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Small and genetically highly structured
populations in a long-legged bee, Rediviva
longimanus, as inferred by pooled RAD-seq
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Abstract: Adaptation to local host plants may impact a pollinator’s population genetic structure by reducing gene
flow and driving population genetic differentiation, representing an early stage of ecological speciation. South
African Rediviva longimanus bees exhibit elongated forelegs, a bizarre adaptation for collecting oil from floral spurs
of their Diascia hosts. Furthermore, R. longimanus foreleg length (FLL) differs significantly among populations, which
has been hypothesised to result from selection imposed by inter-population variation in Diascia floral spur length.
Here, we used a pooled restriction site-associated DNA sequencing (pooled RAD-seq) approach to investigate the
population genetic structure of R. longimanus and to test if phenotypic differences in FLL translate into increased
genetic differentiation (i) between R. longimanus populations and (ii) between phenotypes across populations. We
also inferred the effects of demographic processes on population genetic structure and tested for genetic markers
underpinning local adaptation.

Results: Populations showed marked genetic differentiation (average FST = 0.165), though differentiation was not
statistically associated with differences between populations in FLL. All populations exhibited very low genetic
diversity and were inferred to have gone through recent bottleneck events, suggesting extremely low effective
population sizes. Genetic differentiation between samples pooled by leg length (short versus long) rather than by
population of origin was even higher (FST = 0.260) than between populations, suggesting reduced interbreeding
between long and short-legged individuals. Signatures of selection were detected in 1119 (3.8%) of a total of
29,721 SNP markers,

Conclusions: Populations of R. longimanus appear to be small, bottlenecked and isolated. Though we could not
detect the effect of local adaptation (FLL in response to floral spurs of host plants) on population genetic
differentiation, short and long legged bees appeared to be partially differentiated, suggesting incipient ecological
speciation. To test this hypothesis, greater resolution through the use of individual-based whole-genome analyses is
now needed to quantify the degree of reproductive isolation between long and short legged bees between and
even within populations.
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Background
Mating usually takes place among a subset of individuals
of a species, typically within a portion of its distributional
range, and, assuming limited dispersal, populations of that
species inevitably become genetically structured [1]. The
population genetic structure of populations is then deter-
mined in part by the strength of two parameters: effective
population size (Ne) and the amount of gene flow among
populations [1]. Low Ne is a typical feature of rare or en-
dangered species [2] or of populations that have experi-
enced a recent bottleneck, such as founder populations
[1]. Limited gene flow may be caused by fragmentation of
the landscape due to human interferences (e.g. agriculture,
transport), natural barriers (e.g. waterways, mountains) or
abiotic factors (e.g. climate). The environment might also
exert non-negligible selection pressures upon populations,
whereby adaption to ecologically different environments
might reduce intraspecific gene flow and lead to repro-
ductive barriers (e.g. selection against hybrids or immi-
grants, positive assortative mating) between populations
or individuals varying in adaptive traits [3–6], which may
represent incipient stages of ecological speciation [7].
Host plant adaptation seems to be a common feature of

many insect-plant interaction systems [5, 8–13]. Adapta-
tion to different host plant morphologies might hinder
genetic exchange between insect populations and generate
strong barriers to gene flow [14]. Such populations may
then accumulate allele frequency differences, i.e. become
genetically differentiated, often assessed via FST, which re-
lates the amount of genetic variation among populations
to the total genetic variation over all populations [15].
Initially, increased genetic differentiation is expected at
loci underlying local adaptation whereas ecologically neu-
tral loci are not subject to divergent selection and should
therefore show less differentiation. This generates a het-
erogeneous pattern of genomic divergence characterised
by ‘islands of genomic divergence’ containing FST outlier
loci [16, 17]. The more adaptively divergent populations
become, the greater the reduction in gene flow and the
higher the genome-wide differentiation, yielding a pattern
of isolation by adaptation (IBA, [18]). Host plant mediated
genetic differentiation and incipient ecological speciation
have been suggested for several insects [4, 5, 9, 19, 20].
South African Rediviva bees are striking examples of

the bizarre morphology that host plant adaptation may
generate. Females of many Rediviva species have evolved
extremely elongated forelegs, sometimes longer than
their entire body length [21, 22]. Forelegs are used for
oil collection from oil-producing plants, whereby the bee
inserts its forelegs into the host floral spurs and rubs
them against the spur walls to absorb oil with specialised
hairs on the tarsi [23, 24]. The extracted oil is then
transported back to the nest and used to feed larvae and
probably also for brood cell lining [25, 26].

