

OPEN access

Crystal structure of 3-[4-(pyrimidin-2-yl)piperazin-1-ium-1-yl]butanoate

Thammarse S. Yamuna,^a Jerry P. Jasinski,^{b*} Manpreet Kaur,^a Brian J. Anderson^b and H.S. Yathirajan^a

^aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and ^bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA. *Correspondence e-mail: jjasinski@keene.edu

Received 15 August 2014; accepted 21 August 2014

Edited by M. Bolte, Goethe-Universität Frankfurt Germany

The title compound, C₁₂H₁₈N₄O₂, crystallizes in the zwitterionic form with protonation at the N atom of the piperazine ring bearing the carboxylate group. The piperazine ring adopts a slightly distorted chair conformation. In the crystal, N-H...O hydrogen bonds are observed, forming chains along [010]. The packing is consolidated by $C-H \cdots O$ interactions, which generate a three-dimensional network.

Keywords: crystal structure; 3-(piperazin-1-ium-1-yl)butanoate; zwitterionic form; fused heterocyclic derivatives; aza-Michael reactions.

CCDC reference: 1020635

1. Related literature

For general background and pharmacological properties of fused heterocyclic derivatives, see: Amin et al. (2009); Ibrahim & El-Metwally (2010); Kuyper et al. (1996); Onal & Yıldırım (2007); Padmaja et al. (2009); Tollefson et al. (1991). For pharmacological properties of pyrimidines, see: Burdge (2000). For background to aza-Michael reactions, see: Arend et al.(1998); Vicario et al. (2005); Xu & Xia (2005). For related structures, see: Jin et al. (2012); Parvez et al. (2004); Yamuna et al. (2014a,b).

2. Experimental 2.1. Crystal data C12H18N4O2

 $M_r = 250.30$

Monoclinic, $P2_1/c$
a = 13.5157 (6) Å
b = 7.8454 (3) Å
c = 12.2147 (5) Å
$\beta = 106.884 \ (5)^{\circ}$
$V = 1239.36(9) \text{ Å}^3$

2.2. Data collection

Agilent Eos Gemini diffractometer
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis
RED; Agilent, 2012)
$T_{\min} = 0.854, T_{\max} = 1.000$

2.3. Refinement

$R[F^2 > 2\sigma(F^2)] = 0.053$	H atoms treated by a mixture of
$wR(F^2) = 0.149$	independent and constrained
S = 1.06	refinement
3995 reflections	$\Delta \rho_{max} = 0.36 \text{ e } \text{\AA}^{-3}$
160 parameters	$\Delta \rho_{max} = 0.27 \text{ e } \text{\AA}^{-3}$
169 parameters	$\Delta \rho_{\rm min} = -0.27 \ {\rm e} \ {\rm \AA}^{-3}$

Z = 4

Cu $K\alpha$ radiation

 $0.32 \times 0.22 \times 0.06 \text{ mm}$

3995 measured reflections

3995 independent reflections 3668 reflections with $I > 2\sigma(I)$

 $\mu = 0.77 \text{ mm}^{-1}$

T = 173 K

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1 \cdots O2^{i}$ $C2 - H2B \cdots O2^{i}$	1.00	1.67 2.51	2.653(2) 3.277(3)	168 134
$C2 = H2B \cdots O2^{ii}$ $C4 = H4B \cdots O1^{ii}$	0.99	2.58	3.428 (3)	144
$C/-H/B\cdots O1^{iii}$ $C11-H11\cdots O1^{iii}$	0.99 0.95	2.53 2.47	3.147 (3) 3.352 (3)	120 155
Symmetry codes: $x + 1, -y + \frac{1}{2}, z + \frac{1}{2}$.	(i) - <i>x</i> , <i>y</i> -	$\frac{1}{2}, -z + \frac{1}{2};$	(ii) $-x, -y+1,$	$\overline{-z+1};$ (iii)

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED; program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

Acknowledgements

TSY thanks University of Mysore for research facilities and also grateful to the Principal, Maharani's Science College for Women, Mysore, for giving permission to do research. JPJ acknowledges the NSF-MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

Supporting information for this paper is available from the IUCr electronic archives (Reference: BT6993).

