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Abstract

We examined the electrophysiological activity of motor neurons from the mouse model of severe spinal muscular atrophy
(SMA) using two different methods: whole cell patch clamp of neurons cultured from day 13 embryos; and multi-electrode
recording of ventral horns in spinal cord slices from pups on post-natal days 5 and 6. We used the MED64 multi-electrode
array to record electrophysiological activity from motor neurons in slices from the lumbar spinal cord of SMA pups and their
unaffected littermates. Recording simultaneously from up to 32 sites across the ventral horn, we observed a significant
decrease in the number of active neurons in 5–6 day-old SMA pups compared to littermates. Ventral horn activity in control
pups is significantly activated by serotonin and depressed by GABA, while these agents had much less effect on SMA slices.
In contrast to the large differences observed in spinal cord, neurons cultured from SMA embryos for up to 21 days showed
no significant differences in electrophysiological activity compared to littermates. No differences were observed in
membrane potential, frequency of spiking and synaptic activity in cells from SMA embryos compared to controls. In
addition, we observed no difference in cell survival between cells from SMA embryos and their unaffected littermates. Our
results represent the first report on the electrophysiology of SMN-deficient motor neurons, and suggest that motor neuron
development in vitro follows a different path than in vivo development, a path in which loss of SMN expression has little
effect on motor neuron function and survival.
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Introduction

SMA is characterized by motor neuron loss and muscle atrophy,

[1,2,3,4] and is caused by homozygous loss or mutation of the

survival motor neuron gene 1, SMN1 [5,6]. A second copy of the

gene, SMN2, is almost identical to SMN1 except for several single

nucleotide changes, one of which results in alternative splicing and

skipping of exon 7 [7,8] so that 75–90% of SMN transcripts from

SMN2 are truncated and are rapidly degraded in vivo [9]. While

the SMN proteins are ubiquitously expressed, the pathology

associated with SMN1 loss appears to be confined to motor

neurons [10].

A transgenic mouse considered to be a close model of Type 1

SMA, the most severe form, contains a homozygous deletion of the

murine SMN1 gene and carries 2 copies of a human SMN2

transgene [11]. Affected pups appear normal at birth, but within

48 hours show decreased movement, reduced suckling, labored

breathing, and small size compared to wild type littermates, and

they die before post-natal day 7 (P7). Histological analysis of

mutants on post-natal day 1 (P1) shows the normal number of

spinal and brainstem motor neurons, but by P3–P5, motor neuron

cell bodies in the spinal cord are 20–30% lower in number in the

mutants than in age-matched controls, and many of the remaining

neurons appear apoptotic. Interestingly, the severity of the SMA

phenotype seems outpace the loss of motor neuron cell bodies, as

even the most severely affected pups retain 60% or more of spinal

motor neurons [11].

In culture, compared to controls, motor neurons from the SMA

type 1 mouse show decreased axon length, likely as a results of

decreased levels of b-actin [12,13], as well as reduced clustering of

Ca2+ channels in their growth cones, and reduced excitability in axon

terminals [14]. Imaging studies have also demonstrated denervation

of neuromuscular junctions and other synaptic abnormalities that are

apparent as early as embryonic day 18.5 [15]. However, to date,

there have been no reports of electrophysiological studies examining

the excitability of motor neurons from SMN-deficient animal models

either in culture or in vivo.

Here we report our results measuring the electrophysiological

activity of SMN-deficient motor neurons using both single-cell and

multi-electrode methods. We used the MED64 multi-electrode

array to record extracellularly from motor neurons in the ventral

horn of spinal cord slices from 5 and 6 day-old pups from the

mouse model for severe SMA. The 64-electrode array allowed us

to record simultaneously across the entire ventral horn, giving an

overall picture of sharp declines in both the number of active

motor neurons and the frequency of spiking activity in SMN-

deficient mice compared to their normal littermates. In contrast,

whole-cell patch clamp recording of motor neurons cultured from
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day 13 embryos showed no difference in the electrophysiological

activity of cells from SMA embryos compared to littermate

controls, even after 21 days in culture. These results represent the

first report of the electrophysiological properties of spinal motor

neurons from an SMN-deficient model organism, and suggest that

motor neuron development in vitro follows a developmental path in

which motor neuron function and survival is much less dependent

on SMN expression than in vivo development.

