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Multiple sclerosis (MS) is an inflammatory, demyelinating, and neurodegenerative disease of the central nervous system. The
hallmark to MS is the demyelinated plaque, which consists of a well-demarcated hypocellular area characterized by the loss of
myelin, the formation of astrocytic scars, and the mononuclear cell infiltrates concentrated in perivascular spaces composed of T
cells, B lymphocytes, plasma cells, andmacrophages. Activation of resident cells initiates an inflammatory cascade, leading to tissue
destruction, demyelination, and neurological deficit. The immunological phenomena that lead to the activation of autoreactive T
cells tomyelin sheath components are the result ofmultiple and complex interactions between environment and genetic background
conferring individual susceptibility. Within the CNS, an increase of TLR expression during MS is observed, even in the absence
of any apparent microbial involvement. In the present review, we focus on the role of the innate immune system, the first line of
defense of the organism, as promoter andmediator of cross reactions that generate molecular mimicry triggering the inflammatory
response through an adaptive cytotoxic response in MS.

1. Introduction

Multiple sclerosis (MS) is probably the most enigmatic dis-
ease whose etiology remains in controversy. Although its
etiology consists in a chronic autoimmune-mediated dis-
ease of the central nervous system (CNS) characterized by
recurrent episodes of demyelination and axonal lesion, the
main pathological characteristic is the “MS plaque” that is
unique and different from that seen in other inflammatory
diseases [1]. The pathological features of MS plaques include
blood brain barrier (BBB) leakage, destruction of myelin
sheaths, oligodendrocyte damage, and cell death, as well as
axonal damage and loss, glial scar formation, and presence of
inflammatory infiltrates [2]. These infiltrates mainly consist
of autoreactive lymphocyte T cells, macrophages, microglial
cells, ependymal cells, astrocytes, and mast cells, which have
the capacity to enter the CNS and incite a proinflammatory

reaction, resulting in local tissue injury [3–5]. MS has been
recognized as a disease mediated by adaptive immune sys-
tem where T cells specifically recognizing myelin fragments
induce tissue damage and contribute to lesion evolvement [6].

Most studies agree that the chronic production of innate
immune proteins and the presence of cells of the adaptive
immune system in the central nervous system environment
could play an essential role to induce neurodegenerative dis-
orders [7]. Although the status of the innate immune system
and its relationship to the stages ofMS is not well understood,
it has been proposed that components of the innate immune
system are involved in several deleterious steps in the
autoimmune cascade, including activation of myelin-reactive
T lymphocytes by antigen presenting cells (APCs) and the
development of membrane attack complexes in the CNS; fur-
thermore, inMS patients it has founded inflammatory lesions
within the CNS surrounded by infiltrating T lymphocytes,
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monocytes, and macrophages, as well as activated microglia
and reactive astrocytes, suggesting that the innate immune
system plays a crucial role in mediating neuronal damage [8].

2. Experimental Autoimmune
Encephalomyelitis Model

The experimental autoimmune encephalomyelitis (EAE) was
developed asmurinemodel to clarify the origin of “neuropar-
alytic accident,” a feared and common complication of vac-
cination against rabies virus. EAE is a complex condition in
which the interaction between a variety of immunopatholog-
ical and neuropathological mechanisms leads to an approxi-
mation of the key pathological features of MS: inflammation,
demyelination, axonal loss, and gliosis. Moreover, EAE is
often used as amodel of cell-mediated organ-specific autoim-
mune conditions in general. EAE has a complex neurophar-
macology, and many of the drugs that are in current or
imminent use inMS have been developed, tested, or validated
on the basis of EAE studies [9].Thismodel has allowed identi-
fication of the importantmolecules that drive immunological
response in EAE. Some of them are the discovery of ROR-g
(RORC) as amaster transcription factor forTh17 cell develop-
ment [10], the identification of the aryl hydrocarbon receptor
(AHR) as an essential component in the development of both
regulatory T cells (Treg) and Th17 responses [11], and the
differential role of the related molecules IL-12 and IL-23 in
the susceptibility to autoimmune demyelination [12–14].

Actually, it has been induced in a variety of rodents and
monkeys, providing models of acute monophasic, relapsing-
remitting, and chronic progressive CNS inflammation. The
more efficaciousmodels usemyelin basic protein (MBP), pro-
teolipid protein (PLP), and myelin oligodendroglial glyco-
protein (MOG) as antigenic components of myelin sheath to
induce the disease in naive host (mainly nonhuman primates,
larger rodents, and mice). The major feature of this model is
that histopathology of EAE resembles that of MS [15].

In the 80s decade early studies in EAE demonstrated the
role of T lymphocytes in the pathogenesis of MS emerging
the TH1 paradigm and supported the evidence that it was
founded in MS patients, where TH1 cell induction is associ-
ated with a worsening of symptoms; the main evidence for
this belief is that relapses tend to be preceded by an increase
in the number of circulating IFN-𝛾-secreting T cells [16], in
which TH1 cells secreting IFN-𝛾 has high capacity to activate
macrophages inducing MHC antigens and promoting cell
homing [17] and those cells were accumulated in brain lesions
from mice with EAE and MS patients [18]. The exogenous
administration of IFN-𝛾, increase the exacerbations in MS
patients during treatment [19]. And more recently adoptive
transfer of autoreactive CD4 T cells has been used as a model
to induce EAE [20, 21]. However, both the purely Th1 origin
of the pathology in EAE and the extent of the similarity
betweenMS andEAE remain debatable.MS is a very complex
disease in which there aremany other receptors and cell types
involved in the pathogenesis of the disease.