Foreleg length (FLL) of Rediviva females is an evolu-
tionary highly labile trait which likely plays a role in
Rediviva diversification [27]. Moreover, FLL of Rediviva
varies not only between species but also between popu-
lations of the same species [21, 24, 28, 29], in which
intraspecific variation in FLL has been shown to correl-
ate with floral spur length of the main host plant Diascia
[28, 29]. Since most Rediviva use a range of Diascia [21,
22] or other plant taxa (other Scrophulariaceae, Orchi-
daeceae, Iridaceae, Stilbaceae) as sources of oil [24, 26,
30–32], FLL might evolve in response to the spur length
of the local community rather than to an individual host
plant species, ([33], Hollens-Kuhr et al., unpublished ob-
servations), i.e. diffuse coevolution. A close match be-
tween Rediviva FLL and host plant spur lengths is,
however, still necessary for successful oil extraction as the
main host, Diascia, only produces oil in the distal end of
the spurs (but see [34]) and thus only bees with suffi-
ciently long forelegs are able to gather oil [24, 34]. Hence,
FLL might experience strong selection to match the main
host plant’s spur length.
Other factors may impact the genetic structure of Redi-

viva spp. populations beyond adaptation to host flower
spur length. The majority of Rediviva species occur in the
winter-rainfall area of South Africa [21, 22, 35], termed
the Succulent Karoo biodiversity hotspot [36], which is
characterised by ≥50% of the annual precipitation falling
during winter [37]. Predominantly cold, rainy, and cloudy
conditions during the main flowering season force
winter-active bees, such as most Rediviva spp., to concen-
trate their foraging and brood cell provisioning activities
to the short interludes of favourable weather. Hence, bees
in this area likely have reduced daily activity and limited
dispersal [36], which might reduce gene flow and increase
genetic differentiation among populations. Furthermore,
as Rediviva bees are thought to have special nesting re-
quirements [38], regions of unsuitable habitat might
further isolate Rediviva populations and reduce gene flow,
as hypothesised for other ground-nesting bees in this area
[39]. For example, Rediviva intermixta prefers loamy
dolerite soil [25] whereas Rediviva peringueyi is unable to
nest in unconsolidated, sandy soil [38]. In addition to the
potential reduction in gene flow, some Rediviva bee spe-
cies are probably characterised by a relatively low Ne since
they occur in small and scattered populations (Kuhlmann,
Hollens-Kuhr, unpublished observations).
Here, we used a restriction site-associated DNA se-

quencing (RAD-seq) approach to investigate the popu-
lation genetic structure and demography of Rediviva
longimanus. Specifically, in a population-based pooled
RAD-seq dataset, we tested whether phenotypic differ-
entiation in FLL translates into increased genetic differ-
entiation between populations (isolation by adaptation:
IBA) over the purely neutral evolutionary process of
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genetic drift (isolation by distance: IBD). Rediviva longi-
manus is among the Rediviva species (FLL = 6–23 mm)
with the most extreme FLL (x̄=21 mm) and populations
show noticeable differences in FLL, even over a small
geographic scale [21], rendering it a particularly suit-
able study system with which to test for reproductive
isolation related to local adaptation. We also measured
differentiation between long-legged and short-legged
bees within and between populations in a second
pooled RAD-seq dataset, representing another test of
incipient ecological speciation. We finally used an em-
pirical FST-outlier approach as well as a PCA-based
outlier detection test to identify loci underpinning local
adaptation.

Methods
Study species and sampling sites
Rediviva longimanus is endemic to the Succulent Karoo
in Western South Africa. Its distribution encompasses
the Cederberg Mountains in the west, the Roggeveld
Mountains in the east and the Nieuwoudtville area in
the north [21]. Sampling of female bees was conducted

at seven sites located near the towns of Nieuwoudtville,
Calvinia and Clanwilliam (Fig. 1, Table 1), where R. longi-
manus, though rare, is abundant enough to be sampled
and where we expected to find differences in FLL even
across a small geographic scale (Hollens-Kuhr et al.,
unpublished observations).

DNA extraction and RAD-seq
DNA was extracted from the thorax, legs or head of fe-
males using a DTAB protocol (modified from [40]), which
consists of a digestion step with proteinase K in DTAB
buffer, followed by extraction with chloroform:isoamyl al-
cohol 24:1. DNA quality and quantity were assessed using
an Epoch spectrophotometer (BioTek, Winooski, USA),
by agarose gel electrophoresis and with a Qubit 3.0
fluorometer (Thermo Fisher Scientific, Waltham, USA).
Only non-degraded and intact DNA samples were further
processed. We first DNA barcoded each individual bee by
sequencing the mitochondrial cytochrome oxidase I ‘ani-
mal barcode’ region [41] and were able to confirm species
identity, i.e. Rediviva longimanus, for each sample
included.

