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ABSTRACT

The genome-wide transcriptome profiling of cancer-
ous and normal tissue samples can provide insights
into the molecular mechanisms of cancer initiation
and progression. RNA Sequencing (RNA-Seq) is a
revolutionary tool that has been used extensively
in cancer research. However, no existing RNA-Seq
database provides all of the following features: (i)
large-scale and comprehensive data archives and
analyses, including coding-transcript profiling, long
non-coding RNA (lncRNA) profiling and coexpres-
sion networks; (ii) phenotype-oriented data organi-
zation and searching and (iii) the visualization of ex-
pression profiles, differential expression and regula-
tory networks. We have constructed the first public
database that meets these criteria, the Cancer RNA-
Seq Nexus (CRN, http://syslab4.nchu.edu.tw/CRN).
CRN has a user-friendly web interface designed to fa-
cilitate cancer research and personalized medicine.
It is an open resource for intuitive data exploration,
providing coding-transcript/lncRNA expression pro-
files to support researchers generating new hypothe-
ses in cancer research and personalized medicine.

INTRODUCTION

Over the past two decades, gene expression data generated
by microarray technology has been widely used to study
the causes and therapies of cancers. Research on the hu-
man transcriptome has produced a large amount of expres-
sion data at the gene level. Many gene-expression databases
have been developed for cancer research, such as Oncomine
(public version) (1), NextBio (2) and GCOD (3). However,
a given gene is often spliced into multiple transcript iso-

forms, which in turn are translated into different proteins.
More than 90% of human genes undergo alternative splic-
ing (4). Therefore, the gene-level expression data generated
by microarray platforms are insufficient to understand the
involvement of specific proteins in cancer. RNA-Seq (5)
is a revolutionary tool that can be used to study alterna-
tive splicing and to quantify gene/isoform expression levels
across a genome. RNA-Seq has been widely used in many
cancer studies.

Several major data portals contain cancer RNA-Seq
data, such as the NCBI Gene Expression Omnibus (GEO)
(6) and the Sequence Read Archive (SRA) (7). However,
these portals mainly serve as raw data archives. They do
not provide the full utility of RNA-Seq data for biologists,
because highly developed bioinformatics skills are required
to set up and manipulate data pipelines, tune parameters
and control quality during data processing, analysis and
visualization. The Cancer Genome Atlas (TCGA) (http://
cancergenome.nih.gov/) database stores genomics data (in-
cluding RNA-Seq data) for a variety of cancer types, but
it only contains data generated by TCGA consortium.
The RNA-Seq Atlas (8) attempts to provide easy access
to RNA-Seq expression profiles. However, it only has one
RNA-Seq data set and 11 samples. Recently, we have con-
structed a database for isoform–isoform interactions using
19 RNA-Seq data sets (9), and performed high-resolution
functional annotation of the human transcriptome using 29
RNA-Seq data sets (10). Nevertheless, these studies have
not utilized long non-coding RNA (lncRNA) expression
profiles, which we believe is complementary to the coding-
transcript expression data in cancer research.

This paper presents the Cancer RNA-Seq Nexus
(CRN), the first public database providing phenotype-
specific coding-transcript/lncRNA expression profiles
and mRNA–lncRNA coexpression networks in cancer
cells. CRN includes cancer RNA-Seq data sets in the
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Figure 1. Framework for constructing the CRN database. Cancer RNA-Seq data sets were collected from NCBI GEO, SRA and TCGA, and then all
samples were classified into the phenotype-specific subsets. For the GEO data sets, Bowtie2 and eXpress software were used to calculate isoform expressions
using GENCODE v21 as a reference. For the TCGA data sets, we converted the expression values (tau values) of the TCGA Level 3 RNA-Seq version
2 data sets to TPM (transcripts per million). To identify phenotype-specific differentially expressed protein-coding transcripts and lncRNAs in each data
set, we performed log2 scale t-tests with Benjamini–Hochberg adjustment between each pair of subsets with no overlapping samples and from the same
data set. For each subset pair, we selected coding transcripts and lncRNAs with high expression variance, then calculated the correlations of expression
profiles between selected coding transcripts and lncRNAs to construct an mRNA–lncRNA coexpression network.