3. Leukocyte Endothelial Crosstalk at the
Blood Brain Barrier in Multiple Sclerosis

The formation of focal inflammatory lesions within the CNS
is a crucial and integral component of the innate immune
system on relapsing-remitting MS. These processes are com-
prised of perivascular, particularly perivenular, cuffs consist-
ing mainly of T lymphocytes and monocyte/macrophages,
besides dendritic cells (DCs) and B cells [22]. The migration
of these cells represents a key stage in the natural history of
the MS disease, but what initiates this event remains unclear.

Our understanding of leukocyte migration has been fur-
ther complicated by the reemergence of the notion that leuko-
cytes can transmigrate through the body of the endothelial
cells (ECs) via pore formation or a phagocytic-like process
(transcellular diapedesis) [23] as well as through the EC cell-
cell junction (paracellular diapedesis) [24]. Under normal
conditions antigen-activated lymphocytes are capable of low-
level surveillance throughout the CNS and this limited entry
is regulated not by the presence of a vascular barrier but
largely by the restricted expression of endothelial cytokine-
induced adhesion molecules (CAMs) required for leukocyte
capture from the blood [25].

The EC may in turn become activated in response to leu-
cocyte engagement or to leucocyte-derived cytokines such
as tumor necrosis factor-alpha (TNF-𝛼), interferon-gamma
(IFN𝛾), interleukin (IL)-17, IL-22, and IL-1b, which induce or
upregulate CAMexpression and hence further recruitment of
leucocytes leading to an escalation of the inflammatory cas-
cade. Indeed, in EAE andMS the immunoglobulin superfam-
ily (IgSF), molecules intercellular CAM-1 (ICAM-1/CD54),
vascular CAM-1 (VCAM-1/CD106) and activated leucocyte
CAM (ALCAM/CD166) are all upregulated by vascular
endothelium [26–28]. How these events unfold during the
initiating phase is not entirely clear; but leucocyte recruit-
ment is undoubtedly of fundamental importance and contin-
ues to be a predominant feature during the active life of the
lesion.

Accordingly, the first stage of recruitment involves over-
coming the shear forces imparted by blood flow and entails
the temporary capture of circulating leucocytes through
cell-cell interactions mediated by cell surface molecules. In
most tissues this initial step is performed by L-selectin,
expressed on the majority of leucocytes, and E- and P-
selectin on activated ECs.These selectins bind to glycosylated
ligands, such as P-selectin glycoprotein ligand 1 (PSGL-1), and
mediate the early stage of recruitment characterized by the
formation of transient associations (tethering) resulting in
leucocyte rolling along the vessel wall in the direction of flow.

Migration of autoaggressive T cells across the BBB is
critically involved in the initiation of experimental autoim-
mune encephalomyelitis (EAE). The direct involvement of
chemokines in this process suggested promotion of G-
protein-mediated signaling and adhesion strengthening of
encephalitogenic T cells on BBB endothelium in vivo [29].
Expression of the lymphoid chemokines CCL19/ELC and
CCL21/SLC appears to play an important role during neu-
roinflammation [30]. Regulation of lymphocyte homing
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involves secondary lymphoid tissue which leads to T lympho-
cyte migration into the immunoprivileged central nervous
system during immunosurveillance and chronic inflamma-
tion [29]. Under homeostatic conditions CCL19 is expressed
at the BBB in human and mice and is upregulated during the
course of MS and EAE. CCL19 may mediate the activation of
T cells and antigen presenting cells expressing the receptor
CCR7 [31]. Moreover, human brain EC in vitro expresses
particularly high levels of CXCL10 andCXCL8; theymay con-
tribute to the predominant Th1-type inflammatory response
in MS [32].

4. Inflammatory Response in
Multiple Sclerosis

Four different patterns of pathology with resulting demyeli-
nation have been identified in MS lesions: type I is T cell
mediated where demyelination is induced by macrophages
either directly or by macrophage toxins. While Type II
involves both T cells and antibodies, and it is the most com-
mon pathology observed inMS lesions; in this case, demyeli-
nation is caused by specific antibodies and complement. Type
III is related to distal oligodendropathy, where degenerative
changes occur in distal processes and followed by apoptosis.
Type IV results in primary oligodendrocyte damage followed
by secondary demyelination [33].

5. Role of Innate Immunity in the Pathology of
Multiple Sclerosis

A number of observations have challenged the concept of an
“autoimmune reaction” against myelin and adaptive immune
response to self-antigens as an integral etiological explanation
[35]. These pieces of evidence include the following: (1)
pathological studies of the early events in MS show loss of
both oligodendrocyte and myelin and the absence of T cells
and B cells, suggesting that MS is a process where “other
than cell mediated immunity” might be involved [36–38];
(2) large areas of myelin loss are seen in pyramidal and
sensorial pathways ascribing this damage to the participation
of infiltrating immune cells [39–41]; (3) in some patients with
oligodendrogliopathy type III and in rarer cases of Balo’s
concentric sclerosis, have been found that the demyelinating
lesions show T and B cells infiltrates; and finally, (4) in MS
patients who received autologous bone marrow transplanta-
tion have been found expanding demyelinating lesions with
little or noT cells, suggesting that expansion of these lesions is
driven by an intrinsic pathological processes within the CNS
[42]. An interesting question is why immune response is only
focalized in specific plaques and not over all white matter.