References

- Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.
- Amin, K. M., Hanna, M. M., Abo-Youssef, H. E., Riham, F. & George, R. F. (2009). Eur. J. Med. Chem., 44, 4572-4584.
- Arend, M., Westermann, B. & Risch, N. (1998). Angew. Chem. Int. Ed. 37, 1045-1070.
- Burdge, E. L. (2000). Pest Manag. Sci. 56, 245-248.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.

Ibrahim, D. A. & El-Metwally, A. M. (2010). Eur. J. Med. Chem., 45, 1158-1166.

- Jin, S., Huang, Y., Fang, H., Wang, T. & Ding, L. (2012). Acta Cryst. E68, o2827. Kuyper, L. F., Garvey, J. M., Baccanari, D. P., Champness, J. N., Stammers, D.
- K. & Beddell, C. R. (1996). Bioorg. Med. Chem. Lett., 4, 593-602.
- Onal, Z. & Yıldırım, I. (2007). *Heterocycl. Commun.* 13, 113–120.
 Padmaja, A., Payani, T., Reddy, G. D., Dinneswara Reddy, G. & Padmavathi, V. (2009). *Eur. J. Med. Chem.* 44, 4557–4566.
- Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. **40**, 786–790.
- Parvez, M., Arayne, S., Sultana, N. & Siddiqi, A. Z. (2004). Acta Cryst. C60, 0281-0283.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Tollefson, G. D., Lancaster, S. P. & Montague-Clouse, J. (1991). Psychopharmacol. Bull., 27, 163-170.
- Vicario, J. L., Badia, D. & Carrillo, L. (2005). Org. Prep. Proced. Int. 37, 513-538.
- Xu, L.-W. & Xia, C.-G. (2005). Eur. J. Org. Chem. pp. 633-639.
- Yamuna, T. S., Kaur, M., Anderson, B. J., Jasinski, J. P. & Yathirajan, H. S. (2014b). Acta Cryst. E70, 0206–0207.
- Yamuna, T. S., Kaur, M., Jasinski, J. P. & Yathirajan, H. S. (2014a). Acta Cryst. E70, o702–o703.

supporting information

Acta Cryst. (2014). E70, o1063-o1064 [doi:10.1107/S1600536814018972]

Crystal structure of 3-[4-(pyrimidin-2-yl)piperazin-1-ium-1-yl]butanoate

Thammarse S. Yamuna, Jerry P. Jasinski, Manpreet Kaur, Brian J. Anderson and H.S. Yathirajan

S1. Comment

Pyrimidines in general have been of much interest for biological and medical reasons and thus their chemistry has been investigated extensively (Onal & Yıldırım, 2007) and in many drugs used for the treatment of hypothyroidism and hypertension, in cancer chemotherapy or HIV infections (Burdge, 2000) and with related fused heterocyclic compounds that exhibit biological activities such as anticancer (Amin et al., 2009), antiviral (Ibrahim & El-Metwally, 2010), antibacterial (Kuyper et al., 1996) and antioxidant (Padmaja et al., 2009). Some pyrimidinylpiperazinyl compounds like buspirone and BuSpar (Tollefson et al., 1991) are used to treat anxiety. The incorporation of two moieties increases biological activity of both the molecules. Aza-Michael addition reaction has been extensively studied using a variety of catalysts as well as solvents and various researchers have also reported the utility of aza-Michael addition towards the synthesis of various pharmacological active compounds and proved useful in the synthesis of core intermediates of many natural products (Arend et al., 1998). The role of aza-Michael reaction in the synthesis of pharmacologically important families of β -amino carbonyl compounds and its derivatives is well documented in the literature (Vicario *et al.*, 2005; Xu & Xia, 2005). Our research group has published many papers on incorporated heterocyclic ring structures, viz; 4-(pyrimidin-2-yl)piperazin-1-ium (E)-3-carboxyprop-2-enoate (Yamuna et al., 2014a); flupentixol tartarate (Yamuna et al., 2014b). Some related zwitterion structures are: 3,3'-(piperazine-1,4-dijum-1,4-diju)dipropionate dihydrate (Jin et al., 2012), enoxacin trihydrate[1-ethyl-6-fluoro-1,4-dihydro-4-oxo-7-(piperazin-4-ium-1-yl)-1,8- naphthyridine-3-carboxylate trihydrate] (Parvez et al., 2004). In view of the importance of derivatives of the incorporated heterocyclic pyrimidylpiperazines, this paper reports the crystal structure of the title zwitterionic compound, (I), 3-(4-Pyrimidin-2-ylpiperazin-1-ium-1-yl)-butanoate, $C_{12}H_{18}N_4O_2$ prepared from 2-(piperazin-1-yl)pyrimidine and but-2-enoic acid by aza-Michael addition reaction.

