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Abstract: The development of custom cellular materials has been driven by recent advances in
additive manufacturing and structural topological optimization. These contemporary materials
with complex topologies have better structural efficiency than traditional materials. Particularly,
truss-like cellular structures exhibit considerable potential for application in lightweight structures
owing to their excellent strength-to-mass ratio. Along with being light, these materials can exhibit
unprecedented vibration properties, such as the phononic bandgap, which prohibits the propagation
of mechanical waves over certain frequency ranges. Consequently, they have been extensively
investigated over the last few years, being the cores for sandwich panels among the most important
potential applications of lattice-based cellular structures. This study aims to develop a methodology
for optimizing the topology of sandwich panels using cellular truss cores for bandgap maximization.
In particular, a methodology is developed for designing lightweight composite panels with vibration
absorption properties, which would bring significant benefits in applications such as satellites,
spacecraft, aircraft, ships, automobiles, etc. The phononic bandgap of a periodic sandwich structure
with a square core topology is maximized by varying the material and the geometrical properties of
the core under different configurations. The proposed optimization methodology considers smooth
approximations of the objective function to avoid non-differentiability problems and implements an
optimization approach based on the globally convergent method of moving asymptotes. The results
show that it is feasible to design a sandwich panel using a cellular core with large phononic bandgaps.

Keywords: sandwich panel; size optimization; smart-material; phononic structure

1. Introduction

Various natural materials exhibit properties that cannot be realized in conventional
materials employed in structural engineering. This is the result of the evolution of these
natural materials over millions of years, resulting in an optimized architecture. As an
example, the internal architecture of bones provides them with exceptional structural
efficiency that has not be replicated with artificial materials.

Despite the fact that the concept of elastic tailoring of materials is not new, the fabri-
cation of cellular materials with increasingly complex topologies has been driven by the
development of additive manufacturing technologies [1]. Moreover, the application of
topological optimization enabled the design of material with desired properties such as
reduced weight and high strength or stiffness. In this context, lattice-based materials have
proven to reach an exemplary relationship among stiffness, strength, and density [2], which
makes them ideal for low-weight design applications (e.g., for aircraft applications [3]).
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The architecture of lattice materials is composed by distinct structural elements, includ-
ing slender beams and struts, which are arranged in characteristic unit cells periodically
distributed in space.

Among the potential applications of lattice-based cellular materials, cores for sandwich
panels are included [1]. Sandwich panels are composed of a lightweight core sandwiched
between two skins, resulting in a stiff structure at a reduced weight. Therefore, sandwich
structures are frequently used in applications where lightweight materials are crucial,
such as satellites, spacecraft, aircraft, automobiles, ships, rail cars, wind energy systems,
and bridges [4].

Additive manufacturing techniques offer the possibility of manufacturing tailored
cores for sandwich structures with superior properties than conventional foam or honey-
comb cores. For example, it widens the range of possible core architectures; in addition,
the cores can be designed to achieve multiple objectives (such as mechanical, thermal,
or wave propagation, among others). In addition to their attractive static properties, ar-
chitected cellular materials can also be design to suppress the propagation of mechanical
waves, which may be achieved via phononic bandgaps [5]. Phononic structures can be
used to reduce mechanical wave propagation in a material over a certain frequency range.
As a result, these structures have been extensively investigated over the last few years [6].

Jensen [7] was among the first to demonstrate that truss-like periodic structures exhibit
bandgaps, which suppress the propagation of elastic waves at certain frequencies. He
also showed that by combining periodic and homogeneous structures, wave guides may
be obtained. Ruzzene and Scarpa [8] studied the presence of bandgaps in auxetic and
honeycomb lattices, which are composed by an array of linked struts. They found that
the internal angle of the auxetic and honeycomb lattices significantly affects bandgaps.
Liebold-Ribeiro and Körner [5] investigated the bandgap behaviors of bidimensional
cellular structures with hexagonal, quadratic and chiral lattice types, concluding that these
materials may exhibit considerable bandgaps. Warmuth and Körner [9] reached a similar
conclusion and reported that by replacing straight struts with bent ones (chiral), bandgaps
are achieved. Wang et al. [10] studied the dependence of bandgap width and frequency
with the lattice topology. Characterizing the topology by the number of connections at the
joints, known as the lattice coordination number. They concluded that large coordination
numbers facilitate the formation of bandgaps because, in these cases, the struts act as
mechanical resonators. The bandgap width decreases with the coordination number until
a certain threshold from which no bandgap is generated.

The mentioned investigations show that by modifying the material or geometrical
properties of the struts, the corresponding bandgaps of a lattice material can be manipu-
lated. Accordingly, it becomes reasonable to implement topology optimization techniques
to design lattice structures to meet desired bandgap properties. Several studies have inves-
tigated the use of topology optimization algorithms to obtain optimal configurations that
yield the largest bandgap. However, these studies have focused mainly on the design of
two-dimensional structures [11,12].