According to the evidence, the innate immune system
plays an important role in both the initiation and the progres-
sion of MS, activating the effector function of T and B cells
similar to that process in which a pathogen is involved [43–
45]. Although toll-like receptor (TLR) ligands are generally
restricted to induce class-switch DNA recombination in T
cell-dependent and T cell-independent antibody responses
to microbial pathogens [46], they have also been ascribed as

causative roles in autoimmune diseases such as EAE andMS.
Specific roles of TLRs have been found in EAE [47, 48] and in
MS brain lesions [49]; they act as several endogenous ligands
capable of inducing TLR signaling, leading to autoimmune
neurological diseases.

TLR is a family of immune system receptors localized
either in the cell surface or in endosomes of several cell types,
in both nonimmune and immune cells, where activation
through TLR is given most notably by macrophages and
other APCs such as DCs [50] and B cells [51]. Also, TLR are
involved in the recognition of pathogen-associatedmolecular
patterns (PAMPs) leading to the transcriptional activation of
genes encoding for proinflammatory cytokines, chemokines
and costimulatory molecules which subsequently trigger
innate immune responses and prime antigen-specific adap-
tive immunity [52, 53]. TLR1, 2, 4, 6, and 10 are expressed on
the cell surface and have been shown to detect and respond
primarily to bacterial surface associated to PAMPs, while
TLR3, 7, 8, and 9 are located in endosomes of immune system
cells and are able to recognize specific nucleic acid (both of
DNA or RNA) based on PAMPs [54].

TLRs also have potent functions outside the immune sys-
tem. Toll and TLR have diverse roles in axonal path finding,
dorsoventral patterning, and cell-fate determination [55]. In
particular, TLR ligands inhibit the differentiation of several
cell types; for example, TLR2 ligands are capable of blocking
differentiation of mesenchymal stems cells into osteogenic,
adipogenic, and chondrogenic cells [56]; besides, TLR2 and
TLR4 differentially regulate hippocampal neurogenesis by
unknown ligand(s) [57]. Although, TLR2 is not directly
involved in the inflammatory process, its main role described
inMS is through the regulation of remyelination. Sloane et al.
2010 demonstrate that TLR2 is expressed in oligodendrocytes
and is upregulated in MS lesions. Additionally, TLR2 has
the same function as the hyaluronan receptor which is
capable of mediating the repressive effects of maturation
and remyelination in oligodendrocyte precursor cells (OPCs)
[58]. Increased levels of hyaluronan are observed in both
EAE lesions and in areas of complete demyelination in
MS, perhaps due to altered hyaluronan synthesis, partial
hyaluronan degradation, or particular stimulation of TLR2
on oligodendrocytes, events necessary to perform an ade-
quate remyelination blockade [59, 60].

On the other hand, TLR9 was identified in B cells
and plasmacytoid dendritic cells (pDCs), and unmethylated
CpGDNA was identified as a TLR9 agonist [61]. Human
TLR9 is only found on pDCs and recognizes viral DNA
within the early endosomes at the initial phase of viral
infection [62]. It has been associated with the participation
of both TLR2 and TLR9 as response to several human viruses
infection, including herpes simplex viruses (types 1 and 2),
cytomegalovirus, hepatitis C, Epstein-Barr, and varicella-
zoster virus [63–65]. Activation of TLR2 is followed by the
production of inflammatory cytokines, including IL-6, IL-
8, and TNF-𝛼. In addition, the induction of IFN-𝛼 by HSV
involves TLR9 [66].

During the pathogenesis of MS, TLR9 is able to recognize
DNA within the early endosomes at the initial phase of viral
infection. Some studies have shown that TLR9 is capable
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of driving autoimmunity under different conditions; for
example, in mice where TLR9 was deleted from the radio-
resistant compartment, such as CNS, mice developed EAE
delayed kinetics and severity [67]. Current data on patients
confirm results obtained in EAE models, suggesting that
TLR9 and MyD88 modulate autoimmune process during the
effector phase of the disease and that endogenous “danger
signals” can modulate disease pathogenesis [68]. Besides, the
activation of APCs via TLR-9 and CD40, events that are
likely to occur during the course of an infection, reverses
tolerance against myelin antigens and breaks resistance to
EAE [67]. Furthermore, regulatory roles in EAE severity have
been proposed for TLR4 and TLR9 through altered IL-6, IL-
17, and IL-23 levels [48, 69].

On the other hand, TLR3 signaling is capable of suppress-
ing relapsing demyelination in EAE. TLR3 is considered of
key importance to antiviral host-defense responses; in EAE
the stimulation of TLR3 with polycytidylic acid suppresses
relapsing demyelination [70]. Moreover, TLR3 triggers neu-
roprotective responses in astrocytes, while in controls it
induces the growth of axons and neuronal progenitor cells,
suggesting additional roles for TLR3-mediated signaling in
the CNS and MS [71]. TLR7 and TLR9 appear to upregu-
late disease severity, since at late stage of EAE, TLR7 and
TLR9 mRNA expression is further increased, also suggesting
that signaling through these receptors is involved in late
active lesions. Moreover, the common TLR adaptor molecule
MyD88 is necessary for induction of EAE [72]. Overall, these
data suggest thatMyD88-dependent signaling throughTLR2,
TLR4, TLR7, and TLR9 mediates MS progression, while
TLR3 activation protects from disease by activation of innate
immunity [68].