Methods

Procedures involving animals were conducted in conformity

with National Institute of Health Guidelines for the Care and Use

of Laboratory Animals. All animal experiments were approved by

and conducted in accordance with the Institutional Animal Care

and Use Committees of Delaware State University and the Alfred

I. duPont Hospital for Children (Animal Welfare Assurance

Numbers A3318-01 and A4053-01, respectively).

Mice used for these experiment were of the FVB.Cg-Smn1tm1Msd

Tg(ACTA1-SMN)69Ahmb Tg(SMN2)89Ahmb/J strain and were

grown from breeding stock of stock # 008209 obtained from the

Jackson Laboratory (Bar Harbor, ME). Two heterozygotes were

mated to produce a mixed litter including homozygous mutant

pups. Wild type and heterozygous offspring were used as controls

as their phenotypes are indistinguishable [16,17], and we observed

no differences in the electrophysiological properties of motor

neurons from wild type and heterozygous mice.

Preparation and recording from spinal cord slices
Mouse pups 5–6 days old were decapitated, and the spinal cords

were rapidly removed and immediately placed in ice-cold sucrose

artificial cerebrospinal fluid (aCSF) presaturated with 95%O2 and

5% CO2. The tissue was placed in a shallow groove formed in a

gelatin block and glued upright on the stage of a vibratome. After

cutting to the lumbar region, transverse spinal cord slices 400 mm

thick were cut on a 15u angle in ice-cold sucrose aCSF and then

preincubated in Krebs solution oxygenated with 95% O2 and 5%

CO2 at 34uC for at least 1 h before transfer to the recording

chamber.

Multi-electrode recordings were made with the MED64 system

(Automate Scientific) in 50-second increments with a sampling rate

of 20 kHz. The MED probe contains 64 electrodes in an 868 grid

with inter-electrode spacing of 75 mm, and slices were positioned

so that only the ventral horn was over the electrodes (covering just

over half the grid, see Fig. 1A). Data was filtered in Matlab (The

Mathworks Inc., Natick, Massachusetts, USA) by applying a low-

pass filter of cut-off 2.5 kHz, and a high-pass filter with cut-off of

85 Hz. The data were detrended with least squares procedures to

remove spurious trends [18]. For spike extraction, the standard

deviation, d, was calculated and the voltage threshold was set to

64.5d [19]. The spikes were counted and frequency was

determined for each 25 sec of recording on active electrodes –

defined as those with 50 or more spikes per 50 seconds. To sort the

spikes and determine the number of units recorded per electrode, a

set of wavelet coefficients was used to extract features in spikes,

and a supermagnetic clustering algorithm was used for spike

sorting [20]. The significance of the difference between distribu-

tions of spike frequencies was tested with the Kruskal-Wallis test,

with p-value of less than 0.01 considered to be stationary

significant.

Preparation of primary cultures of motor neurons
Primary cultures were made from the motor neurons of spinal