The title compound, (I), $C_{12}H_{18}N_4O_2$ crystallizes in the zwitterionic form with protonation on the N1 nitrogen atom of the piperazine ring (Fig. 1). In the compound, the piperazine ring adopts a slightly disordered chair conformation (puckering parameters Q, θ , and $\varphi = 0.576$ (2)Å, 3.0 (2)° and 282 (4)°, respectively. Bond lengths are in normal ranges. In the crystal, N—H…O intermolecular hydrogen bonds are observed forming 1D chains along [0 1 0] (Fig. 2). The packing is consolidated by weak C—H…O interactions which generate a three-dimensional network.

S2. Experimental

A mixture of 1-(2-pyrimidyl)piperazine, from sigma-aldrich (0.2 g, 1.22 mmol) and crotonic acid (but-2-enoic acid) (0.1048 g, 1.22 mmol) were dissolved in DMSO, stirred well and warmed at 343 K for 20 minutes. After few days, X-ray quality crystals were obtained on slow evaporation (m.p.: 411-418 K).

S3. Refinement

H3 was refined isotropically and all of the remaining H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.95Å (CH); 0.99Å (CH₂); 0.98Å (CH₃) or 1.00Å (NH). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH₂, NH) or 1.5 (CH₃) times U_{eq} of the parent atom. Idealised Me was refined as a rotating group. The title compound was refined as a twin with BASF = 0.41572.

Figure 1

ORTEP drawing of $(C_{12}H_{18}N_4O_2)$ showing the labeling scheme of the asymmetric unit of the title compound with 30% probability displacement ellipsoids.

Figure 2

Molecular packing for (I), viewed along the *b* axis. Dashed lines indicate weak C—H \cdots O intermolecular interactions in addition to N—H \cdots O intermolecular hydrogen bonds which together form an extended three-dimensional supramolecular network structure. H atoms not involved in hydrogen bonding have been removed for clarity.

3-[4-(Pyrimidin-2-yl)piperazin-1-ium-1-yl]butanoate

Crystal data	
$C_{12}H_{18}N_4O_2$	F(000) = 536
$M_r = 250.30$	$D_{\rm x} = 1.341 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/c$	Cu Ka radiation, $\lambda = 1.54184$ Å
a = 13.5157 (6) Å	Cell parameters from 5404 reflections
b = 7.8454 (3) Å	$\theta = 3.8 - 71.4^{\circ}$
c = 12.2147 (5) Å	$\mu = 0.77 \mathrm{~mm^{-1}}$
$\beta = 106.884 (5)^{\circ}$	T = 173 K
V = 1239.36 (9) Å ³	Irregular, colourless
<i>Z</i> = 4	$0.32 \times 0.22 \times 0.06 \text{ mm}$
Data collection	
Agilent Eos Gemini	$T_{\min} = 0.854, T_{\max} = 1.000$
diffractometer	3995 measured reflections
Radiation source: Enhance (Cu) X-ray Source	3995 independent reflections
Detector resolution: 16.0416 pixels mm ⁻¹	3668 reflections with $I > 2\sigma(I)$
ω scans	$\theta_{\text{max}} = 71.2^{\circ}, \ \theta_{\text{min}} = 3.4^{\circ}$
Absorption correction: multi-scan	$h = -16 \rightarrow 16$
(CrysAlis PRO and CrysAlis RED; Agilent,	$k = -9 \rightarrow 9$
2012)	$l = -13 \rightarrow 14$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant
Least-squares matrix: full	direct methods
$R[F^2 > 2\sigma(F^2)] = 0.053$	Hydrogen site location: mixed
$wR(F^2) = 0.149$	H atoms treated by a mixture of independent
<i>S</i> = 1.06	and constrained refinement
3995 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0768P)^2 + 0.6386P]$
169 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
	$\Delta \rho_{\rm max} = 0.36 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\min} = -0.27 \text{ e} \text{ Å}^{-3}$
Special details	

