to p(Stop) in association with recent
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4.2. Effect of alcohol consumption on proactive control in alcohol
dependence

Neuroimaging research has documented the vulnerability of the
prefrontal cortex, thalamus, and cerebellum to chronic alcohol exposure
(Sullivan et al., 2003). There is extensive evidence for reduced gray and
white matter volumes in the frontal cortex, thalamus, and cerebellum
along with compromised cognitive performance in AD individuals
(Chanraud et al., 2007; Sullivan et al., 2003). Adolescents with low-
level alcohol consumption showed decreased cortical thickness in the
frontal areas in conjunction with compromised integrity of white mat-
ter connecting to the caudate and thalamus (Luciana et al., 2013). In a
functional study, increased activities of the thalamus, cerebellum, and
prefrontal cortex were also found in young adults with regular alcohol
consumption than non-alcohol drinkers during performance of a
counting Stroop task (Hatchard et al., 2015). The authors interpreted
such activity as a manifestation of an early stage of neurocognitive dys-
function as a result of alcohol-induced disruption of the frontocerebellar
system (Sullivan, 2003). Thus, the current findings add to thewide liter-
ature of cerebellar and thalamic structural/functional changes in chronic
alcohol exposure and fetal alcohol syndrome (Cardenas et al., 2014; du
Plessis et al., 2014; Fein and Fein, 2013; Grodin et al., 2013; Meintjes
et al., 2014).

4.3. Limitations and conclusion

There are a number of limitations to consider in the current
study. First, there were a much greater number of HC than AD partic-
ipants. While this disparity in sample size reflected the strategy to
include the largest number of HC participants who are group-
matched in age and gender and an additional comparison with
more balanced samples yielded similar results, future work is need-
ed to confirm these findings. Second, we did not collect information
on life-time alcohol use other than years of drinking, family history
of alcoholism or patterns of recent alcohol use. These important var-
iables were not examined in the current work. Third, because of the
small sample size of AD we did not examine the influence of gender
(Ide et al., 2014; Li et al., 2009c) or personality traits (Farr et al.,
2012; Karch et al., 2008; Li et al., 2006) on these behavioral and neu-
ral measures.

In conclusion, we showed an impaired ability of proactive control in
AD individuals, whose greater fronto-parietal activation fail to compen-
sate for behavioral performance. Unlike HC, AD individuals also did not
deactivate the perigenual anterior cingulate cortex during conflict antic-
ipation to facilitate response inhibition. These new findings add to our
understanding of the cerebral effects of chronic alcohol consumption,
particularly in the domain of self control (Cyders et al., 2014; Kareken
et al., 2013).

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.nicl.2015.03.008.
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