During topology optimization, the geometrical and/or material properties of each
element in the design domain are designated as design variables. The optimization then
finds the microstructure that maximizes the bandgap (distance) between two bands in
the phononic band diagram. The first application of topology optimization for bandgap
maximization was presented by Sigmund and Jensen [13], designing a two-dimensional
phononic solid structure constructed by two materials, wherein the design parameters
were the relative density of each element in the structure. Gazonas et al. [14] used ge-
netic algorithms (GAs) as an optimization tool to determine the optimal distribution of a
two-dimensional two-phase structure. In this case, the optimization variables are binary
numbers, representing the material property as zero-one variables. Hussein et al. [15]
used a similar approach to maximize the sum of the bandgap widths in a two-dimensional
periodic bimaterial. Liu et al. [16] implemented a two-stage methodology using GAs to
maximize the bandgap of a two-dimensional solid structure. In the first step, the unit
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cell was divided into a 20 by 20 pixel grid, the solution of the first stage was used as the
initial searching point for the second stage, with 40 by 40 pixels. Bilal and Hussein [17,18]
presented a specialized GA to design two-dimensional phononic materials with in-plane
and out-of-plane waves. Dong et al. [19] showed that wider bandgaps are obtained in
two-dimensional phononic materials when no assumption is made regarding the cell sym-
metry compared to the symmetrical case. Diaz et al. [20] studied the presence of bandgaps
in a two-dimensional grid structure consisting of intersecting struts. They maximized
the width of the bandgap by adding nonstructural masses at key grid positions while
leaving the grid shape unaltered. Halkjær et al. [21] applied topology optimization to max-
imize the bandgaps in bi-material beams and plates. In a later work, they maximized the
bandgap in plates with one material [22]. The optimal design was adopted to manufacture
a polycarbonate plate built with 10 by 10 unit cells; the experimental frequency response
function (FRF) showed a clear bandgap. Vanatabe et al. [23,24] maximized the bandgap of
a functionally graded two-dimensional piezocomposite periodic material through topology
optimization. Their results show that the resulting solutions can be post-processed to obtain
zero-one values without affecting significantly the band diagram. Li et al. [25] proposed
a new optimization approach based a bidirectional evolutionary structural optimization
(BESO) for bandgap maximization of two-dimensional structures. A gradient-based opti-
mization algorithm was used by Yi et al. [26] to maximize the bandgap at a given frequency
for two-dimensional solid materials. This approach makes it possible to design a bandgap
with the maximum width for a target frequency.

Some investigations have implemented multi-objective optimization strategies for
phononic materials with mass or stiffness restrictions. Dong et al. [27] implemented a multi-
objective optimization based on GAs to maximize the bandgap width of two-dimensional
solid phononic materials with minimum mass. A similar multi-objective GA optimization
strategy was used by Hedayatrasa et al. [28] to maximize the bandgap width and in-plane
stiffness of perforated solid plates. Hedayatrasa et al. [29] maximized the bandgap width in
conjunction with the bandgap gradient induced by deformation using multi-objective GA
optimization. This implementation allowed them to tune the bandgap under equibiaxial
stretching. Li et al. [30] implemented a simultaneous maximization of the bandgap width
and the shear modulus of two-dimensional solid materials using the BESO algorithm.

Evolutionary optimization algorithms such as GAs are more eficient for problems with
few design variables. As the computational cost of these algorithms largely depends on the
number of design variables, the objective function must be evaluated several times. There-
fore, in problems with a large amount of design variables, gradient-based optimization
approaches are desirable, even with the possibility of obtaining local optima [11]. Gradient-
based optimization approaches for band-gap maximization require the computation of
eigenvalue sensitivities, which becomes a problem in the presence of repeated eigenvalues,
as they are not differentiable. To handles this, Torii and De Faria [31] proposed the P-norm
as a smooth approximation of the objective function, which also solves the mode switching
problem. This formulation was applied by Quinteros et al. [32] to maximize the bandgap
of a two-dimensional truss-like cellular structure, thereby demonstrating its effectiveness
in avoiding convergence problems.

Sandwich panels with lattice-based cellular cores are extremely desirable for appli-
cations that require multi-functional materials, such as lightweight ultra-stiff structural
materials. The optimal cell that maximizes the stiffness/weight ratio in these type of
panels has been investigated by [33,34]. However, to the author’s knowledge, the design
of such panels with vibration attenuation properties (i.e., a bandgap) has not yet been
explored. Research on phononic crystals has focused mainly on two-dimensional materials,
and sandwich panels with vibration absorption properties have been obtained mainly by
using internal resonators (i.e., internally resonant metastructures) [35,36].