TCGA, SRA and GEO databases. Figure 1 shows the
framework that we used to construct the database. It
resulted in 54 human cancer RNA-Seq data sets, includ-
ing 326 phenotype-specific subsets and 11 030 samples.
Each subset is a group of RNA-Seq samples associated
with a specific phenotype or genotype, e.g. breast cancer
stage II, ER+ breast cancer or Her2+ breast cancer. This
specificity facilitates research into personalized medicine.
CRN provides a user-friendly interface to efficiently orga-
nize and visualize coding-transcript/lncRNA expression
profiles. It also permits the visualization and analysis
of mRNA–lncRNA coexpression networks for any pair
of phenotype-specific subsets. CRN is freely available at
http://syslab4.nchu.edu.tw/CRN.

MATERIALS AND METHODS

RNA-seq data sets

We collected a total of 54 human cancer data sets and 11
030 samples from major cancer RNA-Seq data portals, in-
cluding the Gene Expression Omnibus (GEO) (6), Sequence
Read Archive (SRA) (7) and the Cancer Genome Atlas
(TCGA http://cancergenome.nih.gov/). The final database
consists of 28 TCGA data sets and 26 GEO/SRA data sets.

GEO/SRA data sets. We obtained annotation data for the
RNA-Seq data sets from GEO, and downloaded RNA-Seq
reads from SRA. Each data set consists of several subsets,
where each subset is a group of RNA-Seq samples associ-

http://syslab4.nchu.edu.tw/CRN
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Figure 2. Screenshots of the web interface of CRN. (A) The CRN web interface provides three major panels: (1) Disease-dataset panel (upper left). The
hierarchical menu illustrates which subsets are associated with which cancer types. A subset is a group of RNA-seq samples associated with a specific
phenotype or genotype, e.g. breast cancer stage II, ER+ breast cancer or Her2+ breast cancer. (2) Subset-pair panel (bottom left). There are two types of
subset pairs: ‘Cancer versus Cancer’ and ‘Cancer versus Normal’. When users select a subset in the first panel, CRN shows all associated subset pairs in
this panel. (3) Profile panel (right). After clicking a subset pair in the second panel, CRN displays a detailed description of the data set and subsets. In this
panel, there are four analysis tabs: (i) DE coding transcripts visualizes the expression profiles of differentially expressed (DE) protein-coding transcripts.
(ii) DE lncRNAs visualizes the expression profiles of DE lncRNAs. (iii) mRNA–lncRNA coexpression network The user can search for a specific gene and
lncRNA in this tab, then visualize the most significant negative and positive correlations between coding transcripts and lncRNAs as a network (B). (iv)
Search Users can search for gene/transcript names and transcript IDs. This panel provides an auto-complete function which displays partially matched
terms as the user types, filtering the list to provide better and better matches (C). After selecting a gene or transcript, the panel shows the expression profiles.

ated with a specific phenotype trait or cancer condition. For
example, the subsets can be identified with a specific stage
of cancer, a disease state, a cell line, a type of tissue or a
genotype. We manually created these subsets from the raw
data and annotations, assigning samples based on their tex-
tual descriptions. The GEO/SRA data yielded a total of
142 subsets and 1337 samples. To obtain expression pro-
files for both coding transcripts and lncRNAs, we down-
loaded the entire human transcriptome with Ensembl ID,
including 93 139 protein-coding and 26 414 lncRNA tran-
scripts, from GENCODE (Release 21, GRCh38) (11) as a
reference. Bowtie (12), version 1.1.1, was used to build the
reference index and align the RNA-Seq reads to the refer-
ence transcriptome. To ensure enough depth of sequencing
coverage, we only selected samples with at least 1 million
reads and 15% of reads mapped to the reference transcrip-
tome (13). After this step, isoform abundances in each sam-
ple were quantified using eXpress (14), version 1.5.1, with

the expression unit ‘fragments per kilobase of transcript per
million mapped reads’ (FPKM) (15).