In addition, TLR7 has been also recently implicated in
autoantibody-mediated diseases such as MS. TLR7 is capable
of stimulating the maturation and differentiation status of
B lymphocytes into immunoglobulin (Ig) secreting cells.
Recent finding has shown deficient TLR7-induced IgM and
IgG production in MS patients; this might correlate with
worsening of disease or impaired immune responses against
infections with TLR7-recognized RNA viruses [73, 74]. The
modulation of TLR7 could be a potential therapeutic because
this is capable of blocking the humoral profile of the disease
(Figure 1).

Epidemiological data of developed countries emphasizes
the exponential growth on prevalence of autoimmune dis-
eases; this is a plausible consequence of the relative diminu-
tion of hygiene conditions and vaccination, implicating a
lower contact with pathogens and immune challenges during
early life. During neonatal mice stage treated with LPS, it
is possible that a high microbial exposure expands antigen
repertories and enhances tolerance, delaying the onset and
diminishing the severity in EAE. LPS interacts through TLR4
and it seems that in early life it promotes changes in APCs,
as lower surface MHCII, CD83 and higher CD80/CD86
costimulatory molecules which elicit migration of Treg cells
and expression of immunoregulatory cytokines such as IL-
10 under inflammatory conditions of the CNS. Also, splenic

APCs from LPS-exposed animals induce less T cell prolif-
eration and selective differentiation of FoxP3+ phenotype in
response to MOG [75].

6. NOD-Like Receptor and Regulation on
Multiple Sclerosis

In addition to TLRs, in the past decade a new class of pattern-
recognition molecules known as the NOD-like receptors
(nucleotide-binding domain, leucine-rich repeat containing
family) (NLRs) family of molecules was discovered [76].
Similar to TLRs, NLRs also recognize pathogen-derived
molecules and are involved in the first line of defense during
infection [77, 78], they can recognize both pathogen- and
danger-associated molecular patterns being important sen-
sors of cellular stress that results from infection and cellular
instability [79–82], but in contrast toTLR,NLRs sense diverse
signals such as reactive oxygen radicals, ultraviolet B (UVB),
and low intracellular K+ [83] within the host cytosol [84].
NLR proteins NLRP3, NLRP1, and NLRC4 as well as a
recently identified HIN-200 protein absent in melanoma 2
(AIM2) are activated by pathogen- and danger-associated
molecular patterns (PAMPs and DAMPs, resp.) results in the
recruitment of the inflammasome-adaptor protein, ASC (also
known as PYCARD), and procaspase-1 [66].

The inflammasome was characterized in 2002 as a cyto-
plasmic caspase-1 activating, self-oligomerizing signaling
complex greater than 700 kDa [85].Three types of inflamma-
somes have been identified till date depending on the type
of NLR protein involved in its assembly. The NLR expression
occurs in macrophages, monocytes, DCs, neutrophils, and
cerebral endothelial cells, in the same way occurring either
in the membranes of nucleus or cytoplasm, or in the secreted
form in granulocytes, monocytes (very low levels), and B and
T cells. The NLRP1 inflammasome is composed of NLRP1,
ASC, the cysteine proteases caspase-1, and caspase-5 (in
mice); the second kind, NLRP2/3 inflammasomes contain
NLRP2 or NLRP3, CARDINAL, ASC, and caspase-1 [86]
and the third kind of inflammasomes consists of NLRC4
and caspase-1 [87]. NLRP1 and NLRP3 inflammasomes are
expressed in lymphocytes T and B; NLRP1 inflammasome is
also expressed in motor neurons and cortical neurons [88],
and at very high levels in pyramidal neurons and oligoden-
drocytes, but not in microglial cells or astrocytes [87].

DAMPs are host-derived danger signals released during
cell damage or metabolic stress. Factors that trigger inflam-
masome activation include the mammalian cytosolic ds-
RNA, low intracellular K+ [83], heat shock proteins (HSP)
Hsp60, Hsp70, Hsp90, and gp96; exogenous stress-inducing
agents (asbestos, silica, and alum), endogenous instigators of
cellular and metabolic distress (ATP, uric acid, fibronectin
and mitochondrial dysfunction), and obesity-related fac-
tors (fatty acids, lysosomal stress, ceramides, reactive oxy-
gen species (ROS), and hyperglycemia) [83, 85, 86, 89–
92]. These multiprotein complexes mediate the proximity-
induced autoactivation of caspase-1. Active caspase-1 subse-
quently cleaves pro-IL-1𝛽 and pro-IL-18, which is required
for their secretion and inflammatory properties. In addition
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Figure 1: Role of innate immunity in multiple sclerosis. Glial cells, astrocytes, and microglia express a wide variety of TLRs. Stimulation
with TLR ligands, dsRNA (TLR3), LPS (TLR4), peptidoglycans (PGN; TLR2 with TLR1/6), and viral CpG DNA (TLR9), promotes an array
of immune functions in glial cells, including the secretion of proinflammatory cytokines, chemokines, type I interferons (IFN-𝛼/𝛽), and an
increase in MHC classes I and II expression. TLRs activate macrophages, microglia, and dendritic cells (DCs) resulting in the production
of cytokines of the innate immune system such as IL-6, IL-1𝛽, and TNF𝛼. These cytokines participate in blood brain barrier disruption and
lymphocyte attraction to sites of inflammation, promote inflammation, and modulate adaptive immunity. For instance, IL-6 promotes Th17
and B cell differentiation. Th17 andTh1 cells and inflammation will contribute to tissue damage. Finally, MG, microglia, and DC also secrete
IFN𝛽 which, among other immunomodulatory functions, prevents leukocyte adhesion and extravasation across the blood brain barrier.
Modified by Carpentier et al. [34].

to tightly controlling the activation of IL-1𝛽 and IL-18,
inflammasome signaling can also influence other important
biological processes including autophagy and cell death [93].