The aim of this investigation is to develop an efficient methodology for designing ultra-
light sandwich panels with cellular truss cores and large phononic bandgaps. The phononic
bandgap of a periodic sandwich structure with a regular core topology was maximized by
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varying both the material and the geometrical properties under different core configura-
tions. The proposed optimization methodology considers smooth approximations of the
objective function to avoid non-differentiability problems and uses the globally convergent
method of moving asymptotes (GCMMA) optimization algorithm. The remainder of this
article is organized as follows. Section 2 introduces the theory needed to understand the
periodic structure to be investigated. Section 3 shows the geometry that will be optimized
and all assumptions related to it. Section 4 states the optimization problem required to max-
imize bandgaps. Section 5 provides the results obtained using this approach, and Section 6
provides concluding remarks.

2. Periodic Structures Theory

To understand periodic structure theory (PST), it is necessary to establish the equations
used to describe the phenomenon of mechanical wave propagation in periodic materials.
Let us consider a continuum two-dimensional (2D) structure, as shown in Figure 1. In this
example, a square cell with edge length L has been chosen to tile an infinite 2D space.
The structure does not necessarily need to be a square, and it could possess a complex
2D [37] or 3D [38] geometry.

The periodic square geometry extracted from Figure 1. is studied in Figure 2a. Three
reflexive symmetries can be depicted: horizontal, vertical, and 45◦ symmetries. Considering
these symmetries and locating the reference system at the center of the structure, this
structure can be represented using a reduced zone, as illustrated in Figure 2b. An important
concept in PST corresponds to the definition of a reciprocal space, which is described by
the vectors t1 and t2 considering the structure length as 2π/L (for further information see
ref. [39]). Figure 2c shows the same information as Figure 2b, but in the reciprocal space.

Figure 1. Periodic structure and a repeated square pattern with edge length L.

The last important concept is the wave vector k, which describes the wavelength and
direction of wave propagation. This wave vector is evaluated at the path that follows the
perimeter defined by the corners of the triangle in the reciprocal space. This path begins at
Γ, passes through X and M, and returns to Γ, as presented in Figure 2d. It can be written as

k = kx î + ky ĵ, (1)

for 2D problems.
The path conducted by the vector is also referred to as the irreducible Brillouin zone

(IBZ) [40]. According to the Floquet–Bloch wave theory, the displacement in the reciprocal
space for a periodic unit cell is given by

u(X + r) = u(X)eikr, (2)

where r is the cell periodicity, i the imaginary unit, u is the displacement, and k is the wave
vector. Equation (2) will be used to impose the periodic boundary conditions in the finite
element model of the sandwich panel, which will be explained in subsequent sections of
this article.
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Figure 2. Periodic cell and IBZ. (a) Periodic cell. (b) Direct Lattice. (c) Reciprocal lattice. (d) IBZ.

3. Sandwich Panel Modelling
3.1. Geometry

There are numerous methods of geometrically arranging the core of the sandwich
panel. In this research, a rectangular lattice structure will be employed as illustrated in
Figure 3. The topology of the core is described by the number of cells in the directions x̂, ŷ
and ẑ using the variables nx, ny, nz, respectively. Furthermore, the length in each direction
is denoted with Lx, Ly, and Lz. A scheme of this configuration is presented in Figure 3.
Here, Figure 3a,b show the in-plane unit cells (considering nz = 0) using nx = ny = 4 in the
first case and nx = 5 and ny = 3 in the second. The sandwich panel unit cells with nz > 0
are illustrated in Figure 3c,d, in particular for nx = ny = 4. Note that Figure 3c,d use nz = 1
and nz = 2, respectively. Therefore, these three parameters are used to control the number
of cells, specifically to allow a wider range of possible geometries. The cross-section of the
struts will be supposed to be circular with a diameter D.

Figure 3. Periodic structure and the repeating pattern, (a) nx = ny = 4 and nz = 0, (b) nx = 5, ny = 3,
and nz = 0, (c) nx = ny = 4 and nz = 1, (d) nx = ny = 4 and nz = 2.

3.2. Finite Element Model

The structural model is built by adopting a finite element approach. The skins are
modeled using four-node Reissner–Mindlin elements with five degrees of freedom (DOF)
per node, which consist of three displacements in the axis directions u, v, and w, and two
rotations φu and φv [41]. The uni-dimensional elements are modeled using 3D Timoshenko
beam elements, with two nodes per element and six degrees of freedom per node (three
rotations and three displacements), as shown in Figure 4.

The accuracy of the model is evaluated through a verification process based on the
mesh refinement. Owing to geometrical considerations, this refinement will be achieved
using a variable denoted as η, which will divide each bar into η sections, as shown in
Figure 5 for a core with nx = ny = 2, nz = 1, and η = 3. Material properties and diameter
D of a given bar r are then associated to the design variables xM

r and xA
r , respectively,

for any value of η. The importance of this refinement will be discussed in the results section
using a mesh dependency analysis.
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Beams DOFs

Plate DOFs

Figure 4. Sandwich plate surfaces showing the DOFs of the nodes on the beams and plate elements.