Fig. 1 Sampling locations of R. longimanus populations in South Africa. Population labels with an asterisk correspond to the four population pools
(AP, LC, LI, LF) used for population genetic analysis in this study. For the two leg pools, we included individuals from LC, LI and LF as well as from
three other populations (LA, LB, LG) to obtain two pools comprising either individuals with the longest or the shortest foreleg length (FLL),
irrespective of population of origin. Sample sizes and mean relative FLL are given in brackets
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We then pooled individual DNA extracts according to
two pooling schemes for restriction site-associated DNA
sequencing (RAD-seq). In order to infer the population
genetic structure and demography of R. longimanus
populations, we pooled individuals into four population
pools corresponding to four of seven sampling locations
(Fig. 1, Table 1): AP (N = 11), LC (N = 24), LF (N = 22), LI
(N = 28). These sites encompassed the range of FLL in R.
longimanus and differed significantly in mean relative FLL
(except LI versus LF, see Additional files 1 and 2), calculated
as in [27], i.e. foreleg length divided by head width. We de-
cided to use relative rather than absolute FLL to account
for variation in FLL that might be due to variation in overall
body size. We note, however, that head width, a proxy for
body size [42], varied little between individuals and results
of our study (e.g. multiple matrix regression, see below) did
not change qualitatively when using absolute rather than
relative FLL (data not shown).
In the second pooling scheme, we used samples from

six of seven sites to generate two pools according to
FLL, to which we refer as leg pools (Table 1, Fig. 1, see
Additional file 3). One pool consisted of the twenty R.
longimanus individuals with the overall longest relative
FLL and the other pool consisted of twenty individuals
showing the shortest relative FLL. Mean relative FLL of
the long leg pool (x̄ = 7.1 ± 0.16 SD) was significantly
different (LM, two-tailed test, t = − 14.2, P < 0.01) from
the short leg pool (x̄=6.4 ± 0.13 SD).
In the leg pools, we pooled bees showing the most

extreme foreleg lengths, i.e. shortest and longest, independ-
ent of their population of origin, because we were interested
in testing for genetic differentiation with respect to FLL
across populations, which might be indicative of the initial
stage of ecological speciation. Pooling individuals from dif-
ferent populations but with the same morphology, as in our
two leg pools, has been recognised as a valid and highly use-
ful approach, especially for the identification of candidate
genes for host adaptation [4, 5]. Although each of our leg
pools comprised individuals from five of seven populations
(Additional file 2), we lacked sufficient long or short legged

bees from some populations to allow a balanced sampling
design. A caveat of our approach, then, is that a component
of the genetic differentiation we detected among the leg
pools dataset might be due to population differentiation.
For each pool, 1.5 μg of genomic DNA, normalised to

a final DNA concentration of 60 ng/μl, was sent to Flor-
agenex, Inc. (Eugene, USA) for RAD-seq. RAD-seq is an
increasingly used [43–46] Next Generation Sequencing
approach that yields a reduced representation of the
whole genome. By using restriction enzymes that cut
DNA at restriction enzyme-specific sites, which occur
randomly over the genome, one obtains DNA fragments
that are sheared to generate sizes appropriate for se-
quencing [47]. Subsequent sequencing of homologues
fragments in several individuals or pools is able to reveal
thousands of single nucleotide polymorphisms (SNPs),
which can be analysed in a population genomic frame-
work [47]. RAD-seq was carried out according to the
original RAD-seq protocol [47, 48]. DNA was digested
using the restriction enzyme PstI, randomly sheared and
adapters with unique multiplex identifier (MID) ‘bar-
codes’ (10 bp) for each pool sample were attached to the
DNA fragments prior to sequencing. Pooled libraries
were run on an Illumina HiSeq2500 platform (Illumina,
San Diego, USA) to generate 125 bp single-end reads.

Data processing and SNP calling
Following a quality control in FASTQC v. 0.11.5 [49], se-
quence reads were demultiplexed, filtered for quality and
trimmed of 10 bp MID sequences using STACKS v. 1.42
[50] under default settings. Since there is no reference
genome available for R. longimanus or a close relative, we
identified RAD loci de novo using denovo_map.pl in
STACKS (m= 5, M = 2, n = 0). Moreover, we remove
highly repetitive stacks, loci with a log-likelihood below −
20 and confounding loci, i.e. multiple genomic loci match-
ing a single catalogue locus.
Since STACKS was not specifically designed for the use

of data from pooled samples and its SNP calling algorithm
is therefore likely to miss low frequency variants in the