TCGA data sets. We collected all Level 3 RNA-Seq ver-
sion 2 data sets and clinical information from the TCGA
portal (http://cancergenome.nih.gov/). We defined subsets
for all patient samples based on TCGA clinical informa-
tion, e.g. primary tumor, metastatic, recurrent tumor, adja-
cent normal tissue or the pathologic tumor stage. Since the
number of adjacent normal samples for each tumor stage is
small, we pull all the adjacent normal samples from var-
ious tumor stages into a normal subset for each TCGA
data set. This analysis resulted in a total of 239 subsets
and 10,270 samples. The TCGA expression data contain 67
119 transcripts with UCSC KnownGene IDs that are given
gene symbol assignments according to the UCSC Known-
Gene annotation (16). Since GENCODE provides annota-
tion of protein-coding transcripts and lncRNAs, we clas-
sified these KnownGene IDs into 63 775 protein-coding

http://cancergenome.nih.gov/
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Figure 3. The differential expressions of two TP63 major isoform groups ‘TAp63 and ΔNp63’ in lung squamous cell carcinoma (A, B) and lung adenocar-
cinoma (C, D). Based on the adjusted P-values calculated by CRN, ΔNp63 isoforms are significantly overexpressed with respect to normal tissue in lung
squamous cell carcinoma, but not in lung adenocarcinoma. In contrast, TAp63 has low expression in all four subset pairs. In the adjusted P-value column,
the absent values indicate insignificance (adjusted P-value > 0.01) in differential expression analysis.

Table 1. The transcript expressions of TAp63α and ΔNp63α in lung squamous cell carcinoma and lung adenocarcinoma

Subset pair
Isoform
ID

Isoform
name

Average
expression
in cancer

Average
expression
in normal

Adjusted
P-value

Lung squamous cell carcinoma versus adjacent normal uc003fry.2 TAp63� 0.833 0.456 1.22E-01
Lung squamous cell carcinoma versus adjacent normal uc003fsc.2 �Np63� 109.610 1.205 8.12E-68
Lung adenocarcinoma versus adjacent normal uc003fry.2 TAp63� 0.646 0.239 1.35E-01
Lung adenocarcinoma versus adjacent normal uc003fsc.2 �Np63� 1.229 0.807 3.00E-01

transcripts and 3344 lncRNAs using the mapping of GEN-
CODE and KnownGene IDs. We multiplied the expression
values (tau values, calculated by RSEM) (17) of the TCGA
Level 3 RNA-Seq version 2 data sets by 106 to obtain tran-
scripts per million (TPM).

Phenotype-specific differentially expressed transcripts
(DETs)
To identify phenotype-specific differentially expressed (DE)
protein-coding transcripts and DE lncRNAs, within each
data set we selected all subsets with at least three samples,
then converted the expression value to log2 scale with added
pseudo-counts and performed a t-test between every pair of
subsets with no samples in common. We used Benjamini–
Hochberg adjustment (18,19) to calculate the adjusted P-
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Table 2. The lncRNA expression of CCAT1 in colon adenocarcinoma and stomach adenocarcinoma