IL-1𝛽 and IL-18 are produced rapidly under infection,
trauma, and stress or as consequence of virus reactivation
in the CNS. Both these cytokines share similar structure,
activationmechanism, organization of receptor complex, sig-
nal transduction pathways, and proinflammatory effects [94]
inducing changes in the BBB that bring as a consequence the
BBB permeabilization influencing the transport of substances
and infiltrating immune cells into the brain from systemic
circulation adding onto the neurotoxic effect by a delayed
secretion of IL-1 cytokines [86]. The IL-1𝛽 and IL-18 capture
and recognition by the specific receptors IL-1R and IL-18R
respectively, induce a signaling cascade via expression of

nuclear factor kappa B (NF-𝜅B) and mitogen-activated pro-
tein kinase (MAPK), multiple genes encoding inflammatory
molecules, namely, CXC-chemokine ligand 8, CX3CL1, IL-6,
TNF, endothelial cell selecting (E-selecting), get transcribed
[95]. And in hippocampal neurons IL-1𝛽 as endogenous
progeny activates the p38 MAPK signaling pathway and the
transcription factor cAMP response element binding protein
(CREB) and only NF-𝜅B pathway in hippocampal astrocytes
[96], also IL-1𝛽 is capable of activating resident immune cells
and endogenous glial cells [97]. Otherwise IL-18 induces up-
regulation of adhesionmolecules and stimulates natural killer
cell activity [98].

Studies about the inflammasome activation in MS are
scarce, but clinical studies have identified an important
role for inflammasome-derived cytokines in MS disease
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downstream through MyD88 (myeloid differentiation primary response 88), and phosphorylated I𝜅B which permits translocation of NF-𝜅B
and the transcription of IL-6, TNF, IL-1, IL-12, E-selectin, MCP-1, and IL-8. TLR through IRF7 (Interferon regulatory factor 7) gives the signal
to the transcription of IFN 𝛼/𝛽. Another important signal is given by NOD receptors (nucleotide-binding oligomerization domain) activated
also by potassium efflux-inducing agents such as ATP and TLR stimulation; PAMS, toxins, danger or stress triggers induce the inflammasome
viaNLRP that form a complexwithASC (apoptosis-associated speck-like protein containing a CARD) and caspase-1, activating IL-1B, amajor
factor inducing inflammation, autophagy and cell death, particularly necrosis. All these proinflammatory soluble factors activate microglia
and endothelial cells, upregulating expression of adhesion molecules as E-selectin, facilitating the migration of T cells into the SNC. Matrix
metalloproteinases (MMP) degrades BBB (blood brain barrier) enhancing further migration of autoreactive T cells and macrophages via
chemokines (CX3CL-1). The Th1 response evocated via IL-12 and IFN-𝛾 further activates macrophages that in turn do so to T cells CD8+.
Th2 response via IL-6 mainly stimulates maturation of B cells and production of autoantibodies. Cytotoxic damage to the oligodendrocyte
mediated myelin loss and exposure of the axon to reactive oxygen species, slowing or blocking action potentials and the production of
neurological spectrum. There are intents to remyelinate these lesions via OPCs (oligodendrocyte precursor cells), but neuronal factors such
as LINGO-1 or TLR2 inhibit their migration.

pathogenesis. For instance, IL-1𝛽 and IL-1R antagonist gene
polymorphisms were shown to be associated withMS disease
severity [99, 100], with main predisposition to develop MS
in patients with high ratio of IL-1𝛽 relative to the natu-
rally occurring IL-1R antagonist and elevated expression of
caspase-1, that also it has been observed in MS lesions [101];
besides, caspase-1 and IL-1R are required for the development
of EAE [102, 103].

One of the most effective treatments in relapsing-remit-
ting MS to date is IFN-𝛽 administration that has been used
for more than 15 years as a first-line treatment for MS and its
efficacy was demonstrated in the setting of EAE [104]. IL-18

is linked to raised IFN-𝛾 in MS patients induced by activated
CD4(+) T cells via CD40-CD40 ligand interactions [105]. A
recent report has suggested that IFN-𝛽 attenuates the course
and severity of MS by regulating inflammasome activation
and subsequent IL-1 production [106]; they found that type
1 interferon potently repressed the activity of the NLRP1
and NLRP3 inflammasomes, thereby suppressing caspase-
1 dependent IL-1𝛽 secretion in mice and MS patients; the
inhibitory effect of IFN-𝛽 ismediated by innate immune cells,
such as macrophages and DCs, which inhibit T helper 17
(TH17) responses through interleukin-27 (IL-27) [107, 108]
(Figure 2).
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7. Heat Shock Proteins and Multiple Sclerosis

TheHSPs are a group of phylogenetically conserved proteins,
which their extracellular expression exerts immunomodula-
tory functions upon a stress stimulus (i.e., nutrient depriva-
tion, irradiation, hypoxia, heavy metals, oxidative and toxic
stress, infections, and exposure to inflammatory cytokines).
They are named according to molecular weight, with six
families identify, HSP100, HSP90, HSP70, HSP60, HSP40,
and the small HSP. The relevance of these molecules relays
on being the most abundant soluble intracellular molecules
and upon their release; besides, it is given a strong and
unequivocal signal of cell death, particularly, necrosis, acting
like a danger signal to prevent further cell death by degrading
unstable and misfolded proteins. As a recent focus of inter-
est, HSPs enhance immune responses through chaperone
activity, arising HSP-antigen complexes, allowing activation
of MHC class I stimulated by cross-priming cytotoxic T
lymphocytes. This process elicits the maturation of APC and
promotes the presentation of unrelated antigens [109]. In the
innate immune system, HSPs act as immune-stimulators, like
PAMPs, which are recognized by TLRs; this suggested that
HSPs can develop autoimmunity response after cell damage
[110].