Mesh 
generated

Plate nodes

Beam nodes

Figure 5. Mesh generated for a nx = ny = 2 and nz = 1 sandwich panel using a refinement parameter
η = 3.

3.3. PST Applied to the Sandwich Panel

The PST is implemented to infinitely replicate the sandwich panel unit cells shown
in Figure 3 in the x̂-ŷ plane. Taking into consideration Figure 6, the nodes in each layer
are split to implement the Floquet–Bloch periodic condition. The nodes are split into sets
ϕL, ϕR, ϕB, ϕT , and ϕI , which are the left, right, bottom, top edges, and interior nodes,
respectively. Depending on the layer, these nodes may be in the beam elements or in both
the plate and beam elements, as shown in Figure 6.
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Layer 1

Layer 2

Layer �-1

Layer �

Layer 2 to layer �-1

Layer 1 and layer �

Figure 6. Regions considered to impose periodicity in the unit cell.

According to the methodology proposed by Langlet et al. [42], the infinite periodicity
of the unit cell is established by the boundary conditions presented in Equation (2). As was
defined in Section 2, the wave vector for a two-dimensional problem is expressed as
Equation (1), which is a vector that runs along the perimeter of the IBZ. The Floquet–Bloch
condition is applied to both the displacement and rotational degrees of freedom. Therefore,
for each layer j-th, the boundary conditions are defined as

ϕ
j
T = ϕ

j
BeiLky

ϕ
j
R = ϕ

j
LeiLkx

ϕ
j
BR = ϕ

j
BLeiLkx

ϕ
j
TL = ϕ

j
BLeiLky

ϕ
j
TR = ϕ

j
BLeiL(kx+ky)

, (3)

where the superscript represents the j-th layer and ϕ is a vector of the rotational or dis-
placement degrees of freedom. The subscript L represents all the nodes in the left edge, R
is used for the right edge nodes, B for the bottom edge nodes, and T for the top edge nodes.
The degrees of freedom over the corners are denoted by the subscripts BL, BR, TL, and TR
according to Figure 6. All of the internal degrees of freedom in the j layer are arranged in
the vector ϕ

j
I .

Owing to the Bloch relation, the number of independent degrees of freedom can be
reduced by using the relationship ϕj = Tjϕ̃j, where ϕj is the vector of all nodal degrees of
freedom, ϕ̃ is the reduced vector, and Tj is a matrix mapping both vectors. Vectors ϕj and
ϕ̃j are expressed as

ϕj =



ϕ
j
L

ϕ
j
R

ϕ
j
B

ϕ
j
T

ϕ
j
BL

ϕ
j
TL

ϕ
j
BR

ϕ
j
TR

ϕ
j
I


; ϕ̃j =


ϕ

j
L

ϕ
j
B

ϕ
j
BL

ϕ
j
I

, (4)

while the matrix T for the j-th layer is given by
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Tj =



I 0 0 0
IeiLkx 0 0 0

0 I 0 0
0 IeiLky 0 0
0 0 I 0
0 0 IeiLky 0
0 0 IeiLkx 0
0 0 IeiL(ky+kx) 0
0 0 0 I


, (5)

where I is the identity matrix.
Considering the assemblage of the entire sandwich cell structure using the finite

element method, the matrix T can be written as

T =



T1 0 0 · · · 0 0 0
0 T2 0 · · · 0 0 0
0 0 T3 · · · 0 0 0
...

. . .
...

0 0 0 · · · Tn−2 0 0
0 0 0 · · · 0 Tn−1 0
0 0 0 · · · 0 0 Tn


. (6)

Lastly, the classical eigenvalue problem taking periodicity into account is expressed as(
TTKT−ω2

i TTMT
)

ui =
(

K′ −ω2
i M′

)
ui = 0, (7)

where K and M represent the global stiffness and mass matrices, respectively, ω2
i is the ith

eigenvalue (λi = ω2
i ), and ui corresponds to the ith eigenvector related to the corresponding

wave vector.
The dependence to the wave vector k is introduced to the problem by the mapping

matrix T. Therefore, the eigenvalues can be computed for different values of the wave
vector in the path Γ−M− X− Γ to construct the band diagram. This diagram provides
a characterization of the dynamic response of the periodic structure as a function of k,
visualizing which wavelengths can be propagated along an infinite arrangement of cells.

Finally, using the symmetries shown in Figure 2, it is possible to diminish the number
of optimization variables related to the bars by forcing the unit cell to accomplish the
symmetries, as illustrated in Figure 7. Note that even though the colors are the same in
Figure 7, the bars in both subfigures are independent.