cords from individual day-13 mouse embryos according to

methods published earlier [21]. Ventral horn cultures with this

method have been shown by immunofluorescence to be almost

completely motor neurons [21]. Briefly, 24-well dishes with

coverslips were coated over 48 hours with 0.01% poly-L-lysine,

then filled with neurobasal medium and kept at 4 uC overnight

or until use. The heads of each embryo are collected and stored at

-20 uC for genotyping while the ventral horns of each spinal cord

were placed individually in 1 ml complete Hibernate E1

(Brainbits, Springfield, IL). The ventral horns were trypsinized

in Hank’’s solution for 13 minutes, the trypsin solution was

replaced with motor neuron (MN) medium with growth factors

and agitated to break up cell clumps. The cell solution was

centrifuged at 300 g for 10 minutes at 37uC in MN medium +4%

BSA, the supernatant was discarded, and cells resuspended from

the pellet with MN medium and counted. Ventral horn neurons

from each individual embryo were dispensed to 6 wells. MN

medium is 95% Neurobasal medium, 2% B27 (Invitrogen), 2%

horse serum, 25 mM b-Mercaptoethanol, 25 mM Glutamic acid,

1% Penicillin-Streptomycin (Mediatech), 50 mM glutamine,

0.01% BDNF (R&D Systems). Cells were incubated 7 days before

recording to allow electrical activity to develop.

For genotyping, genomic DNA was extracted from the head

(embryos) or tail (pups) and amplified by PCR according to the

Jackson Lab protocol.

Whole-cell patch clamp of cultured neurons
Electrodes were triple pulled from borosilicate glass capillaries

and had an impedance of 4–6 MV when filled with internal

solution containing (mM): K-gluconate, 135; MgCl2, 2.0; HEPES,

10.0; EGTA, 0.5; ATP-Mg, 4.0; Na-GTP, 0.5, pH 7.2–7.4, and

290–310 mOsm. QX-314 was added to the intrapipette solution

to eliminate action potential when sPSCs were recorded. The

extracellular solution contained (mM): NaCl, 150.0; KCl, 3.0;

Figure 1. Neural activity is significantly reduced in the spinal
cords of SMA mice. A. Example of a slice from the lumbar spine with
only the ventral horn positioned over the electrodes of the MED probe.
B. Two littermates from the Smn2/2;SMN2 strain of mice at P4 showing
the difference in size of the wild type and mutant pups. C. Average
number of active electrodes recorded for each slice. One Way ANOVA,
p,0.0001 D. Average spike frequency recorded by each active
electrode. p = 0.46, One way ANOVA.
doi:10.1371/journal.pone.0011696.g001
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MgCl2, 1.0; CaCl2, 2.0; glucose, 10.0; and HEPES 10.0, pH 7.2–

7.4 with osmolarity of 310–330 mOsm. Motor neurons could be

identified by their morphology - a triangular shape with a single

well-defined axon and large soma (.20 mm). Recordings of

postsynaptic currents began 3 minutes after whole-cell access was

established and the current reached a steady state. The input

resistance was monitored and the recording as abandoned if

it changed more than 15%. Signals were recorded using a

MultiClamp700B (Axon Instruments, Foster City, CA) filtered at

1–2 kHz, digitized at 10 kHz, and stored with pCLAMP 10.2

(Axon Instruments). All spontaneous postsynaptic currents (sPSCs)

were recorded in voltage-clamp. 20 mM bicuculline, a GABAA

receptor antagonist and 10 mM 6-cyano-7-nitroquinoxaline-2,3-

dione (CNQX), a specific glutamate non-NMDA antagonist are

used to differentiate AMPA receptor- induced or GABA-induced

postsynaptic currents. Membrane potential and action potentials

were recorded in current-clamp.

Data analysis
The sPSCs and action potentials were analyzed off-line with a

peak detection program (MiniAnalysis, Synaptosoft, Decatur, GA).

Measurements of the amplitude and frequency of sPSCs and

action potentials were performed over a period of at least 2 min.

Events were manually excluded when noise was erroneously

identified as sPSCs or action potentials by the program.

Background noise levels were typically constant throughout the

recording of a single neuron. Significance of results was tested with

a one-way ANOVA.