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. **Refinement**. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	-0.15848 (13)	0.4680 (3)	0.29107 (16)	0.0449 (5)	
O2	-0.05978 (12)	0.4109 (2)	0.17822 (15)	0.0339 (4)	
N1	0.16438 (12)	0.1694 (2)	0.44116 (14)	0.0217 (4)	
H1	0.1313	0.0618	0.4040	0.026*	
N2	0.32869 (12)	0.0043 (3)	0.60849 (16)	0.0287 (4)	
N3	0.40034 (14)	0.0836 (3)	0.79721 (17)	0.0324 (5)	
N4	0.50457 (13)	0.0549 (3)	0.66957 (17)	0.0336 (5)	
C1	-0.08258 (15)	0.4025 (3)	0.2726 (2)	0.0277 (5)	
C2	-0.00940 (16)	0.2979 (3)	0.3691 (2)	0.0308 (5)	
H2A	-0.0174	0.3357	0.4434	0.037*	
H2B	-0.0296	0.1763	0.3588	0.037*	
C3	0.10322 (15)	0.3150 (3)	0.3722 (2)	0.0260 (5)	
Н3	0.098 (2)	0.289 (4)	0.289 (3)	0.041 (8)*	
C4	0.16425 (15)	0.1604 (3)	0.56333 (18)	0.0261 (5)	
H4A	0.0922	0.1532	0.5671	0.031*	
H4B	0.1959	0.2650	0.6040	0.031*	
C5	0.22479 (15)	0.0048 (3)	0.6211 (2)	0.0290 (5)	
H5A	0.2291	0.0053	0.7034	0.035*	
H5B	0.1880	-0.1001	0.5866	0.035*	
C6	0.32772 (15)	0.0092 (3)	0.48941 (19)	0.0276 (5)	
H6A	0.2918	-0.0928	0.4491	0.033*	
H6B	0.3995	0.0084	0.4845	0.033*	
C7	0.27285 (14)	0.1685 (3)	0.43312 (18)	0.0243 (4)	
H7A	0.3102	0.2707	0.4716	0.029*	
H7B	0.2719	0.1716	0.3518	0.029*	
C8	0.41389 (15)	0.0508 (3)	0.69526 (18)	0.0248 (4)	
C9	0.48642 (19)	0.1182 (3)	0.8810 (2)	0.0359 (5)	
H9	0.4802	0.1456	0.9545	0.043*	

C10	0.58388 (18)	0.1162 (3)	0.8665 (2)	0.0372 (6)	
H10	0.6444	0.1349	0.9284	0.045*	
C11	0.58837 (17)	0.0857 (3)	0.7574 (2)	0.0376 (6)	
H11	0.6540	0.0864	0.7436	0.045*	
C12	0.14735 (18)	0.4895 (3)	0.4145 (2)	0.0329 (5)	
H12A	0.1545	0.4997	0.4964	0.049*	
H12B	0.1007	0.5784	0.3725	0.049*	
H12C	0.2153	0.5026	0.4019	0.049*	

Atomic displacement	parameters (Å ²)
---------------------	------------------------------