In the brain tissue fromMS patients, it has been detected
the presence of HSP70-myelin Basic Protein (HSP70-BMP)
[111, 112], and HSP70-PLP complexes, both putative antigens
with highly encephalitogenicity potential demonstrated in
EAE models [113]. Alternative mechanism of innate immune
response triggering by HSPs is stimulating the maturation
of professional APCs through interaction with the TLR-2,
TLR-4, and CD40; these complexes stimulate specific CD4+
T cell responses following the activation of immune system
via MHC class II molecules [72].

An other HSP that could play a crucial role in triggering
the immune response is Hsp70, which acts as a chemoattrac-
tant that elicits the cytolytic effects of NK cell by mediating
the interaction with CD94. Released Hsp70 leads to the
activation of the NF-𝜅B transcription factor on monocytes,
macrophages, and dendritic cells; the activation leads to
induction of: (1) proinflammatory cytokine production (IL-
12, IL-1𝛽, IL-6, TNF, and GM-CSF), (2) chemokine secretion
(MCP-1, RANTES, and MIP-1𝛼), (3) nitric oxide production
(NO) by macrophages (4) enhances the expression of CD83,
CD86, and CD40, as well as MHC class II on DC and the
migration of these cells to draining lymph nodes, priming
adaptive immune responses [114]. All those findings give
us evidence that HSPs could drive the switch between the
“initial event innate immune response and the perpetuation”
adaptive immune response in MS.

8. NK Cells in Multiple Sclerosis

Although the evidence suggested that NK cells might play
a role in the regulation of MS and EAE, the importance
of NK cells to immune regulation remains unclear. Some
studies suggest that NK cells enhance the MS due to cytolytic
activity, cytokine production, interaction with APCs and T
and B cells, while another study indicates that blockade of

NK cell homing to the CNS results in disease exacerbation
[115, 116]. In EAE, it was found that depletion of NK cells
in C57BL/6 mice treatment with a monoclonal antibody
(mAb) against NK 1.1 resulted in an increased severity and
relapsing pattern of disease [117]. The disease enhancement
was associated with increase of T cell proliferation and
production of Th1 cytokines in response to the MOG35-55
peptide which induces a mild form of monophasic EAE [118].

NK cell homing to the CNS via germ-line deletion of
the chemokine fractalkine receptor CX3CR1 resulted in fatal
CNS inflammation and demyelination due to inhibition of
inflammatoryTh17 cells [119]; besides, NK cells exerted direct
cytotoxic effect on newly stimulated myelin antigen-specific,
encephalitogenic T cells, as well as OVA-specific T cells and
ConcanavalinA (ConA) stimulatedT cells. HoweverNK cells
are capable of regulating EAE through killing of syngeneic T
cells which include myelin antigen-specific, encephalitogenic
T cells and thus ameliorate symptoms [120]. NK cells are an
important regulator for EAE in both induction and effector
phases. In contrast, it has suggested that NK cells exacerbate
MS/EAE. It has been associated with the increase of NK
cell activity with higher risk of developing active lesions in
relapsing-remitting MS patients. During remission, NK cells
predominantly produce IL-5; this is indicative that the NK
cells share some properties with Th2 cells and suggested that
they are capable of competing with pathogenic autoimmune
Th1 cells. Furthermore, in the same cohort of patient higher
level of CD95 molecule on the cell surface was found; the
authors suggest that it is possible that soluble CD95 might
play some role in protection against the CD95-mediated
death of NK cells in MS. Interestingly, during relapse of
MS, the NK cell expression of IL-5 mRNA and CD95 was
significantly reduced. According to this data is interesting to
speculate that the functional change of NK cells may play a
key role in triggering clinical exacerbation of MS and it is not
associated with autoimmune T response [121].

On the other hand, genome wide association studies
(GWAS) have identified a number of potential genes associ-
ated with MS including receptors for IL-7 (IL-7RA) and IL-
2 (IL-2RA); besides, IL-2 and IL-7 pathways have previously
been demonstrated to regulate autoimmunity and EAE in
animal models [122]. IL2 has been associated with regula-
tion of T-cell proliferation, survival, and differentiation of
effectors (Th1/Th2) besides; the function of IL-2 consists of
maintaining peripheral T-cell tolerance, and the impairment
of regulatory T cells is thought to be the underlying cause of
autoimmunity in the absence of IL-2 [123]. IL-2 receptors and
have potential suppressive functions, such as natural killer
T cells, CD8+ T cells, and CD4+CD25+ regulatory T cells,
which might also be altered by IL-2 or anti-IL-2 mAb based
therapies.