Table 1 Sampling locations of Rediviva longimanus populations

Code Location Latitude Longitude N x̄ abs. FLL SD x̄ rel. FLL SD

AP* Biedouw Valley 32° 14′ 76.7” 19°18′ 47.0” 11 20.62 0.86 7.36 0.20

LC* Keiskie-Mountain 31° 45′ 45.6” 19° 50′ 21.4” 24 18.02 0.52 6.56 0.20

LF* Farm Papkuilsfontain 31° 33′ 32.0’ 19° 10′ 46.5” 22 18.95 0.43 6.87 0.25

LI* Farm Avontuur 31° 16′ 14.3” 19° 02′ 53.9” 28 18.82 0.63 6.80 0.22

LA Flower Reserve 31° 21′ 55.9” 19° 08′ 34.9” 29 18.45 0.52 6.73 0.18

LB Hantam Botanical Garden 31° 24′ 23.7” 19° 09′ 03.8” 23 18.81 0.50 6.81 0.18

LG Nieuwoudtville Waterfall 31° 19′ 28.1’ 19° 07′ 50.8” 33 18.55 0.61 6.78 0.19

Population labels indicated with an asterisk correspond to the population pools used for analyses of population genetic structure and FLL outlier identification.
Samples from these and additional populations were used to generate the leg pools to test for differentiation with respect to leg morphology as well as to
identify candidate loci for leg length. For each sampled population, the geographic coordinates (latitude and longitude), sample size (N of females) and the mean
absolute (x̄ abs. FLL) and relative (x̄ rel. FLL, see text for definition of relative) FLL with their corresponding standard deviations (SD) are given
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pool, we used POPOOLATION2 [51] for SNP calling. We
mapped all our RAD reads against the reference catalogue
created in STACKS using the bwa mem algorithm of
BWA v. 0.7.12 [52]. Mapping results were filtered for a
minimum Phred quality score of 20 and converted into
mpileup format in SAMTOOLS v. 0.1.19 [53]. For each
population pair, we then calculated the allele frequency
difference at each position with a minimum coverage
of 10 and a minimum minor allele count of 2 using the
snp-frequency-diff.pl script of POPOOLATION2 (also see
Additional file 4).

Genome-wide variation and population genetic structure
Genome-wide patterns of genetic diversity were assessed
by calculating the population mutation rate (Watterson’s
θ) and nucleotide diversity (Tajima’s Π) in NPSTAT v.1.0
[54]. The accuracy of allele frequency estimates in pooled
samples can be increased not only by high sequence
coverage but also by using large sliding windows as this
avoids incorrect estimates due to stochastic error [55]. To
do so, we concatenated all RAD tags and calculated gen-
etic diversity measures over this continuous sequence
stretch (one window) for positions with a minimum cover-
age of 10, minimum count of the minor allele of 2 and a
minimum Phred score of 20.
Pairwise and overall genetic differentiation were esti-

mated as the fixation index FST [1] in POPOOLATION2,
only considering positions with a minimum coverage of
ten and a minimum minor allele count of two per RAD
locus i.e. using windows of 115 bp (125 bp reads minus 10
bp MID). However, we also checked the robustness of our
estimates by repeating the calculations under even more
conservative settings (minimum coverage = 20, minimum
minor allele count = 6); results did not qualitatively
change. In order to exclude repetitive regions, we set a
maximum coverage threshold to exclude those loci with
the 2% highest coverage (> 73x for AP, > 58x for LC, > 60x
for LF, > 51x for LI) from genetic diversity and FST calcula-
tions. All other parameters were left as default. In addition,
we recalculated FST after removing loci potentially under
selection, i.e. loci identified in either PCADAPT or the
tails of the FST distribution (see below), to account for a po-
tential bias in our FST estimates due to selection. Confi-
dence intervals (CI’s) for the FST estimates were inferred
by bootstrapping 1000 times in the R package BOOT-
STRAP v. 2017.2 [56]. In addition to FST, we also assessed
population genetic structure by principal component ana-
lysis (PCA) in the R package PCADAPT v. 3.0.4 [57].
We then investigated if population genetic differentiation

in the population pools could be explained by differences in
FLL (isolation by adaptation, IBA) or geographic distance
(isolation by distance, IBD). We regressed the matrices of
pairwise population genetic differentiation, transformed to
FST/(1-FST), on relative FLL and on log-transformed

geographic distances using a multiple matrix regression
with randomisation (MMRR) analysis [58] with 999 permu-
tations in the R package ECODIST v. 1.2.2 [59] to avoid
pseudoreplication because of the non-independence of FST
values within a dataset. Geographic distances between
population pairs were inferred via the shortest path in
GOOGLE EARTH v. 6.2 (Table 3).