Average
expression
in cancer

Average
expression
in normal

Adjusted
P-value

A. Colon adenocarcinoma subset pair
Colon adenocarcinoma––Stage I versus Normal (adjacent normal) 8.584 0.318 1.67E-34
Colon adenocarcinoma––Stage II versus Normal (adjacent normal) 9.887 0.318 7.99E-13
Colon adenocarcinoma––Stage IIA versus Normal (adjacent normal) 6.926 0.318 1.35E-50
Colon adenocarcinoma––Stage III versus Normal (adjacent normal) 4.527 0.318 9.48E-10
Colon adenocarcinoma––Stage IIIB versus Normal (adjacent normal) 8.182 0.318 8.00E-23
Colon adenocarcinoma––Stage IIIC versus Normal (adjacent normal) 9.078 0.318 4.12E-13
Colon adenocarcinoma––Stage IV versus Normal (adjacent normal) 7.583 0.318 4.17E-29
B. Stomach adenocarcinoma Subset Pair
Stomach adenocarcinoma––Stage IA versus Normal (adjacent normal) 4.986 1.575 9.48E-04
Stomach adenocarcinoma––Stage IB versus Normal (adjacent normal) 5.815 1.575 5.90E-04
Stomach adenocarcinoma––Stage II versus Normal (adjacent normal) 4.430 1.575 5.02E-03
Stomach adenocarcinoma––Stage IIA versus Normal (adjacent normal) 5.615 1.575 1.79E-02
Stomach adenocarcinoma––Stage IIB versus Normal (adjacent normal) 5.809 1.575 7.91E-06
Stomach adenocarcinoma––Stage IIIA versus Normal (adjacent normal) 7.738 1.575 4.77E-08
Stomach adenocarcinoma––Stage IIIB versus Normal (adjacent normal) 7.857 1.575 2.56E-05
Stomach adenocarcinoma––Stage IV versus Normal (adjacent normal) 10.166 1.575 3.50E-06

Figure 4. The coexpression network of the gene MYC and lncRNA PVT1 in the subset pair of kidney renal clear cell carcinoma: Stage I V.S. Adjacent
normal. There is a significant positive correlation between MYC isoform uc003ysi.2 and PVT1 isoform uc010mdp.1. MYC has two isoforms, uc003ysh.1
and uc003ysi.2, and both of them are significantly overexpressed in the subset of kidney renal clear cell carcinoma: Stage I versus adjacent normal (adjusted
P-values 1.25E-14 and 4.56E-17, respectively). PVT1 also has two isoforms, uc003ysl.2 and uc010mdp.1, and both of them are significantly overexpressed
(adjusted P-values < 1E-10) in the cancer samples where MYC is also overexpressed.

value. There were 601 subset pairs with differentially ex-
pressed transcripts (adjusted P-value < 0.01): 444 ‘cancer
versus cancer’ and 157 ‘cancer versus normal’ subset pairs.

Construction of mRNA–lncRNA coexpression networks

To investigate the phenotype-specific regulation of mRNAs
and lncRNAs, which may reveal the potential biological
functions of lncRNAs, we constructed mRNA–lncRNA co-
expression networks. For a given subset pair, we selected
coding transcripts and lncRNAs with high expression vari-
ance (standard deviation > 0.3 and (standard deviation /
mean) > 0.5), then calculated correlations between every
pair of selected mRNA and lncRNA expression profiles.
The samples of the subset pair were used for the correlation
analysis. To assess the significance of these connections, we

transferred Pearson’s correlation coefficient r to a P-value
using the following method: given a sample size n, we cal-
culated the t-value (20):

t = r√
1−r2

n−2

The P-value was calculated using this t-value for the t-
distribution with n−2 degrees of freedom. The significant
correlations between protein-coding transcripts and lncR-
NAs (P-value < 1E-6) were collected for network con-
struction. In the web interface, Cytoscape (21) was used to
demonstrate the mRNA–lncRNA coexpression networks.
In the web interface, users can input a gene symbol and an
lncRNA name, then select a correlation threshold.
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WEB INTERFACES

We developed a user-friendly web interface to present
the CRN database, which integrates large-scale RNA-Seq
data sets and cancer phenotype/genotype information. As
shown in Figure 2A, the CRN database displays a hierar-
chical menu in the disease-dataset panel (upper left) to help
users search and browse the different phenotype-specific
subsets. When users select a cancer type or a cancer subset,
the associated subset pairs are displayed in the bottom-left
panel. After a user selects a subset pair, the web server shows
a complete description of the data set/subsets, and permits
analysis of the data through four tabs in the right panel:

(i) DE coding transcripts. Given a subset pair, CRN vi-
sualizes the expression profiles of all differentially ex-
pressed (DE) protein-coding transcripts, sorted by the
significance level (adjusted P-value) between two sub-
sets. Users can filter DE transcripts based on their ad-
justed P-value threshold or up/down regulation. The
interface displays the rank, the adjusted P-value, the
average expression values, the transcript ID and the
gene symbol for each transcript. The transcript ID rep-
resents Ensembl transcript ID for GEO/SRA data sets
and it represents UCSC KnownGene ID for TCGA
data sets.