IL-7/IL-7R signaling is crucial for proliferation and sur-
vival of T lymphocytes in humans and in animal models
[124]; in humans, IL-7Ra deficiency results in the absence
of T cells, but B cell counts remain normal, while in mice
the lack of IL-7Ra is essentially devoid of T and B cells.
Some studies show that high levels of serum IL-7 predict
clinical responsiveness in MS patients undergoing IFN-b
therapy. When high IL-7 levels are paired with low IL-17F
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levels in serum, the prediction is stronger. IL-7 alone or in
combination with IL-12 can promote human and mouse T
helper 1 (Th1) cell differentiation. These results are consistent
with the notion that IL-7 drives aTh1 form of MS, which was
previously shown to respond better to IFN-b therapy than
the TH17 form of MS [125]. In addition, Axtell et al. show
that IL-7Ra–blocking antibodies given to EAEmice before or
after onset of paralysis reduced clinical signs of EAE without
affecting regulatory T (Treg), B, or NK cells [126]. Therefore,
blockade of IL-7 or IL-7Ra may be a potential therapeutic
strategy for treating MS.

9. Neutrophils in Multiple Sclerosis

Neutrophils are essential to contain and clear infectious
agents, but due to their indiscriminate histotoxic potential
they are tightly regulated by a mechanism that involves
“priming” before full activation [127]. Neutrophils can be
primed by a wide range of molecules including proinflam-
matory cytokines such as TNF𝛼, platelet activation factor
(PAF), IFN-𝛾, granulocyte-macrophages colony stimulation
factor (GM-CSF), IL-6, or IL-8 that can modify neutrophil
life span [128, 129]. Patients with relapsing-remittingmultiple
sclerosis (RRMS) have an increased number of neutrophils
that regulated phenotypic changes such as reduction of
apoptosis and higher expression of TLR2, FPR1, CXCR1, and
CD43 [130]. Enhanced neutrophil activation during infection
in RRMS patients exacerbates and prolongs inflammation
that might explain an association between infection and
relapses of MS.

In patients with RRMS in relapse, was found a correlation
between high neutrophil count and up-regulation of GCS
and CXCR1 as well as an inhibition of apoptosis and induc-
tion of inflammatory response. Also, these patients present
an increase of IL-8; this cytokine prolongs the neutrophil
survival [111]. Neutrophils RRMS patients are not only more
abundant but also express higher levels of TLR2, CD43, FPR1,
and CXCR1, which support the hypothesis that neutrophils
in RRMS are primed by the chronic inflammatory milieu, as
these receptors are upregulated by priming agents [131, 132].

A higher release of granule proteins such as elastase and
cathepsin G by primed neutrophils could contribute to MS
pathogenesis not only by damaging tissue [133] but also by
enhancing T cell activation [134]. Furthermore, neutrophilic
granules also contain the matrix metalloproteinase 9 (MMP-
9), which participates in BBB impairment and is increased in
MS patients during relapse [135].

Not only the number of neutrophils is increased in
patients with MS, but also there is an oxidative burst of neu-
trophils from RRMS patients after in vitro stimulation with
Formyl-Methionyl-Leucyl-Phenylalanine (fMLP) [136]. The
enhanced oxidative burst could contribute to demyelination
and tissue injury in MS, although a paradoxical protective
role for oxygen species has been suggested [130, 137].

10. Mast Cells

Mast cells (MCs) are components of the innate immune
system arising from multipotent hematopoietic progenitors

cells and are phenotypically identified for high expression on
their surface of the tyrosine kinase receptor c-kit (CD117)
and the high-affinity Fc receptor for IgE (Fc𝜀RI) that is the
main characterized mode of MC activation through IgE-
mediated immune reaction [138].The cross-linking of Fc𝜀RI-
bound IgE with a multivalent antigen induces aggregation
of two or more Fc𝜀RI molecules and activates downstream
intracellular-signaling events leading to degranulation and
synthesis of new mediators [139].

MC-granules contain biogenic amines (histamine and,
only in rodents, serotonin), serglycin proteoglycans (hep-
arin and chondroitin sulphate), serine proteases (tryptases,
chymases, and carboxypeptidases), cytokines (such as TNF-
𝛼), and growth factors (such as vascular endothelial growth
factor A (VEGFA)) [140]. Fc𝜀RI-mediated activation of MCs
induces also the ex novo synthesis of lipid mediators such
as prostaglandins (PGD2, PGE2) and leukotrienes (LTB4,
LTC4), cytokines (e.g., TGF-𝛽, IL-4, and IL-10), chemokines
(such as CC-chemokine-ligand 2), and growth factors (e.g.,
nerve growth factor (NGF)) [141, 142].

MCs in the CNS can be found in perivascular locations
more specifically in the leptomeninges forming part of the
BBB and in mice. MCs have been identified in perivascular
areas of leptomeninges, hippocampus, habenula, and thala-
mus [143, 144] which has led to speculation of a possible
contribution of these cells in regulating the trafficking of
immune cells through the BBB [145, 146].

Some pieces of evidence that support the role of the MCs
in the pathology of MS are as follows. (1) MCs have been
detected within demyelinated lesions, often in perivascular
areas associated with immune cell infiltrates, but also in
the CNS parenchyma and it is more frequently observed
in chronic-active plaques than in acute lesions [146–148].
(2) Myelin proteins such as MBP can activate rat MCs
through interaction with scavenger receptors [149, 150]. (3)
The concentration of MCs tryptase was found significantly
higher also in the cerebrospinal fluid of MS subjects [151].
Recently MC has also been implicated in the development of
MS and EAE [152]. However, today the exact role of MCs in
CNS autoimmune disease is highly debated.