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
01	0.0322 (9)	0.0605 (12)	0.0415 (11)	0.0190 (8)	0.0099 (8)	0.0110 (9)
O2	0.0282 (8)	0.0318 (8)	0.0409 (10)	0.0066 (6)	0.0087 (7)	0.0019 (7)
N1	0.0143 (7)	0.0280 (9)	0.0214 (9)	0.0003 (6)	0.0028 (6)	0.0038 (7)
N2	0.0138 (8)	0.0488 (11)	0.0234 (9)	0.0065 (7)	0.0053 (7)	0.0076 (8)
N3	0.0284 (9)	0.0427 (11)	0.0266 (10)	0.0100 (8)	0.0088 (8)	0.0026 (8)
N4	0.0184 (8)	0.0522 (12)	0.0303 (10)	0.0007 (8)	0.0070 (8)	-0.0065 (9)
C1	0.0200 (9)	0.0303 (11)	0.0295 (11)	-0.0011 (8)	0.0018 (8)	0.0025 (9)
C2	0.0222 (10)	0.0364 (12)	0.0335 (12)	0.0054 (9)	0.0078 (9)	0.0073 (10)
C3	0.0200 (9)	0.0287 (10)	0.0259 (10)	0.0018 (8)	0.0014 (8)	0.0052 (9)
C4	0.0166 (9)	0.0379 (12)	0.0245 (10)	0.0041 (8)	0.0072 (8)	0.0033 (9)
C5	0.0158 (9)	0.0441 (13)	0.0282 (11)	0.0042 (8)	0.0084 (8)	0.0112 (10)
C6	0.0169 (9)	0.0424 (13)	0.0233 (10)	0.0046 (8)	0.0059 (8)	0.0012 (9)
C7	0.0154 (9)	0.0373 (11)	0.0204 (10)	-0.0038 (8)	0.0055 (7)	0.0012 (9)
C8	0.0184 (9)	0.0304 (10)	0.0254 (11)	0.0077 (8)	0.0062 (8)	0.0044 (9)
C9	0.0359 (12)	0.0428 (13)	0.0264 (12)	0.0102 (10)	0.0051 (10)	-0.0020 (10)
C10	0.0297 (11)	0.0408 (13)	0.0336 (13)	0.0035 (10)	-0.0027 (10)	-0.0052 (10)
C11	0.0199 (10)	0.0495 (14)	0.0407 (14)	0.0000 (10)	0.0046 (9)	-0.0103 (11)
C12	0.0322 (11)	0.0287 (11)	0.0337 (13)	-0.0001 (9)	0.0032 (10)	0.0024 (10)

Geometric parameters (Å, °)

01—C1	1.226 (3)	C4—H4A	0.9900	
O2—C1	1.278 (3)	C4—H4B	0.9900	
N1—H1	1.0000	C4—C5	1.524 (3)	
N1—C3	1.514 (2)	C5—H5A	0.9900	
N1C4	1.494 (3)	C5—H5B	0.9900	
N1—C7	1.498 (2)	C6—H6A	0.9900	
N2—C5	1.457 (2)	C6—H6B	0.9900	
N2—C6	1.451 (3)	C6—C7	1.513 (3)	
N2	1.369 (3)	C7—H7A	0.9900	
N3—C8	1.335 (3)	C7—H7B	0.9900	
N3—C9	1.335 (3)	С9—Н9	0.9500	
N4—C8	1.351 (3)	C9—C10	1.379 (3)	
N4—C11	1.336 (3)	C10—H10	0.9500	
C1—C2	1.538 (3)	C10—C11	1.373 (4)	
C2—H2A	0.9900	C11—H11	0.9500	