Results

Recordings from ventral horns of spinal cord slices
For recordings from spinal cord slices, SMA and control pups

(wild type and heterozygous) were identified by body size at day 4

(Fig 1B) and confirmed by genotyping. Spinal cord slices were

positioned on the MED64 multi-electrode array so that only the

ventral horns were covering the electrodes (Fig 1A). The MED64

was used to record extracellularly from the ventral horn of 11

spinal cord slices from 3 SMA mice and 12 slices from 3 control

mice from post-natal day 5 or 6. The recordings demonstrate that

the number of spiking motor neurons in the lumbar spinal cord

was much lower in SMA mice than control mice. The average

number of electrodes recording action potential (spike) activity was

only 661 per slice in the SMA mice, while in slices from control

mice, the number of active electrodes/slice averaged 1562

(Fig 1C). In the active electrodes, the average spike frequencies

in basal conditions were similar in slices from control and SMA

mice - 5.4860.37 Hz in SMA and 6.0860.42 Hz in control

(Fig. 1D). However, spike sorting showed that each electrode

recorded fewer neurons in slices from SMA mice. In basal

conditions, each active electrode recorded an average of 5 different

neurons in slices from control mice, while in slices from SMA mice

each active electrode recorded an average of only 4 different

neurons.

As shown in Figure 2, serotonin significantly increased the

number of active spinal motor neurons in both control and SMA

mice, increasing both the number of active electrodes per slice

from 15 to 2562 electrodes/slice in controls and from 6 to 1162

electrodes/slice in SMA (Fig. 2A) while also increasing the number

of neurons recorded per active electrode from 5 to 7 in control

slices and from 4 to 5 in SMA slices. Reflecting the increase in

both the number of active cells recorded by each electrode and the

increased spiking activity for those cells, serotonin significantly

increased the overall spike frequency on active electrodes in both

SMA and control mice although the magnitude of the effect was

smaller in SMA mice (6.9860.49 Hz in SMA slices compared to

10.2060.27 Hz in controls (Fig. 2B).

While serotonin does cause a significant increase in the number

of active neurons and the average spike frequency in slices from

SMA mice as well as control mice, an examination of the

distribution of spike frequencies on the active electrodes shows

some differences between the SMA mice and the control.

Frequency distributions for both control and SMA slices could

be fit with three Gaussian peaks, but in control slices serotonin

caused a much larger change in the frequency distribution,

dramatically shifting activity from the low frequency range into the

middle and high frequency peaks (Fig. 3). In contrast, in the SMA

slices, serotonin had almost no effect on the low frequency peak,

only shifting the middle and high range peaks to slightly higher

frequencies. Overall, there was a significant change in the

distribution of the frequencies between basal and serotonin for

the control slices, however, the difference in the distributions was

not significant for the SMA slices (Fig 3).

Examples of spike activity recorded simultaneously from

multiple electrodes in slices from control and SMA mice are

shown in figure 4. The heterogeneity of spike types in control slices

after serotonin illustrates how the drug increases spike frequency

by recruiting additional cells to be active, while sample traces from

SMA slices show less size variation in spike activity indicating

fewer active neurons recorded by each electrode.

In addition to serotonin, three other pharmacological agents

were tested for their effect on the activity of motor neurons

recorded from ventral horn slices. Three quantities were

calculated and are shown in Table 1: the average number of

Figure 2. Motor neuron activity in both control and SMA slices
is stimulated by serotonin. 50 mM of serotonin was added to the
bath and neuronal activity was recorded after 2 minutes. For the wash
condition, slices were perfused with aCSF for 10 minutes before
recording resumed. A. Average number of active electrodes/slice (active
electrodes are those that recorded more than 50 spikes in 50 seconds).
One way ANOVA, p,0.0001 for both control and SMA. B. Average
frequency of spikes recorded on active electrodes. One way ANOVA,
p,0.0001 for control, p = 0.137 for SMA.
doi:10.1371/journal.pone.0011696.g002
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electrodes recording activity; the average frequency of spikes on

each electrode, and the average number of spikes per minute

recorded from each slice. This final quantity sums the spikes

recorded on all electrodes recoding neural activity. Of the

compounds tested, only GABA (20 mM) had a significant effect

on slice activity, reducing the total number of spikes per slice, but

only in the control slices. None of the compounds caused a

significant change in slice activity in SMA slices (Table 1).