11. The Mononuclear Phagocyte System

The mononuclear phagocyte system (MPS) comprises the
cell hematopoietic lineage derived from progenitor cells in
the bone marrow. These bone marrow myeloid progenitor
cells differentiate to form blood circulating monocytes and
then upon activation enter tissues to become resident tissue
macrophages. There are three main features of macrophages;
(1) evidence of endocytic activity and stellate morphology:
(2) expression of certain enzymes detected by histochemical
staining (esterases and lysosomal hydrolases), and (3) the
nonspecific uptake of particles (e.g., latex, colloidal carbon)
through endocytic receptors or complement-coated particles
[153].

Microglia is the principal effector cell of the innate
immune system that resides on CNS; it has a central role
of initiating the acute inflammatory response and clearance
of damage tissue; also, during the phase of scarring, the
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irreversible injury is associated with residual neurological
deficits. During inflammatory disorders, such as MS, mono-
cytes are repeatedly recruited from the periphery, thereby
reinforcing the local inflammatory reaction within the CNS.
InMSmacrophages act asAPCs perpetuating epitope spread-
ing upon T cell traffic on brain through BBB [153]. Animal
models evidence that inflammatory lesions are composed
principally of T cells with neural-antigens specific TCR;
however, the activation of APC pathways is required for the
maintenance of the continuity of this process, and microglia
has this capacity, enhancing homing signals.

In normal white matter there is low basal expression of
MHC class II that is upregulated after damage or immune
reactions originated in systemic compartments or local envi-
ronment. Low levels of circulating endotoxins or PAMPs
could trigger the expression of MHC class II on the perivas-
cular macrophages, this fact prompt us to hypothesized why
viral infections could be related with relapsed patients. The
initiation of a competent APC status for microglia set a cas-
cade of infiltrating adaptive immune cells, specifically neural-
specific T cells, propagation and resolution of inflammatory
lesions [154].

12. Th17 Immune Response in
Multiple Sclerosis

Th17 cells are characterized by the production of a distinct
profile of effector cytokines, including IL-17A, IL-17F, IL-
6, IL-9, IL-21, IL-22, IL-23, IL-26, and TNF𝛼 [155, 156]. In
addition to CD4+ IL-17+ Th17 cells, a new putative subtype
of IL-17 producing CD4+ T cells with CD4+ IL-17+ IFN𝛾+
(Th17-1 cells) also, phenotype, has been identified [157].While
Th17 cells expressCCR6 andCCR4,Th17-1 cells expressCCR6
and CXCR3 [158, 159]. The central role of Th17-produced
cytokines in the brain is the induction of inflammation; there-
fore, Th17-mediated inflammation is characterized by neu-
trophil recruitment into the CNS and myelin loss [160, 161].

In MS lesions, the presence of high levels of IL-17 induce
a strong inflammatory response, that could play an important
role in the pathogenesis and exacerbations of the disease
[162].The IL-17-producingT cells (CD4+orCD8+) have been
detected in both acute and chronicMS [163]. In the preclinical
stages of the disease, the autoreactive Th17 cells were found
in the peripheral blood mononuclear cells (PBMCs) but
not in the CNS. Moreover, the amount of Th17 cells was
significantly higher in the cerebrospinal fluid (CSF) of RRMS
patients during relapse, in comparison with same patients
during remission or in patients with other noninflammatory
neurological diseases [164]. The amount of production of IL-
17 correlates with the number of active plaques as seen on
magnetic resonance imaging studies (MRI) and the severity
of MS [165, 166].

Infiltrating T cells and glial cells inside of CNS induces
production of IL-17 [163] exerting pathogenic function by
enhancing the microglia activation; therefore, exposure to
microglial cells leads to increased generation of IL-6, MIP-2,
nitric oxide, neurotrophic factors, and adhesion molecules.
Furthermore, addition of IL-1b and IL-23 enhances the
production of IL-17 in microglia [167] and release of matrix

metalloproteinase-3 (MMP-3) that disrupts the BBB and
enhances the local recruitment of neutrophils to the site of the
inflammation. The increase of protease activity allows hom-
ing a large number ofmonocytes andmacrophages leading to
chronic myelin and axonal damage [168, 169].

13. Treatment by Immune Modulators

Over the last two decades a number of drugs, including
immunomodulatory and immunosuppressive agents such as
interferon-𝛽, glatiramer acetate, and the monoclonal anti-
bodies such as natalizumab and daclizumab have shown ben-
eficial effects in patients with MS. Although these therapies
are able to modulate the immune adaptive response, they
do not inhibit innate immune cells, such as microglial cells,
macrophages, and dendritic cells, that participated in the
progression of MS. IFN-𝛽 is one of several immunomodula-
tory drugs currently available to treat patients with relapsing-
remitting MS [170, 171], displaying significant beneficial
effects on disability progression and relapse rate [172]. The
mechanism(s) of action of IFN-𝛽 is clearly complex with
demonstrated effects on antigen presentation, costimula-
tory molecule expression, T-cell proliferation, and leukocyte
migration [173].

In conclusion, the autoimmunity mediated by autoreac-
tive T cells activates the innate immune system (epithelial
barriers, receptors to pathogen associated patterns like toll-
like receptors) as first line of defense of the host, eliciting the
immune tolerance. It has been demonstrateet that in so many
ways the innate immune system (TLR7, 3, 9, neutrophils,
macrophages) offerd the interface between adaptive response,
not only regulating the cellular damage, but also allowing that
autoreactive CD4+ T cells reacts against the oligodendrocyte.
A continuum effort should be given to the inhibition of the
initial triggering of the innate immune system.
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