C2—H2B	0.9900	С12—Н12А	0.9800
C2—C3	1.518 (3)	C12—H12B	0.9800
С3—Н3	1.01 (3)	C12—H12C	0.9800
C3—C12	1.523 (3)		
C3—N1—H1	106.5	N2—C5—H5B	109.4
C4—N1—H1	106.5	С4—С5—Н5А	109.4
C4—N1—C3	115.63 (17)	C4—C5—H5B	109.4
C4—N1—C7	110.51 (15)	H5A—C5—H5B	108.0
C7—N1—H1	106.5	N2—C6—H6A	109.7
C7—N1—C3	110.70 (15)	N2—C6—H6B	109.7
C6—N2—C5	112.18 (17)	N2—C6—C7	109.75 (18)
C8—N2—C5	122.52 (19)	H6A—C6—H6B	108.2
C8—N2—C6	121.99 (18)	С7—С6—Н6А	109.7
C8—N3—C9	115.4 (2)	С7—С6—Н6В	109.7
C11—N4—C8	115.6 (2)	N1 - C7 - C6	109 51 (16)
01-C1-02	125.4(2)	N1-C7-H7A	109.81 (10)
01 - C1 - C2	123.1(2) 118.0(2)	N1 - C7 - H7B	109.8
$0^{2}-0^{1}-0^{2}$	116.65(19)	C6-C7-H7A	109.8
$C_1 = C_2 = H_2 \Lambda$	100.0	C6 C7 H7B	109.8
C1 - C2 - H2B	109.0	H7A - C7 - H7B	109.8
H_{2}^{2} H_{2}^{2} H_{2}^{2} H_{2}^{2}	107.8	N_{1}^{1} C_{2}^{1} N_{1}^{1} C_{2}^{1} N_{2}^{1}	100.2 117 45 (18)
112A - C2 - 112D	107.8	$N_{3} = C_{8} = N_{4}$	117.43(10) 126.3(2)
$C_3 = C_2 = C_1$	100.0	$N_3 = C_0 = N_4$	120.3(2)
$C_3 = C_2 = H_2 R$	109.0	N4 - Co H0	110.20 (19)
C3-C2-H2B	109.0	$N_3 = C_9 = H_9$	110.3 122.5(2)
N1 = C3 = C2	109.19(17)	$N_{3} = C_{9} = C_{10}$	123.5 (2)
NI-C3-H3	105.9 (16)	C10-C9-H9	118.3
N1 - C3 - C12	113.11 (17)	C9—C10—H10	122.0
C2—C3—H3	100.5 (16)		116.1 (2)
C2—C3—C12	112.28 (19)	C11—C10—H10	122.0
С12—С3—Н3	115.0 (17)	N4—C11—C10	123.0 (2)
N1—C4—H4A	109.6	N4—C11—H11	118.5
N1—C4—H4B	109.6	C10-C11-H11	118.5
N1—C4—C5	110.12 (17)	C3—C12—H12A	109.5
H4A—C4—H4B	108.1	C3—C12—H12B	109.5
C5—C4—H4A	109.6	C3—C12—H12C	109.5
C5—C4—H4B	109.6	H12A—C12—H12B	109.5
N2—C5—C4	110.96 (17)	H12A—C12—H12C	109.5
N2—C5—H5A	109.4	H12B—C12—H12C	109.5
O1—C1—C2—C3	-144.6 (2)	C6—N2—C5—C4	-57.3 (3)
O2—C1—C2—C3	36.8 (3)	C6—N2—C8—N3	163.5 (2)
N1-C4-C5-N2	54.5 (2)	C6—N2—C8—N4	-18.1 (3)
N2-C6-C7-N1	-59.2 (2)	C7—N1—C3—C2	172.41 (18)
N3—C9—C10—C11	3.7 (4)	C7—N1—C3—C12	-61.8 (2)
C1-C2-C3-N1	-161.91 (18)	C7—N1—C4—C5	-55.5 (2)
C1—C2—C3—C12	71.8 (3)	C8—N2—C5—C4	102.5 (2)
C3—N1—C4—C5	177.77 (16)	C8—N2—C6—C7	-100.4 (2)

supporting information

C3—N1—C7—C6	-172.54 (17)	C8—N3—C9—C10	-1.8 (4)
C4—N1—C3—C2	-61.0 (2)	C8—N4—C11—C10	-1.8 (4)
C4—N1—C3—C12	64.8 (2)	C9—N3—C8—N2	176.1 (2)
C4—N1—C7—C6	58.0 (2)	C9—N3—C8—N4	-2.2 (3)
C5—N2—C6—C7	59.5 (2)	C9—C10—C11—N4	-1.7 (4)
C5—N2—C8—N3	5.7 (3)	C11—N4—C8—N2	-174.3 (2)
C5—N2—C8—N4	-175.9 (2)	C11—N4—C8—N3	4.0 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D^{\dots}A$	D—H···A
N1—H1···O2 ⁱ	1.00	1.67	2.653 (2)	168
C2— $H2B$ ···O2 ⁱ	0.99	2.51	3.277 (3)	134
C4—H4 <i>B</i> ····O1 ⁱⁱ	0.99	2.58	3.428 (3)	144
C7—H7 <i>B</i> ···O1 ⁱ	0.99	2.53	3.147 (3)	120
C11—H11…O1 ⁱⁱⁱ	0.95	2.47	3.352 (3)	155

Symmetry codes: (i) -x, y-1/2, -z+1/2; (ii) -x, -y+1, -z+1; (iii) x+1, -y+1/2, z+1/2.