(ii) DE lncRNAs. Given a subset pair, CRN visualizes the
expression profiles of DE lncRNAs sorted by the sig-
nificance level between two subsets. Users can filter DE
lncRNAs based on an adjusted P-value threshold or
up/down regulation. CRN displays the rank, the ad-
justed P-value, the expression values of two subsets, the
lncRNA ID and the lncRNA name.

(iii) mRNA–lncRNA coexpression network. Given a sub-
set pair, CRN visualizes an mRNA–lncRNA co-
expression network, displaying coding transcripts and
lncRNAs with significant correlations between cod-
ing transcripts and lncRNAs (illustrated in Figure
2B). Users can input a gene symbol and an lncRNA
name, then select a correlation threshold. They can
also choose how many of the most significant connec-
tions to show (N = 10, 15, 20 or 25) for the given gene
or the given lncRNA.

(iv) Search for coding transcripts and lncRNAs. Given a
gene symbol, CRN provides a search function on the
expression profiles of all transcripts associated with the
given gene, allowing users to investigate the differential
expressions of its various isoforms. An auto-complete
function provides suggestions for gene or transcript
symbols as the user types, quickly searching and dis-
playing partially matched terms. The auto-complete
function not only helps users search efficiently, but also
make a quick filtering (illustrated in Figure 2C).

EXAMPLE APPLICATIONS

To demonstrate the biological applications of CRN, we
used the genes TP63, CCAT1 and MYC/PVT1 as examples
to show the functionality of differentially expressed cod-
ing transcripts, differentially expressed lncRNAs and the
mRNA–lncRNA coexpression network.

Differentially expressed coding transcripts

To demonstrate the biological function of DE protein-
coding transcripts in CRN, we use the TP63 gene as an ex-
ample. TP63 has multiple transcript isoforms as a result of
alternative promoter usage and alternative splicing. Its tran-
script isoforms fall into two groups: (i) the upstream pro-
moter of the gene generates TAp63 isoforms containing the
N-terminal transactivation (TA) domain, and (ii) an alter-
native internal promoter generates ΔNp63 isoforms lack-
ing the TA domain (22). In each group, additional variants
(e.g. α, β and γ ) with various C-terminal tails are gener-
ated through alternative splicing at the 3′ end. It has been
suggested that ΔNp63 isoforms are highly specific for squa-
mous cells: they are overexpressed in squamous cell carci-
noma (SCC) (23–25), while TAp63 expression is either lost
or extremely low in squamous cells and SCC (25,26). There-
fore, ΔNp63 may be used to precisely distinguish between
lung adenocarcinoma and lung SCC, allowing for novel tar-
geted therapies (27,28). As shown in Figure 3, the database
confirms that all ΔNp63 isoforms are significantly overex-
pressed with respect to normal tissue in lung SCC, while the
TAp63 isoforms are not. On the other hand, ΔNp63 iso-
forms are not differentially expressed between cancer and
normal subsets in lung adenocarcinoma.

Table 1 shows the average transcript expressions of the
TAp63α and ΔNp63α isoforms (those with the longest 3′-
terminus) in lung SCC and lung adenocarcinoma. The ex-
pression of ΔNp63α is extremely high (Average TPM =
109.61) and significantly overexpressed (adjusted P-value
= 8.12E-68) in lung SCC, compared with normal samples
(Average TPM = 1.205). The expression of ΔNp63α is very
low (Average TPM = 1.229 in cancer, 0.807 in normal)
and has no significant differential expression (adjusted P-
value = 3.00E-1) in lung adenocarcinoma. The expression
of TAp63α is extremely low in both lung SCC and lung
adenocarcinoma (Average TPM = 0.239–0.833), consistent
with the previous reports (23–25).