Demographic history of Rediviva longimanus
Since estimates for Watterson’s θ and Tajima’s Π sug-
gested very low genomic diversity for all population pools
(see Results below), we tested for a bottleneck in each
population using FASTSIMCOAL2 v. 2.5.2.21 [60]. We
first excluded RAD tags with SNPs potentially under se-
lection (see below) using a custom bash script, and then
produced the folded (i.e. based on the allele frequencies of
only the minor allele) site frequency spectrum (SFS) in
POOL-HMM v. 1.4.3 [61].
In FASTSIMCOAL2 we first estimated model parame-

ters using sequential Markov coalescence simulations and
a conditional maximization algorithm (ECM, [60]). In
addition to a bottleneck scenario, we also modelled a con-
stant population size scenario and a population expansion
scenario. Model comparisons were performed according
to the Akaike Information Criterion (AIC) and Akaike’s
weight of evidence (w), as suggested by Excoffier et al.
([59], see Additional file 4 for more details).

Genetic differentiation by FLL using leg pools
We also computed FST between the leg pools dataset to
measure the effect of FLL on genetic differentiation and
to infer potential reproductive isolation due to FLL per
se. FST computations in POPOOLATION2 were carried
out using the same settings as for the population pools
(minimum coverage = 10, minimum minor allele count
= 2, loci with the 2% highest coverage excluded). FST
calculations were repeated after excluding potential
outlier loci, i.e. in the 5% tails of the FST distribution
(see below). Bootstrapping was performed with 1000
replicates to generate CI’s for the FST estimate.

Outlier SNP detection
We tested for signals of selection using two outlier detection
approaches with both population pools and leg pools data-
sets. In the first approach we extracted loci in the lower and
upper tails (0.5% for the population pools and 5% for the leg
pools) of the FST distribution, as calculated in POPOOLA-
TION2 (also see Additional file 4). The FST outlier
criterion of 5% for the leg pools differed from that for
the population pools because it already incorporated the
maximum value of FST = 1. We considered the loci with
the highest FST values (upper tail) as candidates for diver-
gent selection and the loci with the lowest FST values
(lower tail) as candidates for balancing selection, in
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accordance with the rationale underlying FST-outlier de-
tection tools such as BAYESCAN [62] or LOSITAN [63].
In the second approach to infer signals of selection,

we used PCADAPT v. 3.0.4 [57], which employs a PCA
to assess population genetic structure prior to outlier
identification and is particularly suited to Pool-seq data
[57]. PCADAPT was run with 5 replicates for our best K
(K = 1 for the leg pools and K = 3 for the population
pools) and only SNPs identified across all runs were con-
sidered to be candidates under selection.
Further information about the methods used can be

found in Additional file 4.

Results
RAD-seq and mapping
Illumina sequencing yielded 9,250,492 reads for the four
population pools (average 2,312,623 reads per pool) and
4,235,496 reads for the two leg pools. After filtering, we
retained 8,232,334 reads for the population pools (average
2,058,084 reads per pool) and 3,602,671 reads for the
two leg pools (see Additional file 5). De novo assem-
bly in STACKS produced 76,168 RAD tags/loci, which
we used as reference for mapping. Overall, we could
map 6,345,433 reads (68.5%, x̄ = 1,586,358 reads per
pool) for the population pools and 2,746,271 reads
(64.8%, x̄ = 1,373,136 reads per pool) for the leg pools
to our reference (see Additional file 5).

Genome-wide variation and population genetic structure
In total we identified 29,721 SNPs that satisfied our
filtering criteria in POPOOLATION2. The number of
segregating sites (variable base positions in the genome)
per population varied from 7362 to 9912 (x̄ = 8562,
Table 2). Genetic diversity estimates, Watterson’s θ and
Tajima’s Π, were extremely low for all populations, at θ =
0.0007 and Π = 0.0008 (Table 2). More stringent SNP fil-
tering criteria only slightly increased Watterson’s θ and
Tajima’s Π (see Additional file 6).
Average FST values between population pairs were con-

sistent and relatively high, ranging from 0.157 to 0.176
(mean FST across all populations = 0.165, lower 95% CI:
0.164, upper 95% CI: 0.167, Table 3), and even increased
under more stringent filtering criteria: 0.219–0.241 (mean

FST across all populations = 0.231, see Additional file 7).
Excluding outlier loci did not markedly change FST
estimates (mean FST across all populations = 0.164, lower
95% CI: 0.163, upper 95% CI: 0.166; see Additional file 7).
Furthermore, PCA also supported the population genetic
structure inferred by FST and clustered individuals accord-
ing to their population of origin (Fig. 2).
We then tested if population genetic differentiation

was correlated with population-level differences in mean
FLL or rather with geographic distance. The relationship
between genetic differentiation (as FST/(1-FST)) and
log10 geographic distance was not significant (r2 = 0.21,
P > 0.05, Fig. 3a). Genetic differentiation and differences in
relative FLL were also not significantly correlated (r2 = 0.34,
P > 0.05, Fig. 3b), although there was a positive trend in the
relationship. Multiple matrix regression analysis including
both geographic distances (log10) and relative FLL was also
not significant (r2 = 0.36, P > 0.05).
Because non-significant results may arise through lack