Figure 7. Regions considered to impose periodicity of the periodic unit cell for (a) in plane bars and
perpendicular bars (b).
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4. Optimization Problem
4.1. Design Variables

During the optimization process that will be defined, only the material and beam cross-
sections are selected as design variables, leaving the plate elements aside. Each parameter
is described by an interpolation function between two possible values. The selection of this
function is not trivial and must be undertaken carefully, because it affects the physics of the
problem [43]. However, for band gap optimization the linear function is sufficient, as the
solution tends to take values at the limits of the ranges [44]. Thus, the parametrizations for
the material properties, density (ρ), elastic modulus (E) and Poisson’s ratio (ν) are

ρ = (ρ2 − ρ1)xM
r + ρ1, (8)

E = (E2 − E1)xM
r + E1, (9)

and
ν = (ν2 − ν1)xM

r + ν1, (10)

where the xM
r ∈ [0, 1] controls the material properties for each bar r. For the area properties,

a circular cross-section with diameter D is used,

D = (D2 − D1)xA
r + D1 (11)

where xA
r ∈ [0, 1] and controls the cross-section properties. This variable modifies proper-

ties such as the inertia moments Ix, Iy, and Iz, and the area A.

4.2. Optimization

Given all of the background information necessary to understand the band diagram
(also referred to as a dispersion diagram), the optimization process may now be considered.
The objective is to determine the unit cell that maximizes the bandgap, which is calculated
by the distance between two consecutive bands n and n + 1. Figure 8 illustrates an example
of a band diagram, which possesses six bands (blue lines) and a gap between the third and
fourth bands, referred as the bandgap. Therefore, the bandgap width to be maximized is
the distance between the band minimum ωn+1(x, k) and the band maximum ωn(x, k) for
k ∈ [Γ, X, M, Γ]. The design variable vector x accounts for both xD and xM, such that

x =

{
xD

xM

}
; (12)

the first term is related to the bars area xD and the second defines the bars material xM.
The wave vector k is defined along the perimeter of the IBZ. The resulting formulation is
expressed as

max
x

min ωn+1(x, k)−max ωn(x, k)
ω̄

(13a)

subject to (K′(k)−ω2M′(k))u = 0 (13b)

k ∈ IBZ (13c)

0 ≤ xi ≤ 1 (13d)

where the objective function is scaled by the mean frequency in which the bandgap is
tuned, defined as

ω̄ =
min ωn+1(x, k) + max ωn(x, k)

2
. (14)

Additionally, it should be noted that the normalized objective function is an indicator of
how the bandgap improves relative to the mean bandgap frequency because not only is
the bandgap width important, but it is also crucial to know where it is located.
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An issue that may occur in eigenvalue optimization problems is the non-differentiability
related to repeated eigenvalues [45]. Other problem that occur when targeting individ-
ual eigenvalues is mode switch during optimization. To overcome these issues, Quin-
teros et al. [32] proposed the use of P-norms as smooth approximations for both max ωn
and min ωn+1 in the form

max ωn(x, k) ≈ ‖ωn(x)‖P =

(
n

∑
j=1

PIBZ

∑
i=1

ωP
ij(x)

)1/P

, (15)

and

min ωn+1(x, k) ≈ ‖ωn+1(x)‖−P =

(
m

∑
j=n+1

PIBZ

∑
i=1

ω−P
ij (x)

)−1/P

. (16)

In both expressions, the first sum to PIBZ is associated with the discretization of the
wave vector k, while the index j refers to the j-band.

In Equation (15), the sum that ranges from j = 1 to n represents the maximum value
for bands 1 to n. This indicates that all the eigenvalues in this range are considered. On the
other hand, Equation (16) represents the minimum value for bands n + 1 to m. In both
approximations a finite set of eigenvalues are combined, thereby hindering mode switching
inside of each set. Moreover, it is possible there is mode switching occurring between both
sets during optimization. This approach also resolves the non-differentiability of repeated
eigenvalues, as discussed in [31]. The optimization problem may now be stated as

max
x

2
‖ωn+1(x)‖−P − ‖ωn(x)‖P
‖ωn+1(x)‖−P + ‖ωn(x)‖P

(17a)

subject to
(
K′(k

)
−ω2M′(k))u = 0 . (17b)

k ∈ IBZ (17c)

0 ≤ xi ≤ 1 (17d)

Figure 8. Example of P-norm smooth approximations of the minimum and maximum values of the
frequency for n = 3 and m = 6.