Whole-cell recordings from primary motor neuron
cultures

In culture, neurons dissociated from ventral horns of wild type and

SMA mice form extensive processes, and are indistinguishable in

appearance. Whole-cell recordings were made from neurons cultured

from 4 separate SMA embryos and 5 wild-type embryos. Action

potential activity could be recorded from the cells starting on culture

day 6. Patch-clamp recordings with cultured motor neurons were

conducted between culture days 7–21 (Fig. 5,B,C). Initially the data

was pooled per day of culture, but as no differences between the SMA

and wild-type cells could be observed, the results were pooled into two

groups: recordings made between culture day 7 to day 14 which

correspond to the time that pups are born and SMA pups typically

are alive; and recordings made between culture days 15–21, which

correspond to the second post-natal week beyond the time that SMA

pups survive.

The resting membrane potential (RMP) recorded between day 7 to

14 averaged 259.861.2 mV in 13 control cells and 256.763.2 mV

in 11 SMA cells. Between days 15–21 the average RMP was

– 58.362.4 mV in 12 control cells and 257.262.5 mV in 13 SMA

cells (Fig. 5D). There is no significant difference between the control

and SMA groups regardless of the recording period (Fig. 5; P.0.05,

One way ANOVA). Similarly, action potential frequency from day

7–14 averaged 0.2460.06 Hz in 13 control cells and 0.2960.05 Hz

in 11 SMA cells, while from day 15–21 the action potential frequency

averaged 0.2760.06 Hz in 12 control cells and 0.2360.08 Hz in 13

SMA cells (Fig. 5E). There is no significant different between cells in

the control and SMA cultures (Fig. 4; P.0.05, One way ANOVA). In

addition to the lack of difference in the electrical activity and resting

membrane potential between SMA and wild type cells, no difference

was observed in cell survival as long as day 21 of culture.

Spontaneous excitatory post-synaptic potentials (EPSCs) were

recorded in the presence of bicuculline (20 mM) and strychnine

(2 mM) to block inhibitory currents, and sample traces are shown

in Fig 6A. From day 7–14, the frequency of sEPSCs was

3.660.7 Hz in 9 control cells and 3.260.5 Hz in 9 SMA cells,

while from day 15–21, the frequency of sEPSCs averaged

3.660.4 Hz in 9 control cells and 3.660.8 mV in 9 SMA cells

(Fig. 6B). In addition, the average amplitude of sEPSCs recorded

from day 7–14 did not differ significantly between control and

SMA cells (108612 pA for 9 control and 98615 pA for 9 SMA

Figure 3. In SMA slices the overall distribution of spike frequencies is not significantly changed by serotonin. Histograms of spike
frequency comparing slices from control and SMA mice. The number of observations was normalized to the total number of observations in each
slice and divided into. 0.5 Hz bins. The distributions were fitted with mixed Gaussian approximations using the Expectation-Maximization (EM)
algorithm [26]. Serotonin significantly shift the frequency distribution in control slices (p,0.0001), but the shift is not significant in the SMA slices
(p = 0.1433; Kruskal-Wallis).
doi:10.1371/journal.pone.0011696.g003
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cells). Similarly, from day 15–21, there was no significant different

in the amplitude of sEPSCs between control and SMA cells (8867

pA in 9 control cells and 93611 pA in 9 SMA cells; Fig. 6C).

Spontaneous inhibitory post-synaptic potentials (IPSCs) are

recorded in the presence of 10 mM CNQX to block excitatory

currents, and sample traces are shown in Fig. 6D. As with the

sEPSCs, there was little difference between wild type and SMA

cells. The sIPSC frequency recorded between days 7–14 was

4.660.6 Hz for 10 in control cells and 3.860.5 Hz in 13 SMA

cells, and from day 15–21 was 4.360.8 Hz in 9 control cells and

4.460.6 Hz in 10 SMA cells (Fig. 6E). Similarly, sIPSC

amplitude showed no significant change between wild type

and SMA cells averaging 113612 pA in 10 control cells and

135622 pA in 13 SMA cells from day 7–14 and 168625 pA

in 9 control cells and 183633 pA in 9 SMA cells between day

15–21 (Fig. 6F).