of statistical power, we estimated the power of our current
analyses and the sample size needed to reject the null hy-
pothesis of no IBD and IBA using the R package PWR v.
1.2.2 [64]. This analysis showed that, given our sample
size, we needed an effect size of r = 0.90 to detect IBD and
IBA. Our observed effects sizes (r) were clearly less than
0.90. Indeed, the statistical power of our analyses, given
the observed effect sizes, was found to be low: 15% for
IBD and 24% for IBA. Power analysis suggested that 10 or
8 populations would be needed to achieve power (1-β) of
0.80 to detect IBD or IBA, respectively.

Demographic history of Rediviva longimanus
Demographic inference using FASTSIMCOAL2 suggested
a bottleneck scenario to best fit our population pools (all
four populations) since this scenario’s AIC value was
smaller than those for the two alternative demographic
models: constant Ne and population expansion (Table 4).

Genetic differentiation by FLL using leg pools
Genetic differentiation between the leg pools (FST = 0.296,
lower 95% CI: 0.292, upper 95% CI: 0.299) was nearly twice
as high as genetic differentiation among the population

Table 2 Genetic diversity estimates for Rediviva longimanus
population pools based on SNPs with a minor allele count of 2,
minimum coverage of 10, maximum coverage ≤ 98%

Population Number of segregating sites Watterson’s θ Tajima’s Π

AP 9912 0.0007 0.0008

LC 8196 0.0007 0.0008

LF 8779 0.0007 0.0008

LI 7362 0.0007 0.0008

Mean 8562 0.0007 0.0008

Table 3 Geographic distances [km] (above diagonal) and pairwise
FST values (below diagonal) at SNPs with a minimum count of the
minor allele = 2, minimum coverage = 10, maximum coverage
≤ 98% for four population pools of Rediviva longimanus; lower and
upper 95% CI’s of the FST values are given in brackets

AP LC LF LI

AP 76.39 66.24 99.53

LC 0.172 (0.169, 0.174) 66.40 92.82

LF 0.159 (0.157, 0.161) 0.157 (0.155, 0.160) 34.40

LI 0.176 (0.174, 0.179) 0.164 (0.161, 0.166) 0.163 (0.161, 0.166)
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pools and dropped only slightly after excluding outlier loci
(FST = 0.290, lower 95% CI: 0.291, upper 95% CI: 0.299).
Hence, FLL might indeed play a non-negligible role in lim-
iting gene flow (mating) between relatively long and rela-
tively short-legged bees within and between populations.

Outlier SNPs in the population pools and leg pools
We identified 172 RAD-tags in the tails of the FST distri-
bution for the population pools (0.5% threshold) and 652
in the FST tails for the leg pools (5% threshold, see Table 5).

PCADAPT analyses detected 326 candidate SNPs in 309
RAD-tags shared across all five runs for the population
pools, though only two of these also appeared in the tails
of the FST distribution of the same dataset (Fig. 4a,
Table 5). For the leg pools, PCADAPT did not identify any
statistically significant outlier loci. Moreover, there was lit-
tle overlap between the empirical FST outliers identified in
the leg pools and the population pools (12 outliers overall,
Fig. 4b). More detailed information on the outlier analyses
can be found in Additional files 8 and 9.

Fig. 2 Population genetic structure of Rediviva longimanus according to principal component analysis (PCA). (a) PCA, performed in PCADAPT,
suggested that three principal components explained most of the population genetic structure and revealed a clear separation into four
population clusters. (b) Analysing more than three components did not contribute to disentangle further population genetic structure and
revealed additional variance within rather than between clusters

Fig. 3 Regression of genetic differentiation of Rediviva longimanus population pools upon (a) foreleg length (FLL) and (b) geographic distance
(log10). Although we failed to detect a significant pattern of isolation by adaptation (IBA) or isolation by distance (IBD) for the R. longimanus
populations, there was a positive trend in both
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Discussion
Our RAD-seq analyses of four R. longimanus population
pools suggested marked genetic structuring of populations.
Genetic differentiation between long-legged and short-legged
bees pooled across populations was even more marked than
population genetic differentiation, hinting at reduced gene
flow based on leg length. All populations exhibited low gen-
etic diversity estimates and seemed to have experienced
bottleneck events, which is in accordance with field observa-
tions that R. longimanus populations are small and scattered.