Figure 8 illustrates a band diagram with the presence of a bandgap. Equations (15)
and (16) are evaluated for different values of P, considering n = 3 and m = 6. It is observed
that as P increases, Equation (16) converges to the true minimum and Equation (15) to the
true maximum despite intersections (repeated values) in the band diagram.
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4.3. Sensitivity Analysis

In this study, a gradient-based solver is used to optimize the bandgap. The derivatives
of Equations (15) and (16) with respect to a design variable xα

r are given by

d‖ωn‖P
dxα

r
=

(
n

∑
j=1

PIBZ

∑
i=1

ωP
ij

) 1−P
P
(

n

∑
j=1

PIBZ

∑
i=1

ωP−1
ij

dωij

dxα
r

)
(18)

and

d‖ωn+1‖−P
dxα

r
=

(
m

∑
j=n+1

PIBZ

∑
i=1

ω−P
ij

)−(1+P)
P
(

m

∑
j=n+1

PIBZ

∑
i=1

ω−P−1
ij

dωij

dxα
r

)
, (19)

where α could be D (geometry) or M (material). The eigenvalue sensitivities are given
by [46],

dωij

dxα
r
=

uT
ij

(
dK′
dxα

r
−ω2

ij
dM′
dxα

r

)
uij

2ωijuT
ij Muij

. (20)

Here, the matrices K′ and M′ represent the stiffness and mass matrices of the entire
structure, respectively. Derivation with respect to xα

r must be performed on each matrix
component. However, these elements are independent, and if the stiffness and mass
matrices of the element e are denoted using Ke and Me, respectively, the derivatives with
respect the element r are given by

dKe

dxα
r
= δer

dKe

dxα
r

, (21)

and
dMe

dxα
r

= δer
dMe

dxα
r

, (22)

where δer denotes the Kronecker’s delta. Finally, the sensitivity of the objective function
can be calculated as

d
dxα

r

(
fobj(x)

)
=

d
dxα

r

(
2
‖ωn+1‖−P − ‖ωn‖P
‖ωn+1‖−P + ‖ωn‖P

)
= 4

(
d‖ωn+1‖−P

dxα
r
‖ωn‖P −

d‖ωn‖P
dxα

r
‖ωn+1‖−P

)
(
‖ωn+1‖−P + ‖ωn‖P

)2 . (23)

5. Results

In this section, the optimization parameters and results are provided. The material
and geometrical considerations are presented in Table 1, in which aluminum and tungsten
are used for the core and aluminum sheets are used in the sandwich skins. Those materials
were used owing to the high contrast between their properties. The solver selected for
the optimization is the GCMMA [47] and its parameters are the ones used in ref. [48].
The number of external iterations of the GCMMA is fixed to 100. The initial seed was
selected using the Latin hypercube sampling method [49] to evenly map the design space,
as this problem is non-convex and may converge to a local minimum. For the following
study cases, 100 Latin hypercube initial points were used, and the best result among those
is reported on each case.
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Table 1. Material, geometry, and parameter selections.

Name Symbol Value

Aluminum density ρ1 2700 kg/m3

Tungsten density ρ2 19,300 kg/m3

Aluminum elastic modulus E1 70 GPa
Tungsten elastic modulus E2 411 GPa
Aluminum Poisson’s ratio ν1 0.28
Tungsten Poisson’s ratio ν2 0.33
Lower cross-section diameter D1 2 mm
Upper cross-section diameter D2 8 mm
Cell length Lc 2.5 cm
Distance between lattice Lz 3.0 cm
P-norm value P 30
Number of eigenvalues considered in the P-norm approximation m 15
Number of points in IBZ PIBZ 30
Refinement parameter η 3

5.1. Convergence: Results Verification

The convergence of the optimization algorithm is investigated by using different
combinations of nc and nz, wherein the objective is to maximize the bandgap above bands
3 to 8 (n = 3 to n = 8). The convergence plots are shown in Figures 9–11, in which the
value of the objective function is plotted along the iterations of the optimization process.

Figure 9 presents the convergence plots for the combinations nc = 2 and nz = 1 or 2,
whereas Figure 10 shows the iteration results for the combinations nc = 4 and nz = 1 or
2. Lastly, Figure 11 compares the convergence plots for nc = 2 and 4 considering nz = 1
to 3, using the same band for optimization (n = 3). The last case is performed to study
how the complexity of the cell influences the optimization. It should be noted that negative
values of the normalized bandgap indicate that no bandgap exists because the bands
are overlapping.

The plots presented in Figure 9a show that the best bands are n = 5, 6, and 8 for
this optimization goal, in which the convergence was obtained in less than 50 iterations.
The three curves achieve similar normalized bandgap values of approximately 0.33 and
0.36. In Figure 9b, the best results were obtained for n = 8, followed by those for n = 3 and
n = 4. The value achieved for n = 8 was the maximum among all the other convergence
plots, with a normalized bandgap of 0.46. Considering Figure 10a, only one positive
normalized bandgap value was obtained for n = 4 with a value of 0.016. By analyzing
Figure 10b, the three bands of n = 3, 4, and 7 show similar results with an optimum value
near 0.3. Finally, considering the plot shown in Figure 11, the best maximum values are
achieved by using nc = 4 and considering nz = 2 and 3.
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Figure 9. Iteration history obtained for n = 3 to 8. (a) nc = 2 and nz = 1. (b) nc = 2 and nz = 2.
Bands from n = 3 to 8 are optimized in each case.
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Figure 10. Iteration history obtained for n = 3 to 8. (a) nc = 4 and nz = 1. (b) nc = 4 and nz = 2.
Bands from n = 3 to 8 are optimized in each case.
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Figure 11. Iteration history obtained for nc = 2 and 4 with nz = 1, 2, and 3. In this case, only the
band n = 3 is optimized.