Figure 4. Sample traces show the reduced activity recorded from the ventral horns of SMA mice. Sample traces showing spike activity
recorded from all active electrodes in a single slice from a control and an SMA mouse showing activity in both basal and serotonin-stimulated
conditions. Slices from SMA mice had many fewer active electrodes than controls, and showed fewer neurons active after serotonin treatment.
doi:10.1371/journal.pone.0011696.g004

Table 1. Pharmacological agents cause little change in activity of control or SMA slices.

Condition Control SMA

Average #
Active electrodes

Spike
Frequency

Average #
spikes/slice

Average #
Active electrodes

Spike
Frequency

Average #
spikes/slice

Control 1461 6.0860.34 50186901 661 5.6560.38 20306598

Acetylcholine 1461 5.8860.35 50756880 661 5.3960.32 17876448

Wash 1361 6.0260.37 48046910 661 5.8360.49 20886533

Control 1662 6.2760.31 60086690 761 5.4360.47 22926357

Bicuculline 1662 5.9660.39 56456913 761 6.1861.22 26046362

Wash 1662 5.6760.46 55156946 761 5.6360.69 23196492

Control 1661 6.3760.39 60596734 661 5.6260.66 20296667

GABA 1461 5.7460.45 48246790* 661 5.1460.41 18326600

Wash 1561 6.7060.49 60236873 661 5.7460.61 20756463

Acetylcholine (100 mM), bicuculline (10 mM) or GABA (20 mM) were bath applied to the slice and recording was resumed after 2 minutes. For wash, slices were perfused
with aCSF for 10 minutes before recording was resumed. Averages are calculated for 12 slices from 3 control mice and 11 slices from 3 SMA mice.
*p,0.05 (One-way ANOVA). Active electrodes are those electrodes recording spiking activity of at least 1 Hz over a 50 second period. Number of spikes per minute
totals the number of spikes recorded on all electrodes recording neural activity from a slice.
doi:10.1371/journal.pone.0011696.t001
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Discussion

This paper presents results with a mouse model for type 1

SMA that represent the first report of the electrophysiological

properties of SMN-deficient motor neurons. Multi-electrode

recordings of ventral horns from mice modeling the most severe

form of SMA record many fewer active neurons on P5 and P6

than control littermates. The decrease in electrically active cells is

observed both in the smaller number of sites in the ventral horns

where neural activity can be recorded, and in the smaller number

of spiking neurons recorded by each electrode. Of the

pharmacological agents tested, serotonin was the only one that

had much effect on the activity of the ventral horn neurons. In

both control and SMA slices, serotonin recruited more neurons to

be active by increasing both the number of electrodes recording

activity and the average number of neurons recorded by each

electrode. Serotonin also increased the spike frequency of the

active cells. However, on the whole, the magnitude of the

stimulating effects of serotonin was lower in SMA slices compared

to controls. The total distribution of spike frequencies showed

that in control slices, serotonin shifted all peaks of the distribution

toward higher frequencies, and the effect was most pronounced at

lower spike frequencies. In contrast, in the SMA slices, there was

little change in the mean and the proportion of observations in

the lowest frequency peak, and only modest shifts in the means of

the medium and higher frequency peaks. Overall, our slice

recordings from the SMA model mice suggest that by P5–P6

many motor neurons in the ventral spinal cord are no longer

active, and those that remain are less active overall and less able

to be stimulated by modulating agents. These results are

Figure 5. No difference in spiking activity in motor neurons cultured from wild type and SMA embryos. A. Sample of cells from a
ventral horn culture from an E13 embryo (wild type, 7 days in culture) showing the large somas and extensive network of cell processes. B. Sample
genotyping result using the protocol from the Jackson Lab. Wild type band is 800 bp. Band from SMN1 knock-out is 500 bp. C. Sample traces
showing the membrane potential and action potentials from control and SMA mice. D. Summary data of the resting membrane potential comparing
the 2nd and 3rd week culture in control and SMA mice. E. Summary data of the frequency of action potential comparing the 2nd week and 3rd week
culture in control and SMA mice. We did not find any significant difference between the average membrane potential or action potential frequency
between the control and SMA cultures (p.0.05, One-way ANOVA).
doi:10.1371/journal.pone.0011696.g005
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consistent with histological studies with this mouse model which