Genetic diversity, genetic structure and demographic
history of Rediviva longimanus populations
Pronounced population genetic structuring and differen-
tiation were detected between all population pairs of R.

longimanus. Even over the relatively short geographic
distance of 34 km, populations seemed to be highly
differentiated (FST for LI versus LF: 0.163, lower 95% CI:
0.160, upper 95% CI: 0.166). For comparison, genetic dif-
ferentiation of other ground-nesting wild bee species is
often only significant over greater (> 50 km) geographic
distances [65, 66].
Marked genetic differentiation over a small geo-

graphic distance might be a general feature of Rediviva
bees and potentially of other flying insects in the South
African winter rainfall area due to the region’s harsh
climatic conditions [39]; the peak flowering season
(August–September) is often cold and wet [67], which

Table 4 Comparisons of three demographic models: bottleneck,
constant size and population expansion, according to the Akaike
Information Criterion (AIC) and Akaike’s weight of evidence (w)

Population Model AIC w

AP

Bottleneck 180.643 1.00

Constant 182.808 0.00

Expansion 182.807 0.00

LC

Bottleneck 289.859 1.00

Constant 308.174 0.00

Expansion 388.800 0.00

LF

Bottleneck 255.909 1.00

Constant 268.570 0.00

Expansion 407.161 0.00

LI

Bottleneck 298.631 1.00

Constant 317.317 0.00

Expansion 352.877 0.00

Table 5 Tails of the FST distributions in the population pools
and leg pools datasets and number of outliers identified in
those tails or by PCADAPAT. Note that we identified 1,133
outliers overall, with 14 shared between approaches or datasets,
i.e. 1,119 unique outliers in total

Method Dataset FST Outlier RAD-tags

PCADAPT population pools - 309

FST (upper) population pools 0.547 - 0.833 86

FST (lower) population pools 0.001 - 0.014 86

PCADAPT leg pools - -

FST (upper) leg pools 1.000 592

FST (lower) leg pools 0 - 0.002 60

Total 1133 (14 shared)

Fig. 4 Overall we identified 1119 unique outlier RAD-tag loci. Shown
is the overlap between (a) the different methods for the population
pools and between (b) the population pools and leg pools datasets.
Diagrams were created with http://bioinformatics.psb.ugent.be/
webtools/Venn
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forces bees to forage under often unfavourable weather
conditions. This might reduce bees’ foraging ranges and
gene flow, resulting in increased genetic differentiation
between populations [36, 39, 68]. In addition, Rediviva
bees built their nests in the ground [25] and might have
special nesting requirements. This might make the
landscape appear fragmented to Rediviva bees and fur-
ther reduce gene flow among their populations.
Low Ne could also account for the high population dif-

ferentiation detected. A possibility is that bees are blown
around by the harsh conditions of the Succulent Karoo, lead-
ing to high natal dispersal (i.e. near-panmixia), which, when
coupled with very low Ne, could generate a pattern of con-
sistently high population genetic differentiation independent
of geography. Though plausible, we consider this scenario
unlikely as it cannot easily account for the consistent rela-
tionship between foreleg length and local Diascia floral spur
length observed in R. longimanus (Hollens-Kuhr et al., un-
published observations) and other Rediviva spp. [28, 29].
Low Ne is, however, in agreement with personal obser-

vations of the rarity of the species (Kuhlmann,
Hollens-Kuhr), and could also explain our low genetic
diversity estimates for R. longimanus. Genetic diversity,
measured as Watterson’s θ and Tajima’s Π, were at least
one order of magnitude lower than estimates in other
Pool-seq studies of non-threatened species [69, 70], though
comparable to genetic diversity estimates for small island
populations [71]. Our demographic analyses of R. longima-
nus, suggesting genetic bottlenecks, would also fit the low
genetic diversity estimates inferred. During dry years,
flower production can be very poor in the Succulent Karoo
biome and most Rediviva species are likely to experience a
marked reduction in population size, with some popula-
tions collapsing completely (Pauw, Kuhlmann, unpublished
observations). Populations might thus frequently go
through genetic bottlenecks, which would result in reduced
genetic diversity, and which is probably only slowly re-
stored once conditions become more favourable. The small,
highly structured and potentially genetically depauperate R.
longimanus populations are of conservation concern.
Pooling of individuals for genetic analysis might also

have inflated our estimates of genetic differentiation, as
suggested by Anderson et al. [72], who found that pools
comprising few individuals might result in an artificial sur-
plus of fixed loci. However, Anderson et al.’s conclusions
were based on a very extreme example involving only six
individuals per pool while our lowest pooled size (for
population AP) contained 11 individuals. Thus, although
Pool-seq might lead to biased allele frequency estimates
and erroreous population genetic inferences when pool
sizes and sequencing coverage are insufficient [72, 73],
ours were likely adequate to ensure robust inference. First,
our pool sizes were usually of the appropriate order of
magnitude for accurate allele frequency estimates (≥ 25

individuals with a coverage of ≥20-30x), as suggested by
Ferretti et al. [54]. Second, we followed highly stringent
criteria in building our reference RAD-tags and in SNP
calling (quality score ≥ 20, minimum coverage ≥ 10, minor
allele frequency ≥ 2) to ensure accurate allele frequency es-
timation and reduce sequencing errors.