A poor refinement η = 3 was employed during the optimization process to mini-
mize computational costs. Because beam and plate elements are selected to model the
sandwich plate behavior, the mesh sensitivity must be carefully studied. Additionally,
a post-process must be performed to obtain values on the limits of the design space. This is
required because even when the optimum value tends towards the extreme values of the
interpolation presented in Equations (8)–(11), the material properties must be strictly 0 or 1
(if the material variables do not accomplish this, the material is not physically possible).
Therefore, the design variables related to the material properties will be approximated to
the nearest value of 1 or 0. However, the area properties may violate the 1 or 0 criterion
post-processing considering that these variables are not restricted in the same manner
as the material properties. Therefore, the post-processing will be applied only to the
material properties.

Tables 2 and 3 show how the refinement and post-processing influence the bandgap for
the best results obtained using different combinations of nz and nc, which were determined
previously. The P-norm columns presented in Tables 2 and 3 show the final values obtained
by the optimization process after 100 iterations. The material properties of that solution
vector are then post-processed and the bars are refined as described in Section 3.2. It is worth
noting that the best P-norm value does not imply that the configuration will have the best
post-processed value; this is due to the poor refinement. Even when that refinement does
not provide the best approach for obtaining a reliable value, it estimates good candidates
with relatively low computational costs. However, there are some configurations in which
the bandgap does not proliferate after refinement. For example, when the p-norm value
obtained with nc = 2, nz = 2, and n = 8 is refined, the bandgap is lost completely.
Nevertheless, all of the normalized bandgap configurations tend to converge.

The best bandgaps were obtained with the configurations nc = 2 − nz = 1 and
nc = 4− nz = 2, 3.
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Table 2. Best normalized bandgaps obtained using the P-norm and post-processing design variables
with different refinements.

Number of Cells Band Maximized n P-Norm Post-Processed

η = 3 η = 6 η = 9 η = 12 η = 15

nc = 2, nz = 1
5 0.325 0.065 0.186 0.284 0.300 0.284
6 0.339 0.514 0.412 0.391 0.382 0.378
8 0.355 0.484 0.335 0.303 0.285 0.273

nc = 2, nz = 2
3 0.078 0.235 0.188 0.143 0.113 0.094
4 0.143 0.234 0.206 0.148 0.115 0.100
8 0.460 0.154 0.061 0.042 0.031 0.021

nc = 4, nz = 1 4 0.016 −0.005 −0.059 −0.075 −0.095 −0.109

nc = 4, nz = 2
3 0.298 0.362 0.352 0.342 0.336 0.333
4 0.292 0.349 0.331 0.310 0.297 0.290
7 0.303 0.348 0.338 0.325 0.320 0.319

Table 3. Normalized bandgap for nz = 3 and n = 3 obtained using the P-norm and post-processing
design variables with different refinements.

Number of Cells P-Norm Post-Processed

η = 3 η = 6 η = 9 η = 12 η = 15

nc = 2 0.077 0.049 −0.034 −0.116 −0.179 −0.217
nc = 4 0.309 0.371 0.358 0.342 0.333 0.329

5.2. Band Diagram and Lattice Topology

First, the computation of the band diagrams for non-optimized cores is performed
for reference. A topology with nc = 2, nz = 1, η = 15, and homogeneous cross sections
with diameter D1 is evaluated for two different materials: aluminum and tungsten, for the
first 9 bands. The band diagrams are shown in Figure 12, where the absence of band gaps
can be seen. It can also be seen that the frequencies for aluminum are higher than the ones
obtained with tungsten, due to its lower mass.

X M
0

2

4

6

8

X M
0

2

4

6

8

10

Figure 12. Band diagram of a structure using nc = 2 and nz, rod diameter of D1 made entirely of (a)
aluminum, and (b) tungsten

Figure 13 shows the evolution of the band diagram of an optimized structure using
nc = 2, nz = 1, n = 6, and η = 15, throughout the post-processing procedure. Figure 13a
shows the band diagram obtained without any post-processing for reference. Figure 13b
shows the band diagram when post-processing the material (aluminum or tungsten),
without changing the geometry. Finally, Figure 13c shows the band diagram obtained when
both the material and the geometry are considered in the post-processing procedure. It can
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be noticed that post-processing the material has little impact in the band gap. Nonetheless,
the modification of the geometry has a large impact on the final result. Thus, as discussed
in this manuscript, only materials are post-processed since there is no constraint in using
diameters in the range [D1, D2].