showed the normal number of spinal and brainstem motor

neurons at PI, but a decrease in motor neuron cell bodies in the

spinal cord of 20–30% by P3–P5 compared to age-matched

controls [11]. These results are also consistent with electrophysio-

logical studies of human SMA subjects, which found decreases in

motor unit number associated with symptom onset and pro-

gressing over time [22].

In contrast, when SMA motor neurons are removed from the

spinal cord of day 13 embryos and cultured in vitro, no differences

could be observed between their electrophysiological properties

and those of neurons from control littermates. Similar to an earlier

report [12], cell survival appeared to be the same up to culture day

21 which is approximately equivalent to post-natal day 14. Not

only did the SMA cells survive, there was no difference in their

resting membrane potential or the frequency of spontaneous

Figure 6. Excitatory and inhibitory input in motor neurons cultured from wild type and SMA mice. A. Sample traces of the sEPSCs
recorded on day 7 and day 17 in control and SMA cells. B. Summary data of the frequency of sEPSCs during the 2nd and 3rd week of culture in control
and SMA cells. C. Summary data of the amplitude of sEPSCs during the 2nd and 3rd week culture in control and SMA cells. D. Sample traces of the
sIPSCs at day7 and day17 in control and SMA mice. E. Summary data of the frequency of sIPSCs during the 2nd and 3rd week of culture in control and
SMA cells. F. Summary data of the amplitude of sIPSCs during the 2nd and 3rd week culture in control and SMA mice. We did not find any significant
difference in the frequency or amplitude of either excitatory or inhibitory PSPs between the control and SMA cultures (p.0.05, One-way ANOVA).
doi:10.1371/journal.pone.0011696.g006
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action potential activity compared to wild type motor neurons. In

addition, no difference was observed in synaptic function between

the wild type and SMA neurons in culture, in spite of several

studies with mutant pups showing reduced excitability in the axon

terminals, impaired synaptic vesicle release and neurotransmission

failures at neuromuscular synapses [16,23,24]. Recordings of the

frequency and amplitude of spontaneous excitatory post-synaptic

potentials (many of which are likely to represent synapses between

motor neurons) found no difference between wild type and SMA

neurons even after 21 days in culture. Inhibitory post-synaptic

potentials were also the same in mutant and control neurons,

indicating that cultured wild type and mutant neurons were

equally responsive to GABA, while in slice recordings, only control

cells were inhibited by GABA. These results suggest that there is

no difference in the number and efficacy of synapses formed by

networks of wild type and SMN-deficient motor neurons grown in

culture.

Taken together, these results suggest that motor neuron

development in culture proceeds down a different developmental

pathway than in vivo development in the spinal cord, and that in

vitro development leads to motor neurons that are much less

dependent on expression of SMN for survival and function. The

lack of dependence of cultured motor neurons on SMN expression

indicates that care must be taken in using motor neuron culture as

a model system for studying SMA, but also suggests that a deeper

understanding of how motor neuron development in culture differs

from development in vivo may provide key insights into the

pathophysiology of SMA.

One major difference between in vitro and in vivo development is

contact with muscle cells. For primary culture, motor neurons are

harvested from E13 embryos, a stage when the motor neuron

axons have begun to leave the spinal cord, but have not yet made

synapses on muscle cells [25]. It is possible that contact with

muscle cells starts motor neurons down a developmental path in

which SMN expression is critical for cell function and survival. In

the absence of that contact, motor neurons may be no more

dependent on SMN expression than other types of neurons.
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