Population genetic structure of R. longimanus, genetic
drift and selection
We did not detect an association between population
genetic differentiation in R. longimanus and geographic
distance or variation in FLL, probably because we ana-
lysed only a relative small number of populations and
thus lacked statistical power. Rediviva longimanus popu-
lations are small, thus the issue of statistical power is dif-
ficult to resolve. Reciprocal transplant experiment would
help to assess if differences in FLL are locally adaptive
[74]. But they are also difficult to implement on endemic
and rare species that are of conservation concern, such
as R. longimanus.
However, it is likely that genetic drift plays an important

role in determining R. longimanus population genetic
structure. First, populations are small in size (Kuhlmann,
Hollens-Kuhr, unpublished observations), suggesting they
are highly vulnerable to the effects of genetic drift. More-
over, we inferred population bottlenecks as the most likely
demographic scenario for all populations studied. We also
found low genetic diversity for all populations. Further-
more, populations seem to be significantly structured
(average FST = 0.165), suggesting limited genetic exchange
between populations, which would exacerbate the effects
of drift.
Yet FLL might also have a non-negligible effect on

genetic differentiation and result in reduced gene flow,
as suggested by the high FST estimate between our leg
pools. Though our leg pools dataset comprised individ-
uals from different populations as well as with different
leg lengths, the effect of population of origin per se on
the FST estimate was probably slight. This is because we
found all populations to exhibit a consistent, marked FST
independent of geography and because we incorporated
individuals from multiple – and often the same – popu-
lations into both the long and the short leg pools.
How variation in FLL per se translates into increased

genetic differentiation, potentially because of reduced
gene flow and limited mating between long and short
legged morphs, is unknown. Sexual selection acting on
FLL seems unlikely since variation in FLL is only dis-
played by females and, in bees, males are usually not
the choosy sex but rather undertake scramble competi-
tion for mates [75]. Partial reproductive isolation is
more likely due to habitat preference. It has already
been shown that long legged Rediviva bees preferen-
tially use long spurred flowers and vice versa [28, 34].
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Long-legged bees might prefer localities with mainly
long spurred plants while short-legged bees might pref-
erentially occur at localities where short-spurred plants
dominate, since bees will be more successful in extrac-
tion oil and hence provisioning offspring when they
occur in localities with host plants possessing spur
lengths that fit their FLL. Partial reproductive isolation
due to habitat preference may then arise if mating takes
place in the appropriate localities of daughters and their
sons [7]. However, it is unknown where mating occurs in
R. longimanus. Nevertheless, examples where local adap-
tation to a host plant increases genetic differentiation and
may finally lead to reproductive isolation have been
documented for several other insects, in particular phyt-
ophagous insects, e.g. the walking stick insect Timema
cristinae [4, 9, 76], the leaf beetle Neochlamisus bebbianae
[5] or the apple maggot fly Rhagoletis pomonella, [19, 20];
see also [77] for a more complete list.

Candidate genes under selection
Overall, we detected 1119 outlier loci, though there was
little consistency in outlier loci identified by the different
methods and datasets. Our pooled RAD-seq approach
analysed only a small proportion of the R. longimanus
genome and thus likely missed important genes underpin-
ning local adaptation. Whole genome sequencing rather
than our RAD-seq approach would be more powerful to
address the genetics of local adaptation and to identify
candidate loci underlying FLL, which we assume to be lo-
cally adaptive and experience strong selection.
We note, though, that selection may not always favour

bees with the longest legs but rather may favour those
with the best fitting legs. Simulations suggest that bees
with legs much longer than the floral spurs of their hosts
are unable to successfully collect oil [6]. Selection, even
if strong, may then maintain multiple alleles, namely for
both long and for short legs, in the same population.

Conclusions
We found pronounced genetic differentiation among R.
longimanus populations and low genetic diversity, likely
because of low Ne and limited dispersal, compounded by
recent bottleneck events. Genetic drift seemed to be im-
portant in structuring R. longimanus populations, but FLL
might also reduce gene flow, as indicated by high genetic
differentiation between our leg pools. Future studies in-
cluding additional populations are required to test if neu-
tral evolutionary processes such as genetic drift and
migration or host plant adaptation are more important in
structuring R. longimanus populations and whether FLL is
associated with reduced gene flow and reproductive isola-
tion. Nevertheless, our study is a first step to understand
better the population genomics of an important pollinator
in the Succulent Karoo biodiversity hotspot.
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