Figure 13. Post-processing effect on the band diagram using nc = 2, nz = 1, n = 6 with a refinement
of η = 15, (a) no post-processing, (b) material post-processing, and (c) material and diameter
post-processing.

The best four normalized bandgaps obtained in the previous section are selected for
calculating the band diagram and core topology. The bandgaps were selected using the
refinement η = 15 and a normalized bandgap greater than 0.3. All of the bandgap config-
urations are presented in Table 4, wherein the normalized, absolute, and mean bandgap
frequencies are presented. It can be observed that the objective function formulation,
which includes the mean frequency, allows for the generation of proportional bandgaps.
Obtaining a bandgap of 1 kHz tuned to 10 kHz is not the same as obtaining a bandgap
located at 3 kHz.

The band diagrams are shown in Figure 14, in which the frequencies are presented as
a function of the wave vector. It is evident that when the mass increases, the mean bandgap
frequency decreases. To clearly show the bandgap obtained in the sandwich configuration
with nc = 4 and nz = 3, only six bands were plotted. In all the other cases, the number
of bands was 10. The aforementioned bandgap is the smallest of all obtained bandgaps
because it is tuned in a lower frequency; however, its mean bandgap frequency is similar
to the other bandgaps.

It should be noted that both bandgaps shown in Figure 14b,c are from the same
configuration of nc = 4 and nz = 2 and are tuned to similar frequencies, even though the
bandgap for the optimized n is different (n = 3 and 7). These bandgaps differ owing to a
slight increase in the mean bandgap frequency at 154 Hz, while the widths of the bandgaps
are similar.

Table 4. Absolute and mean bandgaps for all cases with a normalized bandgap greater than 0.3.

Number of Cells Band-Maximized
n

Normalized
Bandgap

Mean Bandgap
Frequency kHz

Absolute
Bandgap kHz

nc = 2, nz = 1 6 0.378 9.794 3.703
nc = 4, nz = 2 3 0.332 2.887 0.961
nc = 4, nz = 2 7 0.319 3.041 0.972
nc = 4, nz = 3 3 0.329 2.433 0.8

The wider bandgap presented in Figure 14a was achieved for the simplest structure
(nc = 2 and nz = 1). This indicates that the manufacturing of a complex configuration
to create a bandgap may not be necessary. Such a structure will only be needed if more
mass must be added to the total structure. However, if a lower mean bandgap frequency
is needed, the structure may be scaled to a proper size. Therefore, in the aforementioned
case, it is not justified to use complicated structures to obtain a bandgap at lower mean
frequencies. A careful study of scalability should be conducted to determine how such
changes affect the bandgap properties.
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Figure 14. Bandgap of the structure for the best 4 study cases, in which (a) nc = 2, nz = 1, n = 6
(b) nc = 4, nz = 2, n = 3 (c) nc = 4, nz = 2, n = 7, and (d) nc = 4, nz = 3, n = 3.

Figure 15 shows the structure topology of the best four study cases noted in the
previous section. The material is indicated by using red for tungsten and blue for aluminum.
The width of each bar is proportionally represented in the figure.

All of the structures show a reinforcement on their corners, which use tungsten for those
elements. A similar behavior was reported in previous literature for 2D structures [13,25,26,32].

(d)

 (b)(a)

 (c) 

Figure 15. Structure topology for the best 4 study cases in which (a) nc = 2, nz = 1, n = 6; (b) nc = 4,
nz = 2, n = 3; (c) nc = 4, nz = 2, n = 7; and (d) nc = 4, nz = 3, n = 3. Red and blue indicate
tungsten and aluminum, respectively.
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6. Conclusions

The design of sandwich structures with consideration of vibration reduction was
examined in this study. In this regard, the core was optimized using phononic materials
to obtain a wide phononic bandgap. Two design variables, namely the area and material
properties, were selected for optimization. Different configurations were investigated to
study how the number of cells affects the resulting bandgaps, as well as to identify which
configuration provides the best results.

The use of a normalized objective function in this problem allows the bandgap to
appear at lower frequencies, because the absolute width of the bandgap is not crucial the
location at which the bandgap is tuned is more important. The use of simplified structures
with a low number of cells is desirable because a simplified manufacturing process may
be used. If bandgaps with lower mean frequencies are required, the structure may need
to be scaled. However, complex cores may be also required when the structure length is
scaled rapidly.

For further investigations, a study of these structure’s scalability is needed in order to
consider the range of frequencies in which the bandgaps may be tuned. Moreover, in this
study, only two materials with high contrast properties were used; research focused on
improving bandgap properties in designs with two materials could be promising in future
applications of these structures. This problems does not include structural performance in
the formulation, so a multi-objective optimization including the strength, weight, thermal
conductivity, among others aspects is a natural continuation of this work.
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