Differentially expressed lncRNAs

The Colon Cancer Associated Transcript-1 (CCAT1)
lncRNA is significantly up-regulated in colon and colorec-
tal cancer compared with the normal human tissues (29,30).
Recently, CCAT1 has also been found to be highly up-
regulated in gastric carcinoma, compared with adjacent
normal gastric tissues (31,32). Our data analysis confirms
these findings. Specifically, there are seven colon adenocar-
cinoma subset pairs of the type ‘Cancer versus Normal’
in CRN. In all these pairs, CCAT1 is significantly over-
expressed (adjusted P-values 9.48E-10–1.35E-50) in cancer
subsets (average TPM = 4.53–9.89) with respect to normal
subsets (average TPM = 0.318) (Table 2A). Additionally,
there are eight stomach adenocarcinoma subset pairs cat-
egorized as ‘Cancer versus Normal’ in CRN, and CCAT1
is significantly overexpressed (adjusted P-values 5.02E-3–
4.77E-8) in seven cancer subsets (average TPM = 4.43–
10.17) with respect to normal subsets (average TPM =
1.575) (Table 2B). Interestingly, the expression values of
CCAT1 are extremely similar between colon adenocarci-
noma and stomach adenocarcinoma, consistent with the
previous reports.
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mRNA–lncRNA coexpression network

The overexpression of PVT1 lncRNA is induced by MYC,
and is involved in the suppression of apoptosis (33,34).
PVT1 lncRNA and MYC protein expressions are corre-
lated in primary human tumors, and the copy number of
PVT1 was increased in more than 98% of cancers that also
showed an increase of MYC copies (35). Figure 4 shows the
mRNA–lncRNA coexpression network centered on PVT1
and MYC. The gene MYC has two isoforms, uc003ysh.1
and uc003ysi.2, and both of them are significantly overex-
pressed (adjusted P-values 1.25E-14 and 4.56E-17, respec-
tively) in kidney renal clear cell carcinoma Stage I (TPM
= 1.60 and 77.47, respectively) with respect to the adjacent
normal subset (TPM = 0.60 and 28.20, respectively). PVT1
lncRNA also has two isoforms, uc003ysl.2 and uc010mdp.1,
and both of them are significantly overexpressed (adjusted
P-values < 1E-10) in the cancer subset (TPM = 1.33 and
0.55, respectively) with respect to adjacent normal tissues
(TPM = 0.03 and 0.03, respectively). As shown in Figure
4, there is a significant positive correlation between MYC
isoform uc003ysi.2 and PVT1 isoform uc010mdp.1.

DISCUSSION

We processed massive data sets collected from NCBI GEO
and TCGA in order to obtain complete transcriptome
profiles, extract the differentially expressed protein-coding
transcripts and lncRNAs involved in various cancer types
and infer the lncRNA regulatory network. Although CRN
was developed with the goal of collecting, processing, ana-
lyzing and visualizing all publically available cancer RNA-
seq data, it is still limited by the characteristics of these data.
Firstly, different subsets from the same RNA-Seq data set
have different sizes, which can influence the power of statis-
tical analysis. Secondly, the cancer RNA-Seq data were gen-
erated using different experiment designs, sequencing plat-
forms, cDNA library protocols, genetic backgrounds (cell
lines or patients) and so on. It is a great challenge to inte-
grate such diverse data resources. We have therefore applied
the strategy of only comparing subsets from the same data
set. Thirdly, some clinical information has not yet been in-
tegrated into CRN yet, such as treatments, pharmaceutical
therapies and survival data.

As more and more cancer RNA-Seq data sets accumulate
in the TCGA and NCBI GEO databases, we will update our
CRN database to ensure that it can empower biologists with
comprehensive cancer transcriptome knowledge.
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